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Field studies have shown that plants growing next to herbi-
vore-infested plants acquire higher resistance to herbivore dam-
age. This increased resistance is partly due to regulation of plant
gene expression by volatile organic compounds (VOCs) released
by plants that sense environmental challenges such as herbi-
vores. The molecular basis for VOC sensing in plants, however,
is poorly understood. Here, we report the identification of
TOPLESS-like proteins (TPLs) that have VOC-binding activity
and are involved in VOC sensing in tobacco. While screening for
volatiles that induce stress-responsive gene expression in
tobacco BY-2 cells and tobacco plants, we found that some ses-
quiterpenes induce the expression of stress-responsive genes.
These results provided evidence that plants sense these VOCs
and motivated us to analyze the mechanisms underlying volatile
sensing using tobacco as a model system. Using a pulldown assay
with caryophyllene derivative–linked beads, we identified TPLs
as transcriptional co-repressors that bind volatile caryophyllene
analogs. Overexpression of TPLs in cultured BY-2 cells or
tobacco leaves reduced caryophyllene-induced gene expression,
indicating that TPLs are involved in the responses to caryophyl-
lene analogs in tobacco. We propose that unlike animals, which
use membrane receptors for sensing odorants, a transcriptional
co-repressor plays a role in sensing and mediating VOC signals
in plant cells.

For terrestrial animals, odorants or volatile organic com-
pounds (VOCs)5 possess important biological and ecological
information such as food, predator, and species. Sensing
these chemical cues, animals take appropriate behavior such
as attraction or avoidance, ensuring their survival. Plants
also have to acquire information from the external environ-
ment and take appropriate action for survival. Defense or
stress-related genes are up-regulated upon exposure to spe-
cific VOCs to prepare for environmental change in plants
(1–4). For example, defense genes are induced in healthy
lima bean leaves upon exposure to VOCs from infested
leaves, but not from healthy or artificially wounded leaves
(5). In addition, VOCs released from infested leaves prime
neighboring plants for direct and indirect defense against
future herbivore attack (6). VOCs are also used as cues for
host selection and location by parasitic plants (7). Several
individual compounds from host plants also show attractive-
ness to parasitic plants. Regardless of accumulated evidence
for the VOC effects in plants, a molecular basis for the VOC
detection by plant cells has not been revealed.

In animals, VOCs are recognized by odorant receptors in
the olfactory neural system that constitutes the largest G
protein– coupled receptor (GPCR) family. In contrast, plants
have only a few GPCR genes that appear to have different
functions (8). It has been unclear how VOCs are sensed and
the information is converted to signals that induce the spe-
cific responses in plant cells at the level of receptors. It is
possible that plants have acquired a different strategy to
detect external VOCs because they cannot move. This
hypothesis is supported by the fact that Dictyostelium, along
the evolutionary branch soon after the plant-animal split,
has a large GPCR family that possibly mediates various
behaviors such as chemotaxis (9). The aim of this study is to
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explore plant VOC-binding proteins that detect external
VOCs and are involved in regulation of gene expression.

Results

Volatile-induced gene expression in BY-2 cell

We first examined whether VOCs released from plants
induce gene expression in tobacco BY-2 cell cultures (10).
The tested VOCs included three sesquiterpenes, seven
monoterpenes, a monoterpene alcohol, and two green leaf
volatiles (Fig. 1A) that are released from damaged plants (11,
12) and thus are expected to induce defense responses.
Methyl jasmonate (MeJA) and salicylic acid (SA) were used
as controls for gene expression because these are known as plant
regulators. VOCs were added at a final concentration of 1 mM to

BY-2 cell culture, and after 3 h, cells were collected for RNA extrac-
tion. The expression of three genes was quantitated by quantitative
PCR (Q-PCR). Expression of Osmotin, one of the pathogenesis-
related proteins involved in infection resistance (13), was induced
significantly by caryophyllene oxide and weakly by �-caryophyl-
lene in BY-2 cells (Fig. 1B). Ornithine decarboxylase (ODC), a jas-
monic acid (JA)-related gene, was induced by MeJA as described
previously (14) but not by the tested VOCs. Acidic chitinase III
(ACIII), a SA-related gene, was induced by SA, consistent with
previous studies (15), weakly by linalool, but not by the other
VOCs tested. These results demonstrate high specificity and selec-
tivity in gene induction by VOCs, suggesting the presence of spe-
cific receptors for VOCs that link to individual regulation of each
gene.

Figure 1. Gene expression profiles induced by various VOCs in BY-2 cells. A, chemical structures of VOCs and plant regulators used for structure–activity
relationships in B and Fig. 3B. The VOCs were classified into five groups. Numbers placed at the top left-hand corner of each structure correspond to labels in B
and Fig. 3B. B, structure–activity relationships of VOC-induced gene expression in BY-2 cells. BY-2 cells were exposed to DMF (0.1%), MeJA (0.1 mM), SA (0.1
mM), or other VOCs (1 mM; see A) for 3 h. Top, NtOsmotin; middle panel, NtODC (jasmonic acid-related gene); bottom, NtACIII (salicylic acid-related gene).
Expression of each gene was normalized to NtL25. Error bars, S.E. (n � 3). Statistics were calculated using one-way ANOVA and Dunnett’s post hoc test:
*, p � 0.05; **, p � 0.01.
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Time course and dose-dependent responses of BY-2 cells to
caryophyllene structural analogues

