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Abstract

Motivation: De novo copy number deletions have been implicated in many diseases, but there

is no formal method to date that identifies de novo deletions in parent-offspring trios from

capture-based sequencing platforms.

Results: We developed Minimum Distance for Targeted Sequencing (MDTS) to fill this void. MDTS

has similar sensitivity (recall), but a much lower false positive rate compared to less specific CNV

callers, resulting in a much higher positive predictive value (precision). MDTS also exhibited much

better scalability.

Availability and implementation: MDTS is freely available as open source software from the

Bioconductor repository.

Contact: ingo@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Copy number variants (CNVs) are a major contributor of genome

variability in humans (Zarrei et al., 2015), and frequently underlie

the etiology of disease (Gilissen et al., 2014; Pinto et al., 2010;

Walsh et al., 2008; Wellcome Trust Case Control Consortium,

2010; Zhang and Lupski, 2015). De novo CNVs, especially de novo

deletions, are of interest as they have the potential to play a func-

tional role in the genesis of a disease phenotype (Georgieva et al.,

2014; Glessner et al., 2014; van Bon et al., 2016; Veltman and

Brunner, 2012). Over the last decade, next generation sequencing

(NGS) has become routine and widespread (Metzker, 2010;

Shendure and Ji, 2008), permitting the assessment of CNVs based

on hundreds of millions of short reads observed in each sample. The

advantages of some types of NGS approaches for CNV assessment,

compared to single nucleotide polymorphism (SNP) arrays, may in-

clude higher and more uniform coverage, better quantitation yield-

ing more precise estimates of DNA copy number, and higher

resolution for break point detection (Alkan et al., 2011; Meyerson

et al., 2010). Computational methods to detect CNVs from NGS

short reads can generally be categorized into approaches based on

discordant read mapping, split read mapping, read depth, de novo

assembly, or a combination of these approaches (Zhao et al., 2013).

Due to the differences in the attempted capture, methodologies for

whole genome sequencing (WGS), whole exome sequencing (WES) and

targeted sequencing (TS) platforms differ substantially, with TS and

WES platforms primarily relying on read depth (Tattini et al., 2015).

A large number of methods for detecting CNVs in independent

samples are available for all types of NGS data (Bansal et al., 2014;
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Bellos et al., 2014; Bellos and Coin, 2014; Fromer and Purcell, 2014;

Krumm et al., 2012; Kuilman et al., 2015; Li et al., 2012; Nord et al.,

2011; Packer et al., 2016; Talevich et al., 2016). However, there is no

method to date that identifies de novo CNVs in parent-offspring trios

from capture-based TS and WES platforms. For WGS platforms, the

software TrioCNV jointly calls CNVs in parent-offspring trios (Liu

et al., 2016) using a hidden Markov model (HMM) with 125 possible

underlying states to segment the sequencing data (5 possible underly-

ing states per sample: two-copy deletion, one-copy deletion, normal,

one-copy duplication, multiple-copy duplication). Its performance in

TS or WES platforms however is not well described. In CANOES,

also HMM based, inference for de novo copy number deletions in TS

and WES data is obtained post-hoc by comparing single-sample

derived CNV calls. For each sample of the trio, the observed read

counts are modeled using negative binomial distributions, and the re-

spective variances are estimated using a regression-based approach

based on selected reference samples (Backenroth et al., 2014).

However, such approaches do not fully leverage the Mendelian rela-

tionship between parents and offspring to delineate de novo CNVs.

The loss of statistical power for delineating de novo CNVs by post-

hoc methods has been demonstrated previously in CNV calls from

SNP array data (Scharpf et al., 2012; Wang et al., 2008).

The motivating example in this manuscript is a targeted re-

sequencing study we recently carried out in 1409 Asian and

European case-parent trios ascertained by non-syndromic orofacial

cleft probands, targeting 13 regions previously implicated in candi-

date genes and genome-wide association studies (GWASs) (Leslie

et al., 2015). The study successfully confirmed 48 de novo nucleo-

tide mutations, and provided strong evidence for several specific

alleles as contributory risk alleles for non-syndromic clefting in

humans. Choosing two of these de novo nucleotide variants for

functional assays, we showed one mutation in PAX7 disrupted the

DNA binding of the encoded transcription factor, while the other

mutation disrupted the activity of a neural crest enhancer down-

stream of FGFR2 (Leslie et al., 2015). However, for the majority of

trios, we were not able to identify a genetic cause underlying the

proband’s oral cleft. Since de novo deletions have previously

been shown to underlie oral cleft risk (Salahshourifar et al., 2012;

Tan et al., 2013; Younkin et al., 2014), we speculated that in addition

to de novo nucleotide variants, de novo deletions in the 13 targeted

regions also contribute to clefting for some of our trio’s probands.

