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In the early 1980s, while using purified glycosyltransferases to
probe glycan structures on surfaces of living cells in the murine
immune system, we discovered a novel form of serine/threonine
protein glycosylation (O-linked �-GlcNAc; O-GlcNAc) that
occurs on thousands of proteins within the nucleus, cytoplasm,
and mitochondria. Prior to this discovery, it was dogma that
protein glycosylation was restricted to the luminal compart-
ments of the secretory pathway and on extracellular domains of
membrane and secretory proteins. Work in the last 3 decades
from several laboratories has shown that O-GlcNAc cycling
serves as a nutrient sensor to regulate signaling, transcription,
mitochondrial activity, and cytoskeletal functions. O-GlcNAc
also has extensive cross-talk with phosphorylation, not only at
the same or proximal sites on polypeptides, but also by regulat-
ing each other’s enzymes that catalyze cycling of the modifica-
tions. O-GlcNAc is generally not elongated or modified. It cycles
on and off polypeptides in a time scale similar to phosphoryla-
tion, and both the enzyme that adds O-GlcNAc, the O-GlcNAc
transferase (OGT), and the enzyme that removes O-GlcNAc,
O-GlcNAcase (OGA), are highly conserved from C. elegans to
humans. Both O-GlcNAc cycling enzymes are essential in mam-
mals and plants. Due to O-GlcNAc’s fundamental roles as a
nutrient and stress sensor, it plays an important role in the eti-
ologies of chronic diseases of aging, including diabetes, cancer,
and neurodegenerative disease. This review will present an
overview of our current understanding of O-GlcNAc’s regula-
tion, functions, and roles in chronic diseases of aging.

O-GlcNAc was discovered when bovine milk galactosyl-
transferase and UDP-[3H]galactose were used to probe the sur-
faces of living cells of the murine immune system for terminal
GlcNAc moieties (1). Surprisingly, further analyses showed that
nearly all of the incorporated [3H]galactose was added to single
�-O-linked GlcNAc moieties attached to Ser(Thr) residues on
polypeptides. Follow-up experiments showed that O-GlcNAc is
highly enriched within the nucleus and cytoplasm (2), particu-
larly on nuclear envelope and chromatin proteins. Thus, the
labeling in initial experiments (1) detected O-GlcNAcylated
proteins on the small percentage of lysed or damaged cells in

the cultures, indicating that O-GlcNAc is quite abundant on
nucleocytoplasmic proteins. Cytosolic localization of O-GlcNAc was
further confirmed by identification of O-GlcNAc on cytoplasmic
proteins in human erythrocytes (3). Subsequently, O-GlcNAc
was found to be particularly enriched on the nuclear and cyto-
solic faces of the nuclear pore complex (4 –6). Similar to its
unusual localization in cells, O-GlcNAc was found to be on
proteins associated with nucleic acids in viruses (7, 8) and also
to be abundant on RNA polymerase II transcription factors (9,
10), some of which are well-known oncogenic factors (11, 12) or
tumor suppressor proteins (13). The IIa (nonphosphorylated)
form of RNA polymerase II is heavily O-GlcNAcylated on its
C-terminal domain (CTD),2 in a region that reciprocally
becomes heavily phosphorylated during the elongation phase
of transcription (14). Early studies also suggested that
O-GlcNAc is involved in the regulation of protein translation
(15). Analyses of Drosophila polytene chromosomes showed
that O-GlcNAc is particularly abundant on chromatin, espe-
cially at sites of active gene transcription (16). Pulse– chase
studies found that O-GlcNAc cycles rapidly on the HSP27 fam-
ily of heat shock proteins (17). O-GlcNAc was also shown to be
highly dynamic on lymphocyte proteins, cycling rapidly in
response to activation (18).