We looked into NtOsmotin induction by caryophyllene oxide
and its structural analogs in more detail because caryophyllene
oxide, (E)-�-caryophyllene, and �-caryophyllene are produced
and emitted when tobacco is eaten by insects (12), and (E)-�-
caryophyllene is also released from roots to attract nematodes
that infect herbivore larvae when maize roots are damaged by
larvae (16, 17). First, we examined time course of NtOsmotin
expression induced by caryophyllene structural analogues. (E)-
�-caryophyllene, �-caryophyllene, or caryophyllene oxide (1
mM, final concentration) was incubated with BY-2 cells up to
12 h. BY-2 cells were collected for RNA extraction at each time
point, and Q-PCR analysis was used to investigate the expres-
sion of three genes. Maximum induction of NtOsmotin by
caryophyllene structural analogues was at 3– 6 h of incubation
in BY-2 cells (Fig. 2A).

Next, we measured sensitivity of BY-2 cells to caryophyllene
structural analogues. The responses were dose-dependent with
a threshold concentration of a few hundred micromolar (Fig.
2B). To visualize the gene induction, we generated transgenic
BY-2 cell lines expressing RFP under the control of the
NtOsmotin promoter and performed a reporter gene assay. The
RFP signal was first observed at 9 h of incubation with caryo-
phyllene oxide and continuously increased (Fig. 2C). All of
these results suggest that BY-2 cells can be used as a model
system to investigate a mechanism of VOC detection in plants,
especially for caryophyllene structural analogues.

Responses of tobacco plants to caryophyllene structural
analogues

To examine whether caryophyllene structural analogues
induce NtOsmotin expression in planta, we treated 4-week-old
tobacco plants grown on Murashige and Skoog medium in pots
with selected VOCs (Fig. 3A). After 8 h of exposure to VOCs,
leaves were harvested for RNA extraction and then analyzed for
gene expression via Q-PCR. Among the tested VOCs, (E)-�-
caryophyllene induced the highest expression of NtOsmotin in
tobacco plants (Fig. 3B). NtODC and NtACIII genes were most
induced by MeJA and methyl salicilate, respectively (Fig. 3B).
These results were fairly consistent with those of BY-2 cells,
although the results in planta were more variable. The response
specificity in NtOsmotin induction was slightly different; the
order of activity in BY-2 cells was caryophyllene oxide �
�-caryophyllene � (E)-�-caryophyllene, whereas that in planta
was (E)-�-caryophyllene � �-caryophyllene � caryophyllene
oxide. Also, �-caryophyllene and (E)-�-caryophyllene induced
NtODC and NtACIII genes significantly in planta but did not in
BY-2. We quantified the amounts of caryophyllene structural
analogues that BY-2 cells took up from a liquid medium by
GC/MS analysis. Caryophyllene oxide was taken up by BY-2
cells better than (E)-�-caryophyllene and �-caryophyllene (see
Fig. S1, A and B). In contrast, the amount of caryophyllene in
the headspace of an enclosed plant pot was much larger than
that of caryophyllene oxide, suggesting that caryophyllene was
much more volatile than caryophyllene oxide (see Fig. S1, A and
C). Thus, the difference in the response specificity between

BY-2 cells and plants turned out to be due to differences in
volatility and cellular uptake. Indeed, when tobacco leaves were
immersed in VOC solutions, all three caryophyllene analogs
induced NtOsmotin (Fig. 3C). Together, our results demon-
strated that (E)-�-caryophyllene is sensed by tobacco plants,
consistent with previous studies showing that (E)-�-caryophyl-
lene is used as a signal in plants (16, 17). Among leaves, stems,
and roots, the highest induction of NtOsmotin was observed in

Figure 2. Gene expression profiles induced by caryophyllene structural
analogues in BY-2 cells. A, time course of NtOsmotin expression in BY-2 cells
treated with caryophyllene structural analogues. BY-2 cells were exposed to
analogues (1 mM each) up to 12 h. Error bars, S.E. (n � 3). B, dose-dependent
gene expression induced by caryophyllene structural analogues. BY-2 cells
were exposed to DMF (0.1%) or caryophyllene structural analogues (10 –1000
�M) for 6 h. Top, (E)-�-caryophyllene; middle, �-caryophyllene; bottom, caryo-
phyllene oxide. Error bars, S.E. (n � 3). Statistics were calculated using one-
way ANOVA and Dunnett’s post hoc test: *, p � 0.05; **, p � 0.01. C, reporter
gene assay of NtOsmotin expression using transgenic BY-2 cell line. RFP sig-
nals induced by caryophyllene oxide (1 mM) are shown as pseudocolored
images (white, highest expression). Scale bar, 50 �m.
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leaves (Fig. 3D). (E)-�-caryophyllene induced NtOsmotin
expression regardless of light conditions (Fig. 3E).