In this manuscript, we present a novel method to delineate de

novo deletions from TS of trios. We propose a novel capture-based

definition of targets (using median read depth as the defining metric

for bins underlying the algorithm, instead of using a uniform num-

ber of base pairs), normalize copy number counts using the entire

study population, and utilize a ‘minimum distance’ statistic based

on normalized read count summaries, aiming to further reduce

shared sources of technical variation between offspring and parents

within a trio. We characterize the sensitivity, specificity and positive

predictive value (PPV) of MDTS on simulated data to benchmark its

performance relative to the closest existing methods TrioCNV (Liu

et al., 2016) and CANOES (Backenroth et al., 2014). We show that

properly addressing the capture in TS data is critical, and thus,

methods specifically developed for WGS data (e.g. TrioCNV) do not

perform well for TS data. Compared to CNV callers designed for

capture based sequencing data that do not exploit the family design

(e.g. CANOES), MDTS has similar sensitivity but a much lower

false positive rate, resulting in a much higher PPV. In the analysis of

the 6.7 Mb TS oral cleft data, which identified one de novo deletion

in the gene TRAF3IP3 (a suspected regulator of IRF6), MDTS also

exhibited much better scalability.

2 Materials and methods

Our novel MDTS introduces two novel algorithmic aspects. First,

MDTS employs bins of varying sizes based on read depth (Fig. 1,

A–D) as compared to the common standards of using either uni-

form, non-overlapping bins defined by the number of nucleotide

base pairs (default in TrioCNV: tiled, non-overlapping 200 bp bins)

or probe-based coordinates (default in CANOES: the genomic coor-

dinates of the designed capture baits). Second, MDTS fully exploits

the trio design to infer de novo deletions (Fig. 1, E–G), as compared

to processing the trio samples separately and carrying out post-hoc

inference. To demonstrate that both of these algorithmic features

are important in the delineation of de novo deletions, and to quan-

tify their relative contributions to sensitivity, specificity and PPV, we

compare the default implementations of MDTS and CANOES in the

following section, plus MDTS based on the ‘probe-based’ bins

(MDTS:p) and CANOES based on the dynamically sized ‘MDTS

bins’ (CANOES:b).

2.1 Sample and target region selection
The original study population included 1409 case-parent trios com-

prised of 4227 individuals of Asian or European ancestry from

Europe, the United States, China and the Philippines (Leslie et al.,

2015, Supplementary Table S1). Thirteen genomic regions spanning

6.7 Mb were selected for sequencing based on prior association and/

or linkage studies, targeting both coding and non-coding sequence

at each locus (Leslie et al., 2015, Table 1).
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Fig. 1. Schematic flowchart of the MDTS method, from bin to CNV delineation.

(A) Design probes in the genomic region between 209.944 and 209.948 Mb of

chromosome 1. The probes are approximately 120 bp long, and often overlap

by 60 bp. (B) Transcripts (red lines) from the GencodeV27 annotation. Ten

transcripts of TRAF3IP3 contain the exon (white boxes) in the region shaded

blue. (C) Basepair coverage (read depth) derived from the 25 samples ran-

domly selected to calculate MDTS bins. The region indicated by the rose color

was flagged by MDTS for high variability. (D) MDTS bins calculated from read

depth, leading to wider bins when coverage is low (and vice versa). (E) Read

depths for the MDTS bins among the three DS10826 family members (pro-

band in black). (F) Normalized counts (M-scores) for the three DS10826 family

members. (G) The minimum distance for family DS10826, and the outcome

from CBS segmentation (red line), inferring a candidate de novo deletion

(Color version of this figure is available at Bioinformatics online.)
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2.2 Library preparation, sequencing and alignment
Multiplexed libraries were constructed with 1 lg of native genomic

DNA according to standard Illumina protocol with modifications as

follows, described in Leslie et al. (2015): (i) DNA was fragmented

with a Covaris E220 DNA Sonicator (Covaris) to range in size be-

tween 100 and 400 bp; (ii) Illumina adaptor-ligated library frag-

ments were amplified in four 50 ml PCR reactions for 18 cycles; and

(iii) solid phase reversible immobilization (SPRI) bead cleanup was

used for enzymatic purification throughout the library process, as

well as final library size selection targeting 300–500 bp fragments.

NimbleGen custom target probes were designed to the target region

and hybrid capture on pools of 96 indexed samples per capture was

performed. Each capture pool was sequenced on two lanes of

Illumina HiSeq for an average of �40 Gb per lane or �835 Mb per

sample. 100 bp paired-end reads were mapped to the GRCh37-lite

reference sequence by BWA v.0.5.912 (Li and Durbin, 2009).