Using a synthetic peptide as a substrate, an assay for the
O-GlcNAc transferase (OGT) was developed, and properties of
the enzyme from rabbit reticulocytes were defined (19). Using
the peptide substrate assay, combined with conventional and
affinity chromatography, OGT was purified over 30,000-fold
from rat liver and found to be a large multimeric enzyme with
high affinity for its donor substrate, UDP-GlcNAc (20). An
assay for O-GlcNAcase (OGA; the enzyme that removes
O-GlcNAc) was also developed, and O-GlcNAcase was purified
22,000-fold from rat spleen (21) and shown to have enzymatic
properties similar to those of previously described crude prep-
arations of hexosaminidase C (22, 23). Subsequently, the OGT
was cloned and sequenced from both rats and humans (24, 25)
and was shown to be a unique enzyme with multiple tetratrico-
peptide repeats (protein-docking domains). OGT was shown to
be an X-linked gene located near the centromere, and its
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sequence is very highly conserved from C. elegans to humans
(26). Knockout of OGT showed that it is essential to the viabil-
ity of murine embryonic stem cells and is required for embry-
onic development (27). Bovine brain OGA was purified, par-
tially sequenced, and used to clone and sequence human OGA
(28). OGA was shown to be identical to a previously cloned
gene (MGEA5) associated with meningiomas and postulated to
be a hyaluronidase (29). The O-GlcNAcase gene is also unique.
It is located on human chromosome 10, is essential in mammals
and plants, and is also very highly conserved from C. elegans to
humans. Recent structural analyses of OGT have not only led to
a much better understanding of its enzymatic mechanism, but
also, these studies have helped us to understand how a single
catalytic subunit can specifically target thousands of different
substrates. These investigations have also led to the develop-
ment of useful inhibitors (30 –39) (for a recent review, see Ref.
40). Surprisingly, OGT was also recently shown to use a novel
mechanism, involving UDP-GlcNAc at its active site, to proteo-
lytically cleave the important transcription factor, host cell fac-
tor 1 (41, 42), into its active forms.

Whereas less is known about how OGA is targeted to it sub-
strates, several recent studies have defined its detailed struc-
ture. These studies have also elucidated the molecular mecha-
nisms of the enzyme, and they have led to the development of
highly specific and potent OGA inhibitors that work in living
cells (43–53).

Perhaps the greatest impediment to understanding the func-
tions of O-GlcNAcylation is the enormous difficulty in detect-
ing and mapping the sites of O-GlcNAc on proteins (54).
Despite its abundance within the nucleus and cytoplasm,
O-GlcNAc remained undetected until 1983 for many reasons.
1) Generally, the presence or absence of O-GlcNAc does not
alter the electrophoretic migration of a polypeptide, even in
two-dimensional electrophoresis; 2) O-GlcNAc is very labile at
the source and in the gas phase in MS, making detection of
O-GlcNAc peptides and site mapping very difficult (55, 56); 3)
in mixtures, ion suppression of O-GlcNAc peptides by unmod-
ified peptides in MS masks the presence of the O-GlcNAcylated
species. Fortunately, pan-specific O-GlcNAc monoclonal anti-
bodies have greatly improved methods for detection of
O-GlcNAc (5, 57, 58), and specific enrichment methods have
been developed to circumvent the ion suppression problem (55,
59). Perhaps the most important breakthrough in site mapping
for O-GlcNAc on polypeptides has been the development of
electron transfer dissociation fragmentation MS, which does
not result in the cleavage of the very labile O-GlcNAc glycosidic
linkage to serine or threonine (60, 61). Like other post-transla-
tional modifications, the functions of O-GlcNAc must be
understood at the individual site level, making site mapping a
key first step to elucidate its biological functions. Whereas
inhibitors of OGT and OGA and genetic knockout experiments
of OGA or OGT have allowed us to make great strides in under-
standing the functions of O-GlcNAc, the lack of methods to
alter O-GlcNAcylation levels on a single protein or at a single
site has greatly limited progress in this area. Site-directed
mutagenesis of O-GlcNAc sites to alanine is useful, but effects
are difficult to interpret if the same or proximal site is also
subjected to phosphorylation or other modifications.