Identification of TOPLESS-like proteins as a binding protein for
caryophyllene structural analogues in tobacco cells

We next attempted to identify receptor-like molecules that
recognized the molecular structure of caryophyllene analogues
and sent a signal to the nucleus leading to NtOsmotin induction.
To fish out a binding protein, we prepared caryophyllene-
linked beads for a pulldown assay. Because we did not know
which part of the caryophyllene structure is recognized, two
types of biotinylated caryophyllene derivatives were synthe-
sized and immobilized onto streptavidin-coated beads (Fig.
4A). When extracts of tobacco leaves were applied to the beads,
a 120-kDa protein was specifically pulled down (Fig. 4B). In-gel
digestion and LC-MS/MS analysis suggested that the 120-kDa
protein was similar to Solanum lycopersicum TOPLESS (TPL)-
like protein 3 (SlTPL3). Nicotiana benthamiana TPL genes
were then identified in the draft genome sequence using all
SlTPLs as queries. Finally, in Nicotiana tabacum, 5� and 3� ends
of TPL-like genes were PCR-amplified, and six TPL-like genes
were sequenced. We named the six NtTPLs as NtTPL1 through
-6 based on a phylogenetic tree (Fig. 4C; see Fig. S2). To confirm
that NtTPLs indeed bind caryophyllene, we raised an antibody
against NtTPL3 and investigated whether NtTPLs were
detected in the pulled down samples by Western blotting. The
120-kDa protein was clearly stained by anti-NtTPL3 antibody
(Fig. 4D). In addition, GST fusion proteins for all NtTPLs
bound the caryophyllene derivative–linked beads (Fig. 4E).
These results demonstrate that NtTPLs are binding proteins
for caryophyllene structural analogues in tobacco leaves.

Effects of overexpression of TOPLESS-like proteins on the
responsiveness of BY-2 cells and tobacco plants to
caryophyllene oxide

Recent studies suggest that TPL and TPL-related (TPR) pro-
teins are transcriptional co-repressors (18, 19). Therefore, NtTPLs
may be involved in the induction of NtOsmotin as transcriptional
regulators as well as caryophyllene receptors. To examine whether
NtTPLs are indeed receptors for caryophyllene and that the inter-
action affects NtOsmotin expression, we overexpressed NtTPLs in
BY-2 cells and tobacco plants. First, we generated transgenic BY-2
cell lines expressing GFP-fusion NtTPL3 (Fig. 5A). The fusion pro-
teins were localized to the nucleus in all cell lines (Fig. 5B). The
nuclear localization of the NtTPL3 was consistent with its putative
role as a transcriptional regulator. After 6 h of incubation with
caryophyllene oxide, NtOsmotin expression was compared for
WT and transgenic BY-2 cell lines. NtOsmotin expression in some
transgenic lines was lower than in WT BY-2 cells (Fig. 5C). This
result suggests that the interaction of NtTPL3 and caryophyllene
oxide is involved in regulation of NtOsmotin expression. In con-
trast, NtODC expression after MeJA treatment was unchanged or
significantly higher in the transgenic lines (Fig. 5D). Next, we gen-
erated transgenic tobacco plants expressing GFP fusion NtTPL3.
The fusion proteins were also localized to the nucleus in tobacco
(Fig. 5E). Also, we show the data demonstrating the expression
level of NtTPL3-G3GFP in six transgenic lines (Fig. 5F). After 8 h of
immersion in caryophyllene oxide solution, NtOsmotin expres-
sion in three of six transgenic lines was lower than in WT plants
(Fig. 5G). Although other transgenic lines showed just a tendency
for reduction in caryophyllene-induced NtOsmotin expression,
likely due to endogenous NtTPL, the results indicated that the

Figure 3. Gene expression profiles induced by various VOCs in tobacco plants. A, experimental setup. Top, the method for B and Fig. 5F. Bottom, the
method for C. B, structure–activity relationships of VOC-induced gene expression in tobacco plants. Plants were exposed to each compound (40 �l; see
compound numbers in Fig. 1A) for 8 h. Left, NtOsmotin; middle, NtODC (jasmonic acid-related gene); right, NtACIII (salicylic acid–related gene). Expression of
each gene was normalized to NtL25 (n � 4 –17). Whiskers indicate 1.5 times the interquartile range. Statistics were calculated using the Kruskal–Wallis test and
post hoc test (Steel test): *, p � 0.05; **, p � 0.01. C, NtOsmotin expression induced by immersing leaves in solutions of caryophyllene structural analogues (1
mM) or DMF (0.1%) for 8 h (n � 5– 6). Whiskers indicate 1.5 times the interquartile range. Statistics were calculated using the Kruskal–Wallis test and post hoc test
(Steel test): *, p � 0.05. D, NtOsmotin expression induced by (E)-�-caryophyllene in different organs. White bars, control group; black bars, experimental group.
Error bars, S.E. (n � 3). Statistics were calculated using unpaired Student’s t test: *, p � 0.05; **, p � 0.01. E, time course of NtOsmotin expression induced by
(E)-�-caryophyllene under different light conditions. Left, from light phase 0-h time point (L0) to L12; right, L14 –L2. Error bars, S.E. (n � 3–9).
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interaction of NtTPLs and caryophyllene structural analogues
results in regulation of NtOsmotin expression. One model is that
caryophyllene enters tobacco plant cells, binds NtTPLs coupled
with transcriptional factors, and releases NtTPLs that otherwise
suppress NtOsmotin gene transcription (Fig. 5H).