2.3 MDTS algorithm
2.3.1 Definition of bins and M scores

Due to the prevalence of off-target capture and heterogeneity of

coverage within targeted regions, we utilized an empirical approach

to define the MDTS bins for computing read depth. Specifically, we

randomly sampled 25 subjects and calculated the coverage statistics

in each sample across the autosomes. A set of contiguous proto-

regions were identified as the set of all basepairs where at least one

of the samples had observed coverage of 10� or more. The size of

the bins were a consequence of the minimum coverage parameter in

MDTS. As proto-regions harbored substantial heterogeneity in size

depending on both probe density and capture efficiency, the final

bins were generated by sequentially partitioning the proto-regions

into smaller, non-overlapping regions where the median number of

reads across the 25 subsamples in each region reached the desired

minimum coverage. Setting this parameter to 160 separated the

copy neutral state from a rare heterozygous deletions spanning a sin-

gle bin by more than 6 standard deviations, assuming a Poisson

model for the counts. Bins were excluded if the average mappability

of a bin was less than 0.75, or if the average GC content was outside

a ‘normal’ range defined as [0.15, 0.85]. Subsequently, the number

of reads overlapping the bins were counted for all samples. The raw

count data were organized in a ‘bin by sample’ matrix. We applied a

log 2ðcountþ 1Þ transformation to reduce skew. Each cell of the

matrix was centered by the column and row medians, in that order.

The resulting scores for each sample were further adjusted for

average GC content and 100mer mappability of their respective

bins, using a locally weighted scatterplot smoother (loess) fit to pro-

duce M scores, a relative measures of DNA copy number, with an

expected value of 0 for a copy-neutral DNA segment, and -1 for a

single copy deletion (unless there is a CNP).

2.3.2 Minimum distance

To infer de novo deletions we utilize the Minimum Distance statistic,

previously defined for SNP array data (Scharpf et al., 2012). In brief,

at each bin we considered the difference in M scores between the off-

spring (O) and the father (F), calculated as MO �MF, and denote this

difference as dF. We calculated the equivalent distance of offspring

and mother, and denote this difference as dM. The Minimum Distance

between parents and offspring at a bin is defined as the smaller of

those two differences when comparing their absolute values:

d ¼ arg mind2fdF ;dMgjdj (1)

2.3.3 Filtering and segmentation

Of the 1409 families, 383 were removed prior to MDTS bin calcula-

tion for experimental design insufficiencies. For these families, the

family members were either run in different batches, or did not pass

basic quality control as noted by the reporting lab. An additional 8

families were excluded from the analysis based on Minimum

Distances summary statistics (lag10 auto-correlation > 0.4 and/or

variance > 0.05). Circular Binary Segmentation (CBS) (Olshen et al.,

2004; Venkatraman and Olshen, 2007), implemented in the

Bioconductor package DNAcopy, was used for each targeted region to

segment the Minimum Distances across the bins for each trio. CBS

computes a permutation reference distribution of the input Minimum

Distances to infer change points for copy number. As this is a random

process by default, we fixed a seed set.seed(137) in R to ensure

reproducibility of our results. We required the minimum number of

bins in any segment to be at least 3. In general, default input parame-

ters were used, except using a¼0.001 as the minimum significance

required in the CBS t-tests to infer a change point. Further, we

allowed change points to be undone when the difference in means

was less than 4 standard deviations (undo.splits¼’sdundo’ in

conjunction with undo.SD¼4). Candidate de novo heterozygous

deletions were identified as regions where the segmented Minimum

Distance was within 0.3 of the theoretical value of –1. To reduce the

likelihood of false positives based on failures in the normalization pro-

cess (caused by the existence of CNPs or technical anomalies), regions

of high variability were identified as bins where more than 5% of

samples had M scores outside the interval [�0.5, 0.5]. MDTS

reported de novo deletions only when more than half of the bins in

the candidate region were not flagged in such a manner.

2.4 Alternative approaches
2.4.1 CANOES

This algorithm was designed for capture-based WES and TS data,

but the statistical inference does not explicitly take the familial

relationship into account. Assessment of de novo copy number

events in CANOES is based on a post-hoc comparison of the

inferred copy number states of the individual samples. The default

binning scheme in the algorithm utilizes the bait design coordinates,

but MDTS bins can also be used as input. A simple modification

had to be made to the CANOES R code, publicly available at

www.columbia.edu/�ys2411/canoes/, to make it scalable

for our simulation study and oral cleft data analysis. For large sam-

ple sizes (here, n¼3054 in the oral cleft study) the calculation of

Table 1. MDTS inferred de novo deletions in the oral cleft data

Start locus End locus Size Family MD

Chromosome 1 209 945 655 209 947 210 1556 DS10826 �0.90

Chromosome 8 129 614 522 129 616 078 1557 DS12329 �0.82

Chromosome 8 130 113 612 130 132 753 19 142 DS11025 �0.88

The region on chromosome 1 (top row) is a genuine de novo heterozygous

deletion of approximately 1556 base pairs in the proband of family DS10826,

inferred using the minimum distance and supported by aberrantly spaced reads

(Fig. 3, left column). The region of about 1557 base pairs near 129.6Mb on

chromosome 8 (middle row) likely is a false positive identification, inferred

based on read depth and the minimum distance, but not supported by aberrant-

ly spaced reads (Fig. 3, right column). The region of about 19 kb near 130.1 Mb

on chromosome 8 (bottom row) stems from an unusual Mendelian event in

family DS11025 outside a copy number polymorphism (Fig. 4, left column).