O-GlcNAc as a sensor of nutrients and stress

The concentration of UDP-GlcNAc (the donor substrate for
OGT) in cells is highly responsive to nutrients and flux through
the major metabolic pathways via their connectivity to the hex-
osamine biosynthetic pathway, including glucose metabolism,
nitrogen metabolism, nucleotide metabolism, and fatty acid
metabolism (Fig. 1) (62, 63). Both the activity of OGT and its
substrate selectivity are highly responsive to UDP-GlcNAc
concentrations across a large range (24, 64), indicating that
O-GlcNAcylation at specific sites on polypeptides is highly respon-
sive to the metabolic state of the cell. O-GlcNAcylation of nuclear
pore proteins (65) and O-GlcNAcylation of many polypeptides
within �-cells of the pancreas (66) are very responsive to extracel-
lular glucose concentrations. Hyperglycemia qualitatively and
quantitatively alters the O-GlcNAcylation or expression of
many O-GlcNAc–modified proteins within the nucleus of rat
aorta or smooth muscle cells (67). Hyperglycemia also inhibits
vascular endothelial nitric-oxide synthase (eNOS) by O-
GlcNAcylation, blocking its key regulatory AKT phosphoryla-
tion site (68). Elevated glucose and insulin both stimulate
increased O-GlcNAcylation in L6 myotubes (a model of skeletal
muscle) (69). Hyperglycemia-induced O-GlcNAcylation medi-
ates plasminogen activator inhibitor-1 gene expression and Sp1
transcriptional activity in glomerular mesangial cells (70).

O-GlcNAcylation of a large subset of proteins increases rap-
idly in response to almost any type of cellular stress, and this
increased O-GlcNAcylation protects cells from cellular damage
(71), including regulating DNA damage/repair (72). Paradoxi-
cally, several laboratories have shown that whereas short-term
elevation of O-GlcNAcylation is cardioprotective (73–80), pro-
longed elevation of O-GlcNAcylation, as occurs in diabetes,
contributes to cardiomyopathy and heart failure (81–86) (for a
review, see Ref. 87).

Nutrient regulation of gene expression

Cells must closely regulate gene expression in response to
their metabolic state and the availability of building blocks and
fuels. It is now clear that O-GlcNAcylation plays key roles in
nutrient regulation of transcription, yet we know very little
about the molecular mechanisms involved. Recent studies indi-
cate that O-GlcNAcylation affects nearly every step of tran-
scription (Fig. 2) (for reviews, see Refs. 88 –96). Nearly all RNA
polymerase II transcription factors are O-GlcNAcylated, often
at multiple sites, and the functions of the modification depend
not only on the specific transcription factor but also on the
specific sites to which the sugar is attached (13, 96 –143). OGT
is an essential polycomb gene, which regulates expression of
homeotic genes that control major morphogenetic events in
development (144 –147). Assembly of the preinitiation com-
plex in the transcription cycle requires O-GlcNAcylation of the
C-terminal domain of RNA polymerase II (95, 148, 149). OGA
is a transcription elongation factor, which is required to remove
O-GlcNAc from RNA polymerase II prior to the phosphoryla-
tion of the CTD (150). Phosphorylation of the CTD is required
and precedes elongation (151). O-GlcNAc is part of the histone
code (152–159). Whereas several O-GlcNAc sites on histones
are in the tail regions, along with other epigenetic marks, some
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O-GlcNAc moieties are located at the histone:DNA interface.
O-GlcNAc regulates both ubiquitination and methylation of
histones (159 –161). OGT and O-GlcNAc also regulate DNA
methylation via their interactions and via regulation and mod-
ification of the TET proteins. Very recent studies have shown
that the TATA-binding protein’s (TBP’s) cycling on and off of
DNA is regulated by its O-GlcNAcylation.3 When bound to
DNA, TBP is O-GlcNAcylated, and this modification reduces

its interaction with the TFIID complex, specifically preventing
binding to the BTAF1 subunit. Reducing the BTAF1:TBP inter-
action increases TBP’s residence time at promoters, increasing
overall promoter occupancy on several promoters and resulting
in major changes in the expression of many metabolic enzymes.