Discussion

Previous studies concerning plant volatile reception have
mainly focused on VOC-mediated output phenomena and eco-
logical significance, but not on the molecular basis of VOC rec-

ognition. One study reported that mutations in transcrip-
tional factors wrky40 and wrky6 affect (E)-2-hexenal–
induced gene expression in Arabidopsis (20), suggesting the
involvement of a transcriptional factor. In this study, we
reported that a transcriptional co-repressor bound to VOCs,
leading to gene regulation in plant cells. We provided several
lines of evidence that support the hypothesis that NtTPLs
are involved in sensing caryophyllene analogs (i.e. that these
molecules have a specific structure–activity relationship
(Figs. 1B and 3B), binding (Fig. 4), dose-dependent responses

Figure 4. Binding of TOPLESS to caryophyllene-linked beads. A, structure of biotinylated probes. #1, propylamine (control); #2, (E)-�-caryophyllene oxime
derivative; #3, (E)-�-caryophyllene derivative with three-membered ring. B, pulldown assay using (E)-�-caryophyllene-linked beads. Total protein extracts (1
mg of protein) of N. tabacum leaves were incubated with caryophyllene-linked beads (10 �l) (shown in A) for 1 h at 4 °C. A 120-kDa protein (arrowhead)
specifically bound to beads 2 and 3 but not 1. C, phylogenetic tree of TPL-related proteins in N. tabacum and S. lycopersicum. The structure of the NtTPL3 protein
is shown above the tree. NtTPLs are predicted by PROSITE to have a LisH domain (blue), CLISH domain (green), CRA domain (orange), and WD40 repeats (light
red). D, Western blots of extracts from N. tabacum incubated with probes shown in A. The leftmost lane shows recombinant GST-NtTPL3 protein (rNtTPL3). The
120-kDa protein of N. tabacum extracts that bound to probes 2 and 3 (arrowhead) was immunostained with anti-NtTPL3 antibody. E, recombinant NtTPLs that
bound to caryophyllene-linked beads 2 and 3. Six recombinant GST-NtTPLs (rNtTPL1– 6, arrowhead) specifically bound to probes 2 and 3 but not to 1.
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(Figs. 2B and 5C), and effects of overexpression in vitro and in
vivo (Fig. 5)).

TPL/TPR proteins are known to be involved in regulation of
gene repression as responses to hormone and stress in various
developmental processes. For example, TPL/TPRs act as co-re-
pressors for JA-mediated signaling by complexing with adaptor
proteins such as JAZ5–JAZ8 or NINJA to which a transcription
factor binds (21). It was recently reported that poplar TPR4
interacts with an effector protein from pathogenic fungus (22),
suggesting that a member of the TPL/TPR proteins is function-
ing as a detector for an external cue in addition to the function
as a transcriptional regulator. In this regard, our finding sup-

ports the dual function of TPL/TPRs such that they play a crit-
ical role not only in regulating gene expression as co-repressors,
but also in binding individual VOCs. Given evolutionary con-
servation of TPL/TPR proteins (23, 24), it is also a crucial ques-
tion whether their function in volatile detection is preserved.
If so, it is also an intriguing question how TPL/TPR proteins
modulate specific gene expression depending on each target
molecule.

Even though it is possible that TPL’s role is further upstream
of the transcription factor, the fact that a transcription co-re-
pressor functions as a VOC-binding protein is reminiscent of
the recognition of plant hormones such as auxin and JA or of

Figure 5. Effects of overexpression of TPL on the response to caryophyllene oxide in BY-2 cell and tobacco plant. A, Western blotting using WT and
transgenic BY-2 cells. White arrowhead, NtTPL3-GFP protein. B, localization of NtTPL3-GFP in transgenic BY-2 cells. Scale bar, 10 �m. C, dose-dependent
induction of NtOsmotin in NtTPL3-GFP– overexpressing BY-2 cells. Caryophyllene oxide (1000 �M) or DMF (0.1%) as a control was applied to BY-2 cells for 6 h.
The data for WT is the same as in Fig. 2B. Error bars, S.E. (n � 3). Statistics were calculated using one-way ANOVA and post hoc test (Bonferroni’s test): *, p � 0.05.
D, induction of NtODC in NtTPL3-GFP– overexpressing BY-2 cells. MJ (100 �M) or DMF (0.1%) was applied to BY-2 cells for 6 h. Error bars, S.E. (n � 3). Statistics
were calculated using one-way ANOVA and post hoc test (Bonferroni’s test): **, p � 0.01. E, localization of NtTPL3-GFP in transgenic tobacco leaves. Scale bar,
10 �m. F, expression level of GFP in NtTPL3-GFP– expressing plants. G, induction of NtOsmotin in NtTPL3-GFP– overexpressing plants. Leaves were immersed
in caryophyllene oxide (300 �M) or DMF solution (0.1%) for 8 h. NtOsmotin expression is shown as -fold increase (n � 27– 45). Whiskers, 1.5 times the interquartile
range. Statistics were calculated using the Smirnov–Grubbs test, Kruskal–Wallis test, and post hoc test (Steel test). H, “one” model for control of NtOsmotin
expression by caryophyllene.
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steroid hormones in mammals to regulate gene expression. The
degradation of auxin/IAA and the JAZ complex causes activa-
tion of auxin- or JA-responsive genes (21). In animals, nuclear
receptors, which comprise a large family of transcription fac-
tors (25), regulate gene expression, and among them, mall het-
erodimer partner contains a putative ligand-binding domain
but lacks a DNA-binding domain (25, 26), regulating gene
expression as a co-repressor (27). Although the caryophyllene–
TPL pair is only the first case so far, and thus we cannot gener-
alize the current finding for all VOC sensing, it is intriguing that
plants appear to have evolved a VOC-sensing mechanism using
nuclear proteins rather than membrane receptors such as odorant
receptors in animals. This possibility is consistent with the obser-
vation that the number of transcription factor genes and the ratio
of transcription factor genes to the total number of genes in plants
are much higher than in animals (28, 29). In addition, the number
of transcription factors has been expanded through evolutionary
transitions in land plants (30).