MD: average minimum distance in the respective regions.
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the n�n covariance matrix between bin read counts of samples to

locate reference samples for a given individual is computationally

very intensive. In the original R code this is carried out for each

sample (within the for() loop), but actually has to be carried out

only once (outside the for() loop).

2.4.2 TrioCNV

In comparison to CANOES, this algorithm explicitly models the

proband-parent trio relationship, however was designed for WGS

data (i.e. non-capture based sequencing data). The default binning

scheme for the inference is based on subdividing the genome into

non-overlapping 200 bp windows. We restricted these bins to those

in the 6.7 Mb targeted for sequencing (Leslie et al., 2015). In

the simulation study and the oral cleft data analysis we used

the TrioCNV default parameters, with two exceptions: We reduced

the value for the argument min_distance, which specifies the dis-

tance between adjacently called CNVs to be merged, from the de-

fault 10 000 to 1000. We also changed the value for the argument

gc_bin_size, from its default value of 1 to 2. This value deter-

mines the grouping of bins for the estimation of the emission proba-

bilities in the Hidden Markov Model. The default value of 1 did not

produce a sufficient number of bins for certain GC values in the cap-

ture based data, resulting in JAVA runtime errors thrown.

2.5 Simulation study
We sampled with replacement 1000 case-parent trios from the 1018

families that passed QC. For each instance, we simulated read data

based on the TS data for that trio. We first sampled 10 non-

overlapping regions among MDTS regions that passed the normaliza-

tion criterion described above. Of the 10 regions, 5 were designated

to harbor de novo deletions and 5 were designated to harbor inherited

deletions of sizes 250, 500, 1000, 2000 and 4000 bp. The 5 de novo

deletion spike-ins were achieved by randomly and independently

dropping reads that overlapped the selected regions with probability

0.5 in the BAM file of the proband. The 5 inherited deletions were

generated by randomly and independently dropping reads overlap-

ping the respective regions with probability 0.5 in the BAM files of

the proband and one parent. Split reads were not simulated as all

methods compared here are based on read-depth. We compared the

performances of MDTS, CANOES and TrioCNV, using default and

alternative binning schemes. Specifically, we assessed the performan-

ces of MDTS with default read-depth based bins (MDTS), MDTS

with bins based on bait design coordinates as defined in CANOES

(MDTS:p), CANOES with MDTS bins (CANOES:b), CANOES with

default bins (CANOES), TrioCNV with MDTS bins (TrioCNV:b)

and TrioCNV with restricted genomic bins as described above

(TrioCNV). For CANOES and CANOES:p, the CNV calling was car-

ried out for each family member. Inferred deletions in the proband

found to be at least 25% covered by a called deletion in at least one of

the parents were deemed to be inherited, otherwise deletions in the

proband were considered de novo. The spiked-in de novo and

inherited deletions were considered called if 25% of the deletion was

covered by candidates reported. Alternative thresholds of > 0% (any

overlap) and 50% (at least half of the deletion was identified) were

also considered.

3 Results

3.1 Simulation study
MDTS and CANOES produced somewhat similar results for sensi-

tivity (recall) among de novo deletions of 1 kb or larger, while

CANOES had better sensitivity for very small de novo deletions. As

expected, the algorithms using the smaller (‘probe-based’) bins

faired slightly better for small de novo deletions, while using read

depth based bins (‘MDTS bins’) had higher sensitivity for 1 kb de

novo deletions or larger (Fig. 2A, Supplementary Table S1). These

findings remained the same under other definitions of ‘overlap’ be-

tween called and simulated deletions (Supplementary Fig. S1). Very

pronounced differences were observed with regards to the number

of false positive identifications. Depending on size, up to 8% of

inherited deletions were incorrectly identified as de novo by

CANOES using the default ‘probe-based bins’ (increasing to about

15% for CANOES:b, i.e. when using ‘MDTS bins’), while MDTS

was extremely robust towards this type of mistake. This was also

true when ‘probe-based bins’ were used in the MDTS algorithm (e.g.

MDTS:p), highlighting the importance of fully exploiting the trio de-

sign when inferring de novo deletions (Fig. 2B, Supplementary Table

S2).

In addition, MDTS incorrectly identified 2 small de novo dele-

tions of 374 and 637 base pairs in this simulation study, while

CANOES yielded 2967 false positives with a median width of 361

base pairs (ranging from 121 to 24 474 base pairs). This number

was reduced to 114 false positives when our proposed read depth

based bins (‘MDTS bins’) were used in the CANOES algorithm (e.g.

CANOES:b), but these inferred deletions were generally larger in

size with a median width of 2485 base pairs and a range of 206 to
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Fig. 2. Simulation results to assess sensitivity, specificity and positive predict-

ive value of four different algorithms to infer de novo deletions. True positive

rate (sensitivity, y-axis) among 1000 iterations for simulated de novo dele-

tions of various sizes (x-axis). Point estimates are shown as circles together

with Binomial 95% confidence intervals. (B) False positive rate (specificity)

among 1000 iterations for simulated inherited deletions of various sizes.