Despite many descriptive studies of the roles of O-GlcNAc in
transcription, there remain many questions about the functions
of OGT, OGA, and O-GlcNAc in transcription. For example, 1)
there are limited data suggesting that O-GlcNAcylation of tran-
scription factors may affect their interactions with other com-
ponents of the transcription machinery and alter their pro-

3 S. Hardivillé, P. S. Banerjee, E. S. Selen Alpergin, G. Han, J. Ma, C. C. Talbot, Jr.,
P. Hu, M. J. Wolfgang, and G. W. Hart, submitted for publication.

Figure 1. The HBP links flux through major metabolic pathways, allowing O-GlcNAcylation to serve as a “rheostat” that modulates most cellular
processes in response to nutrients. The biosynthesis of UDP-GlcNAc, the donor for the OGT, is directly coupled to flux through glucose, amino acid, fatty acid,
and nucleotide metabolic pathways. OGT is highly sensitive to UDP-GlcNAc concentrations, both in terms of activity and selectivity. O-GlcNAcylation has
extensive cross-talk with phosphorylation. Shown is the universal symbol for a rheostat, indicating that unlike phosphorylation, which is more analogous to a
switch, O-GlcNAc serves in a more analog fashion as a rheostat to modulate processes in response to nutrients and stress. GFAT, glutamine:fructose-6-
phosphate amidotransferase. Modified from Refs. 63 and 341. This research was originally published in Annual Review of Biochemistry. Hart, G. W., Slawson, C.,
Ramirez-Correa, G., and Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev.
Biochem. 2011; 80:825– 858 © Annual Reviews and Nature. Hart, G. W., Housley, M. P., and Slawson, C. Cycling of O-linked �-N-acetylglucosamine on nucleo-
cytoplasmic proteins. Nature 2007; 446:1017–1022 © Springer Nature.
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moter specificity, but detailed studies of this possibility are
lacking. This topic is of particular importance to molecular
mechanisms underlying glucose toxicity, where abnormal gene
expression occurs in many tissues exposed to prolonged hyper-
glycemia. 2) How O-GlcNAcylation regulates the basal machin-
ery and the transcription cycle is not understood. 3) Are so-
called “housekeeping transcription factors” O-GlcNAcylated
differently in different cell types or in different metabolic states
of the same cell type? These are but a few of the questions that
need study. Clearly, how nutrients regulate transcription will be
a fertile area for future research that will impact our under-
standing of disease etiologies.

We know even less about how dynamic O-GlcNAcylation
regulates protein translation. However, data are emerging from
several studies suggesting that nutrients also regulate protein
synthesis via O-GlcNAcylation. Early studies suggested that
O-GlcNAcylation of p67 protein plays a required role in p67’s
regulation of phosphorylation of the eIF-2 � subunit (15).

Reticulocyte extracts, which are often used for the study of in
vitro protein translation, are very efficient at O-GlcNAcylation
of nascent polypeptides (162). It was proposed that OGT and
O-GlcNAcylation protect proteins from aggregation during
heat stress (163, 164). An unbiased RNA-mediated interfer-
ence-based screen showed extensive O-GlcNAcylation of stress
granules, which are ribonucleoprotein granules that regulate
translation and mRNA decay, during cellular stress. O-
GlcNAcylation of the translational machinery is required for
aggregation of untranslated messenger ribonucleoproteins in
the formation of stress granules (165). Gycomic analyses iden-
tified many O-GlcNAcylated translation factors and ribosome
proteins (166). Over 20 core ribosome proteins are
O-GlcNAcylated, and both OGT and OGA are tightly bound to
purified ribosomal preparations. Even though most OGT is
nuclear in dividing cells, the transferase is completely excluded
from the nucleolus, the site of ribosome biogenesis (166). A
mild overexpression of OGT causes some of the enzyme to