Several questions remain to be addressed. First, the mecha-
nism of caryophyllene and other VOC uptake by plant cells is
unknown. It could be similar to the action of steroid hormones
that enter a cell due to their hydrophobic characteristics, or it
could be mediated by transporters in a way similar to VOC
emission (31, 32). Second, the amounts of VOCs utilized are
rather high. This concentration problem has been discussed in
essentially all previous plant-volatile sensing studies. Even in
mammals, the parts per thousand level of odorant perception
cannot be explained by a micromolar level of odorant receptor
sensitivity. There must be a mechanism such as uptake by
transporters for establishing a high local concentration (33).
Third, it takes several hours to observe VOC-induced gene
expression in plant cells. Unlike an acute response in mamma-
lian olfaction, the benefit of this slow response has to be inves-
tigated. Fourth, we did not demonstrate the necessity of TPL/
TPR proteins to response caryophyllenes because of their
functional redundancy.

Regardless of these important questions and the lack of a
loss-of-function experiment, which was left to future studies
due to technical limitation, the discovery of a VOC-binding
protein in tobacco has shed light on the mechanisms of
“olfaction” in plants. Now that a target for VOC binding is
identified, elucidation of the exact mechanism and pathway
leading to changes in a transcription regulatory complex that
affects gene expression is an interesting topic to be explored
in the future.

Experimental procedures

VOCs and plant regulators

Chemical compounds were purchased from TCI (Tokyo,
Japan). The compound solutions for analysis using BY-2 cells were
prepared as 1 M stocks in N,N-dimethylmethanamide (DMF;
Wako, Osaka, Japan) and then diluted to the indicated concentra-
tions (containing 0.1% DMF) before each experiment.

BY-2 cell material and culture conditions

WT tobacco N. tabacum L. cv. Bright Yellow 2 (BY-2) cells
and transgenic cell lines were cultivated under dark conditions
at 27 °C and 130 rpm in a BR-42FL MR incubator shaker

(TAITEC, Saitama, Japan). Weekly, 0.3 ml of each culture was
transferred to 30 ml of LS liquid medium.

Vector construction and transformation of BY-2 cell

Full-length NtTPL3 was cloned into vector pENTR/D-
TOPO (Life Technologies, Inc.) and then cloned into binary
vector pGWB551 with a GFP reporter (34) using Gateway LR
Clonase (Life Technologies). The full-length osmotin promoter
was also cloned into binary vector pGWB559 with an RFP
reporter (34). Each construct was electroporated into Agrobac-
terium tumefaciens LBA4404 (Life Technologies) using a preset
protocol of the Gene Pulser Xcell electroporation system
(Bio-Rad).

On day 3, 4 ml of BY-2 cells was transferred to dishes, and
100 �l of A. tumefaciens overnight culture containing either
pGWB551 (Gateway binary vector for C-terminal fusion with
G3GFP, CaMV35S promoter) or pGWB559 (Gateway vector
for TagRFP, Osmotin promoter) was added. After 48 h of co-
cultivation at 27 °C, BY-2 cells were washed with 3% sucrose
solution and transferred onto LS agar plates containing both
cefotaxime (final concentration, 250 �g/ml) and hygromycin
(final concentration, 50 �g/ml). After 4 weeks, calli were trans-
ferred onto fresh LS agar plates and further incubated. After 1
week, several calli expressing GFP or RFP were selected using
an LED light (OptoCode Corp.) and transferred onto fresh LS
agar plates. After another week, to establish transgenic cell lines
in liquid culture, a callus was transferred into 10 ml of LS liquid
medium. After 3 days, the callus was fragmented using a 10-ml
pipette. After another week following the 3 days, liquid cell
cultures were examined under a confocal microscope to deter-
mine whether the fluorescent reporter protein was expressed.
When cells had nearly grown to saturation in liquid culture,
cultures were transferred into 95 ml of LS liquid medium. The
growth rate of transgenic cell lines became the same as the WT
cell line, so 0.3 ml of each culture was transferred to 30 ml of LS
liquid medium weekly for passage.

Confocal imaging

Confocal images were captured using an IX-71 inverted
microscope (Olympus, Tokyo, Japan) equipped with a CSU10
confocal scanner unit (Yokogawa Electric Corp., Tokyo, Japan).
A water immersion �60 objective lens (Olympus) was used for
observation of GFP fusion protein, and a �40 objective lens
(Olympus) was used for RFP reporter assays. Images were pro-
cessed with ImageJ software (National Institutes of Health).

Plant material and growth conditions

N. tabacum L. cv. Samsun-NN WT plants were grown under
a 16/8-h light/dark cycle at 25 °C, 65% humidity in an LPH-
220SP growth chamber (NK Systems, Osaka, Japan). Surface-
sterilized seeds were sown on medium containing Murashige
and Skoog salts, 1 mg/liter thiamine hydrochloride salts
(Wako, Osaka, Japan), and 0.1 g/liter myo-inositol (Wako,
Osaka, Japan) solidified with 0.8% agar BA-10 (INA, Nagano,
Japan). Seedlings were grown in an Agripot container (Kirin
Agribio, Shizuoka, Japan) and used for experiments 4 weeks
after sowing.
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Transformation of tobacco plants

N. tabacum L. cv. Petit Havana SR1 WT plants were grown
under a 14/10-h light/dark cycle at 25 °C, 65% humidity in a
growth chamber. Surface-sterilized seeds were sown on
Murashige and Skoog medium plates. Seedlings were trans-
planted into a plant box 2 weeks after sowing. The upper three
leaves (at 1 month) were cut in an A. tumefaciens 40-h culture
(diluted 20 times with sterilized water) containing pGWB551
with NtTPL3.