(C) Number of additional false positive identifications from the simulation ex-

periment (y-axis), with length distribution on the logarithmic scale (x-axis)

shown as boxplots. MDTS with the newly defined bins only produced two

additional false positives, which are shown as points. (D) Positive predictive

value based on the true positive rate in panel (A) and the false positives in

panel (C). Colors indicate the algorithms. MDTS and CANOES refer to the re-

spective algorithms as implemented, MDTS:p refers to MDTS based on

‘probe-based bins’, CANOES:b refers to CANOES based on the non-uniform

read depth based ‘MDTS bins’ (Color version of this figure is available at

Bioinformatics online.)
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19 709 base pairs. The importance of using read depth based bins in

the algorithms to control false positive identifications was evident,

as MDTS built on probe-based coverage (MDTS:p) also faired a lot

worse than MDTS (Fig. 2C, Supplementary Table S3). These differ-

ences in the numbers of false positive identifications observed

among these algorithms also resulted in substantial differences when

estimating the PPV. The almost complete absence of false positive

identifications in MDTS resulted in PPVs approaching 100%, while

CANOES did not exceed 25% even for the large de novo deletions.

CANOES:b on the other hand achieved about 90% PPV, highlight-

ing the importance of using read depth based bins (Fig. 2D,

Supplementary Table S4).

As expected, TrioCNV did not perform well in the simulation

study due to its design for WGS (i.e. non-capture) data. TrioCNV

with default 200 bp genomic bins was unable to detect any de novo

deletions, and TrioCNV with MDTS bins only achieved at most 2%

sensitivity even for the larger deletions.

3.2 Oral cleft case study
Of the full complement of 4227 samples, 3054 samples in 1018

case-parent trios passed sequencing quality control metrics. Among

these families, the MDTS binning procedure generated 25 305 bins,

spanning just over 6.3 Mb of the targeted 6.7 Mb autosomal region.

The bins ranged in size from 19 to 2956 bp, with a median size of

220 bp. The mean bin coverage ranged from 24� to 305� across

these samples, with a median of 66� and a median absolute devi-

ation (standard deviation) of 14.0 (17.8) (Supplementary Fig. S2).

MDTS identified three candidate de novo deletions (Table 1).

The first candidate spanned a 1.6 kb segment on chromosome 1

with an average Minimum Distance of �0.90 across 7 bins, and was

strongly supported as a de novo deletion by the presence of improp-

erly paired reads spanning this segment (Fig. 3, left column). The

average read depth for the proband in that region was 714, while a

read depth of 1318 was expected for a copy neutral state. This find-

ing was further corroborrated by whole genome sequencing data

available for this trio (Supplementary Fig. S3). The second candidate

region spanned a 1.6 kb segment on chromosome 8 with an average

Minimum Distance of �0.82 across 7 bins. The average read depth

for the proband in that region was 740, which compared to an

expected read depth of 1380 for a copy neutral state, suggesting this

proband carried a heterozygous deletion. In contrast to the region

on chromosome 1 however, no improperly paired reads spanning

this segment were observed, rendering this finding somewhat less

conclusive. Thus, this region could also represents a false positive

identification (Fig. 3, right column). Mendelian inconsistencies

among trio genotypes can also indicate a de novo deletion (Ting

et al., 2006, 2007), while heterozygous genotypes in the proband

provide strong evidence against de novo deletions, however neither

result was observed in this short 1.6 kb region for family DS12329

(only 1 variant was reported in the vcf files as 0/0, 0/1, 0/1 for the

child and the parents, respectively). The third candidate region

spanned a 19 kb segment on chromosome 8, with an average

Minimum Distance of �0.88 across 74 bins. The apparent deletion

in the proband of family DS11025 however was not de novo, but

inherited from a parent with zero copies (Fig. 4, left column). This

represents a rather uncommon occurrence, as homozygous deletions

typically are only observed for copy number polymorphisms (Fig. 4,

right column), while the 19 kb segment on chromosome 8 was

only observed for this one family. In total, MDTS detected and

flagged two copy number polymorphic regions, a 7.1 kb segment

on chromosome 1 and a 3.2 kb segment on chromosome 8

(Supplementary Table S5).