Figure 2. O-GlcNAcylation serves as a nutrient sensor to modulate nearly every step in transcription. Nearly every transcription factor is O-GlcNAcylated,
often at multiple sites. OGT is a polycomb gene. Assembly of the preinitiation complex requires O-GlcNAcylation of RNA polymerase II. Elongation of mRNA
requires removal of O-GlcNAc from RNA polymerase II. O-GlcNAc is part of the histone code. O-GlcNAc regulates ubiquitinylation and methylation of histones.
O-GlcNAc regulates DNA methylation by the TET proteins. TATA-binding protein’s residence time at promoters is regulated by O-GlcNAcylation. HDAC, histone
deacetylase; Pol, polymerase; TF, transcription factor; H3K4me3, histone H3 Lys-4 trimethylation. Modified from Ref. 94. This research was originally published
in Cell Metabolism. Hardivillé, S., and Hart, G. W. Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 2014;
20:208 –213. © Cell Press.
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“leak” into the nucleolus, resulting in profound disruption of
nucleolar structure and an accumulation of 60S subunits and
80S monosomes. Upon inhibition of the proteasome, both
OGT and OGA become very tightly bound to ribosomes.
O-GlcNAcylation of many ribosome-associated proteins dra-
matically increases, and protein synthesis stops for a period of
time. The significance of these observations needs further
investigation. Recently, O-GlcNAcylation was found to be
more extensive on nascent polypeptide chains, presumably
protecting them from premature degradation by blocking co-
translational ubiquitination, suggesting that O-GlcNAc might
play a role in the cytosolic compartment that is similar to the
role of N-glycans in the calnexin/calreticulin system for pro-
teins in the secretory pathway (167).

Nutrient regulation of signaling

It is now clear that O-GlcNAcylation’s interplay with phos-
phorylation plays a key role in modulating signaling pathways
in response to nutrients and stress (168). One of the earliest
studies suggesting interplay between protein phosphorylation
and O-GlcNAcylation showed that the IIa form of RNA poly-
merase II is abundantly O-GlcNAcylated in its CTD, yet the
heavily phosphorylated IIo form of RNA polymerase II CTD is
completely lacking in O-GlcNAc moieties (14). In vitro assays
using synthetic CTD repeats showed that O-GlcNAcylation
and phosphorylation are mutually exclusive, with the pres-
ence of a single O-GlcNAc completely blocking the activity
of CTD kinases and the presence of a single phosphate moi-
ety completely blocking OGT’s activity on CTD (169).
O-GlcNAcylation at Ser-1177 of eNOS blocks its phosphoryla-
tion at this site, thus preventing its activation by AKT kinase
(68). Short-term treatment of cells with the broad-spectrum
phosphatase inhibitor, okadaic acid, or with phorbol esters,
which activate protein kinase C, or treatment with adenosine
monophosphate, which activates protein kinase A, all lead to
global decreased O-GlcNAcylation (170). In contrast, treat-
ment of cells with the nonspecific kinase inhibitor, stauro-
sporine, increases global O-GlcNAcylation, supporting a
“yin-yang” relationship between the two modifications on
many proteins. One complexity in these types of studies is
that if such treatments are performed at a high dose or for
too long, they induce a stress response, which by itself ele-
vates global O-GlcNAcylation.

Activation of protein kinase A or C in cerebellar neurons of
post-natal mice results in reduced levels of O-GlcNAc, specifi-
cally in cytoskeletal and cytoskeleton-associated proteins,
whereas inhibition of the same kinases results in increased lev-
els of O-GlcNAc (171). Likewise, treatment of neuronal cells
with the broad-spectrum phosphatase inhibitor, okadaic acid,
which induces protein hyperphosphorylation, decreases the
levels of O-GlcNAc in both nuclear and cytoplasmic proteins,
but with a greater effect in the nuclear fraction (172). Other
studies suggest that O-GlcNAc limits nucleoporin hyperphos-
phorylation during M-phase and hastens the resumption of
regulated nuclear transport at the completion of cell division
(173). Whereas there are numerous examples of phosphate and
O-GlcNAc competing for the same hydroxyl moiety on a poly-
peptide (11, 12, 174 –176), competition also occurs when they

are located proximal to each other (100, 106, 177–185). The
Stokes radius of an O-GlcNAc moiety is about 5 times that of a
phosphate residue.