After 3 days co-cultivation at 28 °C on Murashige and Skoog
medium containing 0.1 mg/liter 1-naphthaleneacetic acid and 1
mg/liter 6-benzylaminopurine, leaves were transplanted on
Murashige and Skoog medium containing 0.1 mg/liter 1-naph-
thaleneacetic acid and 1 mg/liter 6-benzylaminopurine, cefo-
taxime (final concentration, 200 �g/ml), and hygromycin (final
concentration, 25 �g/ml) at 25 °C. After 2 months, plants were
transplanted to Murashige and Skoog medium containing both
cefotaxime (final concentration, 100 �g/ml) and hygromycin
(final concentration, 25 �g/ml). After 1 month, plants were
examined for expression of GFP by PCR. The primers used
were 5�-GACACGTGCTGAAGTCAAGT-3� and 5�-CCAT-
GCCATGTGTAATCCCA-3�.

Exposure of tobacco to volatiles in Agripot containers

A 40-�l aliquot of each volatile compound was placed in an
enclosed Agripot in which 4-week-old tobacco plants were
grown on Murashige and Skoog agar medium for 8 h in the dark
in an LPH-220SP growth chamber. Four independent plants
harvested in a single experiment were pooled to prepare one
RNA sample.

Treatment of tobacco in solution with volatiles

Tobacco leaves were harvested and immersed into 2 ml of
Murashige and Skoog liquid medium containing caryophyllene
structural analogues (final concentration, 1 mM) or DMF (final
concentration, 0.1%) in 12-well plates (Sumitomo Bakelite,
Tokyo, Japan). They were sealed and incubated under dark con-
ditions in an LPH-220SP growth chamber.

Treatment of BY-2 cells with volatiles

BY-2 cells (day 3) were dispensed to 12-well plates (2
ml/well), and volatile compounds were added at the indicated
concentrations for each experiment, which was performed in
duplicate. They were sealed and incubated under dark condi-
tions at 27 °C and 130 rpm on an NR-30 shaker (TAITEC) in an
LPH-220SP growth chamber. After incubation, each culture
was collected for RNA extraction.

RNA extraction

After incubation, samples were collected, frozen in liquid
nitrogen, and homogenized with a Micro Smash MS-100R cell
disruptor (TOMY, Tokyo, Japan) for RNA extraction. Total
RNA was extracted from crushed leaves using a QIAshredder
spin column and RNeasy Mini kit (Qiagen) according to the
manufacturer’s instructions. After RQ1 RNase-free DNase
treatment (Promega), total RNA was used for cDNA synthesis.

Q-PCR

Complementary DNA was synthesized using Superscript III
reverse transcriptase (Life Technologies) and analyzed by
Q-PCR. Q-PCR was performed using a StepOnePlus System
(Thermo Fisher Scientific) with Fast SYBR Green Master Mix
(Thermo Fisher Scientific).

The primers used were 5�-TTGAGGACAACAACAC-
CCTTG-3� and 5�-ACATCTTCTTCACGGCATC-3� for ribo-
somal protein L25 (NtL25), 5�-TCCTCCTTGCCTTGGTGA-
CTTATA-3� and 5�-ATCACCCAAGTTTGGCCTCGATC-3�
for NtOsmotin, 5�-TAGAAGGCGGGACAACACAAC-3� and
5�-TTTAACCATGTATCTGGGAATGGAC-3� for acidic
chitinase III (NtACIII), and 5�-TTCCGACGACTGTGTT-
TGG-3� and 5�-AACCTGCAGCTCCGGTAAC-3� for ornithine
decarboxylase (NtODC). Expression of each gene was quantified
by Q-PCR and normalized to NtL25.

Preparation of samples for GC/MS

BY-2 cells were incubated with (E)-�-caryophyllene, �-
caryophyllene, or caryophyllene oxide (1 mM, final concentra-
tion) for 3 h. After incubation, cells were collected and washed
three times. They were frozen and disrupted with a mortar and
pestle. Disrupted cells were mixed with 2 ml of water (one-
tenth volume of liquid medium) and 2 ml of ethyl acetate. To
separate the ethyl acetate extract from the emulsion, the mixture
was centrifuged. The ethyl acetate layer was collected to new vials.
A 1-�l aliquot of each sample was injected to a GC/MS with an
MS-E10 microsyringe (Ito Corp., Shizuoka, Japan). For prepara-
tion of airborne compounds in the headspace, caryophyllene
structural analogs were placed in enclosed plant pots (40 �l/pot)
for 8 h, and 10 �l of headspace was directly sampled using a gas-
tight model 1701 N SYR syringe (Hamilton).