CANOES also identified the true de novo deletion in the proband

of family DS10826, did not identify the inherited deletion in family

DS11025, and did not report the inconclusive MDTS identification in

M value
2 1 0 1

proband parent 1
parent 2

proband724 reads

parent 12049 reads

parent 21721 reads

209.945 209.947 209.949

M value
2 1 0 1

proband
parent 1

parent 2

proband740 reads

parent 11481 reads

parent 21371 reads

129.614 129.616 129.618

genomic location [ Mb ]
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Fig. 3. Data underlying inferred de novo heterozygous deletions in two pro-

bands. [Left Column] Evidence for a de novo heterozygous deletion on

chromosome 1 for the proband in family DS10826. (A) The average of the M

scores of the proband (-0.93, black arrow), the parents (0.06 and 0.01, green

and pink arrows, respectively) and all other subjects (gray histogram) be-

tween loci 209 945 655 and 209 947 210 on chromosome 1. The proband’s

average of the M scores near �1, compared to the values near zero for all

other samples including the parents, is consistent with a de novo deletion of

one allele in this region. (B–D) Read-pairs observed among the members of

family DS10826 near the region with the de novo heterozygous deletion. The

read-pair locations, mapped to the hg19 reference genome, are shown as

thick ends connected by thin lines (positive strands shown in yellow, negative

strands shown in blue), and sorted by beginning location of mate 1 of the

read-pair (e.g. yellow lines are left aligned, blue lines are right aligned). Read-

pairs mapped far apart, apparent as a long line, are indicative of a deletion be-

tween the ends. A Z-shaped signature of read pairs flanked by such discord-

ant reads as seen for the proband is strong evidence for a 1-copy DNA

deletion. The gray region in these panels indicate the inferred 1556 bp hetero-

zygous de novo deletion region in the proband’s genome. The number at the

bottom of the grey regions in each panel indicates the total number of reads

mapped to the inferred de novo deletion. [Right Column] A possible false

positive identification of a de novo heterozygous deletion on chromosome 8

for the proband in family DS12329. (E) The average of the M scores of the pro-

band (�0.87), the parents (0.035 and �0.007, green and pink arrows, respect-

ively), and all other subjects (gray histogram) between loci 129 614 522 and

129 616 078 on chromosome 8. The proband’s average of the M scores near

�1, compared to the values near zero for all other samples including

the parents, is consistent with a de novo deletion of one allele in this region.

(F–H) Read-pairs observed among the members of family DS12329 near the

region with the inferred de novo heterozygous deletion. The absence of dis-

cordant reads and the Z-shaped signature is evidence against a 1-copy DNA

deletion (Color version of this figure is available at Bioinformatics online.)
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family DS12329. Consistent with the general findings in the simula-

tion study, CANOES also reported a large number of additional

de novo deletions. In the targeted 6.7 Mb region—representing only

0.2% of the genome—the algorithm identified an additional 2969

de novo deletions among the 1018 families, i.e. about 3 de novo dele-

tions per trio on average. Among those 2969 identifications, 2702

had a Minimum Distance (calculated from probe-based coverage)

outside the [�1.3, �0.7] interval, not consistent with de novo dele-

tions (Supplementary Fig. S4). The remaining 267 reported de novo

deletions with Minimum Distances in the interval [�1.3, �0.7] were

small (median width 361 bp), and none had improper read-pairs span-

ning the length of the indicated deletion (Supplementary Fig. S5).

CANOES:b utilizing the MDTS determined bins had the same calls as

CANOES reported above for families DS10826, DS11025 and

DS12329, but only returned 79 additional de novo deletions (though

only 28 of those overlapped with any of the 2969 deletions identified

by CANOES). Among those 79 identified deletions, 67 had average

Minimum Distances outside the [�1.3,�0.7] interval, and so were in-

consistent with de novo deletions (Supplementary Fig. S6). Among the

remaining 12 apparent de novo deletions (median width 619 bp) with

Minimum Distances in the interval [�1.3, �0.7] one is actually an

inherited homozygous deletion (Supplementary Fig. S7), while the

other 11 are located in flagged regions of highly variable normalized

depth of coverage (Supplementary Fig. S8).

TrioCNV with default bins (tiled non-overlapping 200 bp bins

within the targeted region) did not report any de novo deletions

among these 1018 families. In particular, the algorithm failed to

identify the true de novo deletion on chromosome 1 of the DS10826

proband. TrioCNV with MDTS bins did identify 24 de novo

deletions, however, 23 of those were actually inherited deletions

(Mendelian events) within the chromosome 1 copy number poly-

morphism (Supplementary Fig. S9). The remaining inferred de novo

deletion supported by only one bin had a Minimum Distance of

�0.94, but no improperly mapped read-pairs spanning the deletion

which would support a true de novo deletion (Supplementary Fig.

S10). This version of the algorithm also failed to identify the

de novo deletion on chromosome 1 of the DS10826 proband.

3.3 Scalability
MDTS completed the analysis of the 1018 oral cleft trios in under

29 h using a single core, peaking at 15 G of memory in the binning

step (Supplementary Tables S6 and S7). The run time was cut to less

than 6 h when employing the distributed computing option with 15

cores, albeit at the cost of increasing the peak memory usage to

160 G during the counting step. For CANOES, even after editing the

supplied R code (which resulted in an almost ten-fold speed-up of

the inference), this analysis still required 1310 h of CPU times for a

single core, but only 14 G of memory. TrioCNV, using default

parameters except for the distance between adjacent CNVs to be

merged and the GC content bin range (see Section 2) had a compar-

able computational footprint to MDTS, requiring 34 CPU hours

and 11 G of memory to complete the analysis. The usage of MDTS

bins slightly reduced the run time for TrioCNV and cut the

CANOES CPU time about in half, though the latter was still an

order of magnitude slower than MDTS and TrioCNV. MDTS based

on probe based bins (MDTS:p) required additional CPU time for the

inference compared to the default (MDTS), presumably due to the

auto-correlation of the Minimum Distance estimates (resulting from

the overlapping design probes) passed to CBS, making break point

selection more challenging.