OGT occurs in a functional complex with protein phos-
phatases, suggesting that in some instances, the same pro-
tein complex both dephosphorylates and concomitantly
O-GlcNAcylates polypeptides (186). Glycomic/proteomic
analyses have shown that in terms of cross-talk between phos-
phorylation and O-GlcNAcylation at the site level, all possibilities
exist (187, 188). In proteomic analyses of murine synaptosomes,
7% of mapped O-GlcNAc sites were modified reciprocally by
phosphate at the same hydroxyl moiety (188). Just these two
common post-translational modifications, which often occur at
multiple sites on a polypeptide, greatly increase the molecular
diversity of proteins. Even though both phosphorylation and
O-GlcNAcylation are sub-stoichiometric at any single site on a
polypeptide, it is likely that their competition does affect each
other’s cycling rates, which seems to be the most biologically
relevant parameter.

Another aspect of cross-talk between protein phosphoryla-
tion and O-GlcNAcylation is the regulation of each other’s
cycling enzymes by the other modification. OGT and OGA are
both regulated by phosphorylation. Calcium/calmodulin
kinase IV (CaMKIV) activates OGT, and phosphorylation of
OGT has an essential role in CaMKIV-dependent AP-1 activa-
tion upon depolarization of neuronal cells (189). As part of a
feedback loop, OGT in turn O-GlcNAcylates CAMKIV in its
ATP-binding pocket, inactivating the kinase (190). Insulin
stimulates tyrosine phosphorylation of OGT by the insulin
receptor and activates OGT’s activity on many specific sub-
strates (191). Other kinases also modify OGT and activate its
catalytic activity, including Src, GSK3�, and CaMKII. OGA is
phosphorylated on at least 10 different sites (Phosphosite Plus),
but the functions of these modifications are unexplored.

Early studies identified at least 42 kinases that are substrates
for OGT (192). Recent screens have shown that about 80% of all
human kinases are substrates for OGT. To date, more than 100
kinases have been confirmed to be O-GlcNAcylated in living
cells. Proteomic analyses found over 46 kinases modified by
O-GlcNAc in murine synaptosomes alone (188).

Most importantly, every O-GlcNAcylated kinase studied to
date, is regulated in some manner by the cycling sugar.
O-GlcNAc at the ATP-binding pocket of CaMKIV completely
inhibits the enzyme (190). The phosphorylated and
O-GlcNAcylated forms of casein kinase II have different sub-
strate selectivity (193). O-GlcNAc regulates the activity of the
energy-sensing kinase, AMP-activated protein kinase, in skele-
tal muscle (194). Several members of the protein kinase C fam-
ily are negatively regulated by O-GlcNAcylation (195).
O-GlcNAcylation of phosphofructokinase II inhibits this key
enzyme and increases flux into the pentose phosphate pathway,
contributing to the “Warburg effect” in cancer cells (196). AKT
(protein kinase B) is regulated by O-GlcNAcylation in hepato-
cytes (197). Activation of neurons increases O-GlcNAcylation
of cyclin-dependent kinase 5, blocking its binding to p53 to
suppress apoptosis (198). O-GlcNAcylation of p27 blocks
cyclin/CDK–p27 binding, contributing to regulation of the cell
cycle (199). O-GlcNAcylation of transforming growth factor-�–
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activated kinase (TAK1) regulates pro-inflammatory activation
and M1 polarization of macrophages (200). O-GlcNAcylation
of PKAc� and PKAc� activates the enzymes in the brain
and regulates their subcellular localizations (201). Loss of
O-GlcNAc on these PKAs leads to impaired learning and
memory associated with Alzheimer’s disease. Elevated
O-GlcNAcylation, as occurs in diabetes, causes CaMKII in the
heart to become constitutively active and directly contributes
to diabetes-associated cardiomyopathy and arrhythmias (202).
Whereas only a handful of the over 400 O-GlcNAcylated
kinases have been studied for the effects of O-GlcNAcylation
on their functions or on their enzymatic activities, it is already
evident that nutrients regulate kinase signaling in large part by
modulating their O-GlcNAcylation, which affects kinase func-
tions in many different ways.