Chromatographic conditions for GC/MS

GC/MS on a GCMS-TQ8030 instrument with an OPTIC-4
inlet (Shimadzu, Kyoto, Japan) was used to examine the ethyl
acetate extract. The compounds were separated using a Stabil-
wax column (60.0 m � 0.32-mm inner diameter, 0.5-�m film
thickness). The column temperature was held at 40 °C for 2 min
and then programmed to rise to 230 °C at 5 °C/min, and finally
held at this temperature for 5 min. The interface temperature
was maintained at 230 °C, and the ion source temperature was
set at 230 °C. Peak identities were confirmed by matching the
component mass spectra to the National Institute of Standards
and Technology Mass Spectral Database and by matching the
retention time and mass spectra of the peaks to the data
observed for the pure compounds. Mass spectra (20.0 –300.0
m/z) were obtained in full scan mode. Products were analyzed
quantitatively by comparison with the peak area of compounds
in total ion chromatograms.

Preparation of protein extracts from leaves

Leaves were frozen in liquid nitrogen and homogenized with
an MS-100R Micro Smash disruptor. Total protein was
extracted from crushed leaves in an extraction buffer contain-
ing 50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 5 mM KCl, 1 mM

DTT, 10 �M MG132 proteasome inhibitor (Merck), and the
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cOmplete, Mini, EDTA-free protease inhibitor mixture tablet
(Roche Applied Science) according to the supplier’s instruc-
tions. After centrifugation (10,000 � g for 10 min at 4 °C), the
supernatant was collected and immediately used for a pulldown
assay. Total soluble protein concentration was measured by a
Bradford assay on a microplate absorbance reader (Bio-Rad).

Preparation of recombinant NtTPL proteins

The cDNA sequences encoding NtTPLs were identified
using 5�- and 3�-RACE with a SMARTer RACE cDNA amplifi-
cation kit (Clontech). The NtTPL sequences were inserted into
vector pGEX-6P-1 (GE Healthcare). The expression construct
was transformed into the expression host Escherichia coli
Rosetta 2(DE3) (Novagen). After preculture at 37 °C to the mid-
log phase, expression of the target GST fusion proteins was
induced by adding isopropyl 1-thio-�-D-galactopyranoside to
0.1 mM final concentration at 25 °C for 4 h before harvest. Pel-
lets were resuspended in a buffer containing 50 mM Tris-HCl
(pH 7.4), 500 mM NaCl, 5 mM KCl, 10 mM DTT, 1% Triton
X-100, and a cOmplete, Mini, EDTA-free protease inhibitor
mixture tablet (Roche Applied Science) according to the sup-
plier’s instructions and then sonicated on ice. After centrifugation
(10,000 � g for 5 min at 4 °C), the supernatants were collected.
They were purified using GSH Sepharose 4B medium (GE Health-
care) and immediately used for a pulldown assay. The concentra-
tion of purified recombinant proteins was measured by Bradford
assay on a Bio-Rad microplate absorbance reader.

Pulldown assay

Total protein extracts (1 mg) of N. tabacum leaves or recom-
binant NtTPL proteins (10 �g) were incubated with (E)-�-
caryophyllene derivatives or propylamine-linked beads (10 �l)
for 1 h at 4 °C. After incubation, beads were separated by a
magnet (Veritas) from the supernatant and washed three times
with protein extraction buffer containing 50 mM Tris-HCl (pH
7.4), 100 mM NaCl, 5 mM KCl, 1 mM DTT, 10 �M MG132 pro-
teasome inhibitor (Merck), and the cOmplete, Mini, EDTA-
free protease inhibitor mixture tablet (Roche Applied Science)
according to the supplier’s instructions. 0.1% of input sample
and 25% of extracts from each bead were loaded per lane. SDS-
PAGE and silver staining were carried out to confirm the size of
the proteins and their binding activities. Samples stained with-
out glutaraldehyde were in-gel digested with trypsin and ana-
lyzed by LC/tandem MS (LC-MS/MS).

Chromatographic conditions for LC-MS/MS

LC-MS/MS (EASY-nLC with Q Exactive system, Thermo
Fisher Scientific) was used to examine binding proteins after
in-gel digestion. The peptides were separated using C18 col-
umns for a trap column (SC001, 20 mm � 100-�m inner diam-
eter, Thermo Fisher Scientific) and analytical column (NTCC-
360/75-3-125, 15 cm � 100-�m inner diameter, Nikkyo
Technos). Water (solvent A) and acetonitrile (solvent B) con-
taining 0.1% (v/v) formic acid were used as mobile phase. The
gradient was programmed to rise from 0 to 35% B during the
first 20 min, from 35 to 100% B for 2 min, and finally held at
100% B for 8 min at a flow rate of 300 nl/min. Fragments were
detected by electrospray ionization in positive ion mode. Mass

spectra (200 –2000 m/z) were obtained in full MS and ddMS2

scan modes. Data were acquired using Xcalibur software
(Thermo Fisher Scientific). Data were analyzed using Proteome
Discoverer (Thermo Fisher Scientific), PEAKS (Bioinformatics
Solutions Inc.), and Mascot software (Matrix Science).

Preparation of antibody

Anti-NtTPL3 antibody was generated (Evebio Science,
Wakayama, Japan) against a keyhole limpet hemocyanin–
conjugated synthetic peptide (C�DNGILNGRTASSS, amino
acids 1045–1057 from the C-terminal region of NtTPL3; Scrum
Inc., Tokyo, Japan). Specific antibody was purified from immu-
nized rabbit serum using a SulfoLink immobilization kit for
peptides (Thermo Fisher Scientific).