4 Discussion

In this manuscript we presented the Minimum Distance for

Targeted Sequencing (MDTS) approach for delineating de novo

A E

B F

C G

D H

Fig. 4. Examples of Mendelian events with a heterozygous deletion in the pro-

band. [Left Column] A rare Mendelian inheritance event observed on

chromosome 8 in family DS11025. (A) The average of the M scores for the

proband (�0.88, black arrow) and the parents (�4.3 and �0.01, green and

pink arrows, respectively), and all other subjects (gray histogram) between

loci 130 113 612 and 130 132 753 on chr8. This is consistent with a heterozy-

gous deletion for the proband, inheriting one copy of the allele from the

copy-neutral parent 2, and the deletion from parent 1 showing a homozygous

deletion. (B–D) Read-pairs observed among the members of family DS11025

near the region with the inferred Mendelian inheritance event, using the

same plotting approach as described in the Figure 3 legend. The Z-shaped

signature of a substantial number of read pairs flanked by aberrantly spaced

reads seen for the proband again is evidence for a 1-copy (heterozygous) de-

letion. The Z-shaped signature sandwiching very few (presumably incorrectly

mapped) reads for parent 1 is evidence for a 2-copy (homozygous) deletion.

The read pairs for parent 2 show a copy-neutral state. The gray region in

these panels indicate the inferred 18 956 bp inherited deletion region. The

number at the bottom of the grey regions in each panel indicates the total

number of reads mapped to the inferred de novo deletion. [Right Column] A

Mendelian inheritance event observed at a copy number polymorphic region

on chromosome 1 in family DS11230. (E) The average of the M scores for the

proband (0.084, black arrow) and the parents (�5.58 and 1.06, green and pink

arrows, respectively), and all other subjects (gray histogram) between loci

210 078 417 and 210 085 527 on chr1. This again is consistent with a heterozy-

gous deletion for the proband, inheriting one copy of the allele from the

copy-neutral parent 2, and the deletion from parent 1 showing a homozygous

deletion. Due to the polymorphic nature of this region, the initial median nor-

malization failed to correctly center the copy neutral state at zero, which was

subsequently inferred by the post-segmentation filter. (F–H) Read-pairs

observed among the members of family DS11230 near the region with the

inferred Mendelian inheritance event, supporting the inferred 7111 bp hetero-

zygous (homozygous) deletion in the proband (parent 1) (Color version of this

figure is available at Bioinformatics online.)
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copy number deletions simultaneously across multiple trios from TS

data. In a simulation study, our approach had a sensitivity com-

petitive with existing methods, but to our knowledge, MDTS is the

first caller that rarely generates any false positives. In our simula-

tion study, this approach resulted in a positive predictive value of

nearly 100%. We showed this improvement is largely owed to two

novel algorithmic features. MDTS employs non-uniformly sized

bins based on read depth instead of using either uniform, non-

overlapping bins defined by the number of nucleotide base pairs or

coordinates of capture probes, and further, MDTS fully exploits

the trio design by using a ‘minimum distance’ statistic to quantify

differences in read depths between the offspring and the parents,

thereby reducing shared sources of technical variation. We note

similar results (equal sensitivity but much improved specificity)

were observed for detection of de novo deletions based on SNP

array data when the Minimum Distance approach was employed,

and compared to the results from the trio based PennCNV algo-

rithm (Scharpf et al., 2012; Wang et al., 2008). Summarizing the

trio data at each locus (probe for SNP arrays or bins for sequencing

data) and segmenting these statistics resulted in an estimating

procedure with much lower dimensionality than that of a HMM

(as used for example in CANOES and TrioCNV). A smaller

parameter space is less likely to over-fit, and to generate false

positive identifications. Further, fitting a HMM induces an empir-

ical process governing the rate and lengths of these deletions,

which may not be realistic as de novo deletions are very rare, and

could be very small or very large. It should also be noted that

MDTS was designed with the sole intent to detect de novo dele-

tions in trios, and thus, is much more limited in scope than other

CNV callers such as CANOES and TrioCNV (although in principle

the MDTS algorithm could also be adapted to detect de novo

amplifications by applying a positive threshold to the segmented

means).
Split reads provide additional compelling evidence for the pres-

ence of a copy number deletions, and allow for base pair resolution

of break point detection. However, mapping split reads is computa-

tionally infeasible for larger deletions unless a candidate has already

been identified, and thus, methods based on read depth bins are usu-

ally employed to find larger deletions. MDTS is such a method pri-

marily based on read depth, and similar to other read-depth based

CNV callers, MDTS has problems identifying very small deletions.