Genetic studies also showed that O-GlcNAcylation regu-
lates signaling in plants, especially the Gibbererellin growth
hormone signaling pathway (203, 204). In Arabidopsis,
O-GlcNAcylation of DELLA transcription factors, which are
master growth repressors in plants, regulates and coordinates
multiple signaling pathways during development (205). Plant
OGT (Secret Agent) regulates flowering by activating histone
methylation in Arabidopsis (206).

Nutrient regulation of cytokinesis and the cytoskeleton

Early studies showed that human Band 4.1, a protein that
serves as a bridge joining the cytoskeleton to the inner surface
of the plasma membrane in erythrocytes, is modified by
O-GlcNAc (3). Cytokeratins 8 and 18 are O-GlcNAcylated at

multiple sites, and pulse– chase analyses showed that the sugar
is dynamically cycling on these intermediate filaments (207).
Synapsin I, which anchors synaptic vesicles to the cytoskeleton
at nerve terminals via a phosphorylation-regulated process, has
at least seven O-GlcNAcylation sites clustered around its five
phosphorylation sites. However, further analyses suggest that
O-GlcNAc’s roles in synapsin I’s functions are more direct than
simply controlling phosphorylation (178).

Several studies have shown that O-GlcNAcylation is
involved in regulation of the cell cycle and cytokinesis (Fig. 3).
Increased O-GlcNAcylation (induced pharmacologically or genet-
ically) results in delayed G2/M progression, altered mitotic phos-
phorylation, and altered cyclin expression. Decreasing
O-GlcNAcylation by overexpression of OGA induces a mitotic
exit phenotype accompanied by a delay in mitotic phosphoryla-
tion, altered cyclin expression, and pronounced disruption in
nuclear organization (208). Overexpression of OGT results in a
polyploid phenotype with faulty cytokinesis, as is often seen in
cancer cells (Fig. 3). Strikingly, at M-phase, OGT is highly concen-
trated at the mitotic spindle and mid-body, and a significant por-
tion of OGT is transiently in a large molecular complex with cell
cycle-regulated kinases, phosphatases, and OGA. Glycomic anal-
yses identified 141 previously unknown O-GlcNAc sites on pro-
teins that function in spindle assembly and cytokinesis. Many of
these O-GlcNAcylation sites are either identical to known phos-
phorylation sites or are in close proximity to them. Increased
O-GlcNAcylation also altered the phosphorylation of key proteins
associated with the mitotic spindle and midbody. Overexpression

Figure 3. Nutrients regulate cytokinesis and the cell cycle by O-GlcNAcylation. A, OGT is highly concentrated at the mid-body during the late stages of
cytokinesis. B, O-GlcNAcylated proteins are enriched at the midbody and at the nascent nuclear envelope during the late stages of cytokinesis. C, overexpres-
sion of OGT causes defective cytokinesis, resulting in polyploidy. D, during the late stages of cytokinesis, OGT, OGA, protein phosphatase I (PP1c), Polo-like
kinase (PLK1), and Aurora kinase B (among other proteins) are in a transient molecular complex that modifies proteins involved in cell division.
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of OGT increased the inhibitory phosphorylation of cyclin-depen-
dent kinase 1 (CDK1) and reduced the phosphorylation of CDK1
target proteins. Increased phosphorylation of CDK1 resulted from
increased activation of its upstream kinase, MYT1, and from a
concomitant reduction in transcription of CDK1 phosphatase,
CDC25C. OGT overexpression also caused a reduction in both
mRNA expression and protein abundance of Polo-like kinase 1,
which is upstream of both MYT1 and CDC25C. Pathway analyses
of these data uncovered a cascade series of events that illustrate
how nutrients regulate cell division via the complex interplay
between O-GlcNAcylation and phosphorylation (Fig. 3) (209).
Collectively, these studies indicate that O-GlcNAc cycling is a piv-
otal regulatory component of nutrient regulation of the cell cycle,
controlling cell cycle progression by regulating mitotic phosphor-
ylation, cyclin expression, and cell division (208).