Western blotting

The proteins were separated by SDS-PAGE and transferred
to a polyvinylidene difluoride membrane (PALL). After block-
ing with 5% skim milk, the membrane was incubated with anti-
NtTPL3 antibody (1:100). The primary antibody was immuno-
blotted with horseradish peroxidase– conjugated anti-rabbit
secondary antibody (1:5000) and detected with ImmunoStar
LD reagent (Wako, Osaka, Japan).

Synthesis of (E)-�-caryophyllene oxime derivative with amino
group for biotinylation (see Fig. S3A)

A solution of caryophyllene oxide (15 g, 68 mmol) in ethyl
acetate (400 ml) was ventilated with ozone from an ON-3-2
ozone generator (Nippon Ozone Co., Ltd.) at 0 °C for 2 h. To the
reaction mixture was added dimethyl sulfide (80 ml) at room
temperature overnight, and then it was poured into water and
extracted with ethyl acetate. After concentration, silica gel
chromatography gave ketone (1) as a colorless oil (9.8 g, 65%). A
solution of 1 (9.0 g, 40 mmol) in 99% EtOH (600 ml) was added
to a Zn–Cu couple (140 g) and refluxed overnight. After filtra-
tion through Celite and concentration, the sample was resus-
pended in diethyl ether. After filtration through Celite and con-
centration again, silica gel chromatography gave ketone (2) as a
colorless oil (6.8 g, 81%). To a solution of 2 (1.5 g, 7.2 mmol) in
benzene (20 ml) was added 3-aminooxypropyl-1-azide (1.0 g,
8.6 mmol) and acetic acid (1 ml), and the mixture was stirred at
room temperature for 4 h (35). After concentration, silica gel
chromatography gave oxime (3) as a colorless oil (2.0 g, 90%).
To a solution of 3 (135 mg, 0.44 mmol) in tetrahydrofuran
(THF; 5 ml) was added H2O (100 �l) and triethylphosphine in
toluene (20%, 355 �l, 0.59 mmol), and the mixture was stirred at
room temperature for 1.5 h. After concentration, silica gel
chromatography gave amine (4) as a colorless oil (122 mg, 99%).

Synthesis of (E)-�-caryophyllene derivative with three-
membered ring with amino group for biotinylation (see Fig. S3B)

To [(CH3COO)2Rh]2�2H2O (50 mg) in CH2Cl2 (20 ml) was
added ethyl diazoacetate (0.5 ml, 4.7 mmol), CH2Cl2 (10 ml),
and (E)-�-caryophyllene (1.5 ml, 6.6 mmol), and the mixture
was stirred under argon at room temperature overnight (36).
After concentration, silica gel chromatography gave ether (5) as
a colorless oil (381 mg, 28% and 345 mg, 26%; separate synthe-
ses). To a solution of 5 (381 mg, 1.3 mmol and 345 mg, 1.2
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mmol; separate syntheses) in THF (9 ml), H2O (6 ml), and
MeOH (6 ml) was added LiOH�H2O (230 mg) at 80 °C for 4.5 h.
The reaction mixture was adjusted with 3 N HCl to pH 3 and
extracted with ethyl acetate. After concentration, silica gel
chromatography gave carboxylic acid (6) as a brown oil (127
mg, 37% and 186 mg, 59%; separate syntheses). To a solution of
6 (205 mg, 0.78 mmol) in benzene (4 ml) was added SOCl2 (300
�l, 4.1 mmol) under argon at 80 °C for 4 h. The reaction prod-
uct, carboxylic acid chloride (7) in dioxane (14 ml), was treated
with NH3 at room temperature for 15 min. After filtration through
Celite, silica gel chromatography gave amide (8) (122 mg, 49%). A
solution of 8 (122 mg, 0.38 mmol) in THF (12 ml) was added to
lithium aluminum hydride (80 mg, 0.26 mmol) under argon at
75 °C for 3 h and then treated with H2O and NaOH. After filtration
through Celite and concentration, silica gel chromatography gave
amine (9) as a colorless oil (75 mg, 79%).

Preparation of probes for a pulldown assay

(E)-�-Caryophyllene derivatives with amino group and pro-
pylamine (as control) were biotinylated by Biotin-XX, SE
(6-((6-((biotinoyl)amino)hexanoyl)amino)hexanoic acid, suc-
cinimidyl ester) (Thermo Fisher Scientific), and 1 nmol of bioti-
nylated ligand was immobilized per mg (� 100 �l) of streptavi-
din-coated beads (Dynabeads M-280 Streptavidin, VERITAS).

Phylogenetic analysis

S. lycopersicum TPL was used as query sequence for BLAST
searches on the Sol Genomics Network (https://solgenomics.
net).6 Candidates that were predicted by PROSITE (http://
prosite.expasy.org)6 to have a LisH domain, CLISH domain,
and WD40 repeats were defined as TPL proteins. Amino acid
sequences of TPL proteins were aligned by MAFFT version 7
software (http://mafft.cbrc.jp/alignment/server/).6 MEGA7
software generated phylogenetic trees with the neighbor-join-
ing method and Jones-Taylor-Thornton matrix-based method.
The percentages of replicate trees in which associated taxa clus-
tered together in the bootstrap test (500 replicates) are shown
next to the branches.

Statistics

Statistical analyses were performed with EZR (Saitama Med-
ical Center, Jichi Medical University, Saitama, Japan) (37),
which is a graphical user interface for R version 3.3.3 (38, 39).
More precisely, it is a modified version of R commander version
2.3-2 designed to add functions frequently used in biostatistics.
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