In our simulation study, MDTS nonetheless achieved greater than

80% sensitivity for de novo deletions of 1 kb, and virtually 100%

sensitivity for de novo deletions of 5 kb. We have also implemented

functionality allowing for post-hoc inspection of the read ensemble

mapped to a region around any putative deletion. In particular the

presence of a Z-shaped signature of read pairs flanked by discordant

reads–as seen in the suspected IRF6 regulator for the proband of

family DS10826–provides further support for a deletion, and uses

information in addition to read depth alone. As the MDTS specifi-

city is very high and de novo deletions are rare, the number of candi-

date deletions to be inspected is low. We queried BAM files to locate

split reads that are in the vicinity of a putative deletion. We used

SAMtools (samtools.sourceforge.net) to extract split align-

ments and BLAT (genome.ucsc.edu/cgi-bin/hgBlat) to

re-align un-mapped sequences, but were unsuccessful in locating

supporting split reads. Thus, no attempts were made to employ

LUMPY, arguably the most common CNV caller currently used, to

call de novo deletions in our data, as its performance heavily relies

on such split reads (Layer et al., 2014). Further, LUMPY was

intended for WGS data and does not account for family structure,

thus being less applicable for comparison than TrioCNV and

CANOES. Lastly, LUMPY depends on an external read depth caller,

which we provide here for TS data in trios.

We also applied our method to 1305 case-parent trios with

6.7 Mb of TS data of regions previously implicated in oral cleft. We

detected one de novo deletion in the gene TRAF3IP3 on chromo-

some 1q32 in a Caucasian proband with a cleft lip. TRAF3IP3 is ad-

jacent to IRF6, a gene known to be causal for Van der Woude

syndrom (a Mendelian malformation syndrome). Finding only one

de novo deletion is not too surprising though, as these events are

rare, and the MDTS sensitivity is high for deletions larger than 1 kb.

However, in contrast to single nucleotide variants (Jónsson et al.,

2017), exact de novo mutation rates for copy number variants have

not been reported widely. Acuna-Hidalgo et al. (2016) estimate one

event in 50–100 meiosis for large de novo CNVs (in excess of

100 kb), but do not give estimates for smaller CNVs citing technical

limitations in detecting such events with current short-read sequenc-

ing technology. MDTS also returned a second candidate de novo re-

gion, spanning a 1.6 kb segment on chromosome 8. This call was

supported by a roughly 50% observed decrease in read depth in this

region, in contrast to the region on chromosome 1 however, no im-

properly paired reads spanning this segment were observed. As no

split reads were observed either, an equally confident call whether

or not this region harbored a true de novo deletion in the proband

was not possible. In contrast, one rare inherited deletion identified

by MDTS was strongly supported by the observed read depths and

improperly paired reads, in addition to two copy number poly-

morphic regions. It is noteworthy that these two de novo deletions

as well as the rare inherited deletion identified by MDTS (Table 1)

were adjacent to known CNPs on chromosomes 1 and 8, respective-

ly (Supplementary Table S5).

Both CANOES and CANOES:b also identified the true de novo

deletion in the proband of family DS10826, but did not identify the

inherited deletion in family DS11025, and did not report the ques-

tionable de novo deletion in family DS12329. TrioCNV on the other

hand did not perform well due to its design for WGS (i.e. non-

capture) data. In our simulation study, CANOES had almost identi-

cal sensitivity to MDTS for de novo deletions 1 kb or larger, which

was pushed even higher when using the MDTS bins based on read

depth in that algorithm (CANOES:b). In conjunction with a much

smaller false positive rate observed (and thus much higher PPV),

CANOES:b generally outperformed CANOES in detecting de novo

deletions (a small caveat however is that CANOES:b was more like-

ly to classify inherited deletions as de novo). The reduced number of

‘hits’ from CANOES using our bins compared to the default bins is

likely due to our bins avoiding areas where baits were designed, but

actual capture was poor. The size of MDTS bins is controlled by

selecting the median number of reads while delineating bins across

the initial subsample. Currently, the median is chosen to be 160

reads, yielding a median bin size of 220 bp. Thus, if detection of

smaller de novo deletions was a priority, smaller bins could be

chosen by decreasing the set median (which would come at the ex-

pense of specificity, naturally).

Scalability of an algorithm is always a concern when working

with genomic sequencing data. Even for TS data, CPU demand can

be excessive when many samples (or here, many trios) are jointly

analyzed. MDTS exhibited much better scalability than CANOES.

The oral cleft data analysis was not computationally feasible with

the original CANOES code, but we were able to substantially speed

up that algorithm by moving a variance-covariance estimation step

outside the loop over all trios. Despite running an order of

magnitude faster with this tweak, CANOES was still more than an

order of magnitude slower than MDTS, and about two orders of
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magnitude slower than MDTS run multi-threaded. In our opinion it

is likely that CANOES was simply not designed with the scale of our

oral cleft dataset in mind.
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