Abnormal O-GlcNAcylation underlies the etiologies of
chronic diseases associated with aging (Fig. 4)

Fundamental roles in diabetes

Data from several laboratories indicate that abnormal
O-GlcNAcylation, such as occurs in hyperglycemia associated

with diabetes, underlies molecular mechanisms of glucose tox-
icity, insulin resistance, mitochondrial dysfunction, and abnor-
mal insulin synthesis and secretion by �-cells (for reviews, see
Refs. 63, 94, and 210 –217). Since the 1950s, there have been
over 1400 papers linking the hexosamine biosynthetic pathway
to the etiology of diabetes. Marshall et al. (218) showed that
conversion of glucose to glucosamine by the hexosamine bio-
synthetic pathway (Fig. 1) is required for the desensitization of
the insulin-responsive glucose transport system in adipocytes.
Pre-exposure of isolated rat skeletal muscle to glucosamine
induces insulin resistance of both glucose transport and glyco-
gen synthesis (219). Increasing flux through the hexosamine
biosynthetic pathway (HBP) in otherwise normal rats mimics
the hallmarks of glucose toxicity, such as the inhibition of glu-
cose-induced insulin secretion and reduced insulin stimulation
of both glycolysis and glycogen synthesis (220). In a streptozo-
tocin rat model of type I diabetes, prolonged hyperglycemia
increased the flux through the hexosamine biosynthetic path-
way, as determined by the UDP-hex/UDP-HexNAc ratio, by
over 40% in skeletal muscle (221). Overexpression of glutamine:
fructose-6-phosphate amidotransferase, the first and rate-lim-

Figure 4. O-GlcNAcylation is directly involved in etiologies of chronic diseases associated with aging. Prolonged elevation of O-GlcNAcylation contributes
directly to glucose toxicity, insulin resistance, and �-cell dysfunctions in diabetes. Every cancer type studied to date has elevated O-GlcNAc cycling, and blocking
O-GlcNAcylation prevents cancer progression. Decreased O-GlcNAcylation in the brain is associated with both Alzheimer’s disease and Parkinson’s disease.
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iting enzyme of the HBP, in skeletal muscle and adipose tissue
of mice mimics the adverse regulatory and metabolic effects of
hyperglycemia, specifically with respect to insulin resistance of
glucose disposal (222). Even modest transgenic overexpression
of OGT in muscle and fat of mice leads to insulin resistance and
hyperleptinemia (223).

OGT has a phosphoinositide-binding domain. Upon insulin
stimulation, phosphatidylinositol 3,4,5-trisphosphate recruits
OGT from the nucleus to the plasma membrane, where OGT
catalyzes increased O-GlcNAcylation of the insulin signaling
pathway. This increased O-GlcNAcylation results in the altered
phosphorylation on these signaling molecules and results in
attenuated insulin signaling (224). In addition, hepatic overex-
pression of OGT reduces the expression of insulin-responsive
genes and causes insulin resistance and dyslipidemia (224).
Increased O-GlcNAcylation of glycogen synthase results in the
retention of the enzyme in a glucose 6-phosphate– dependent
state and contributes to reduced activation of the enzyme asso-
ciated with insulin resistance (225).

Increased flux through the hexosamine biosynthetic pathway
also appears to be involved in glucose toxicity and insulin resis-
tance in humans with diabetes (226). Nucleotide polymor-
phisms in OGA are associated with diabetes in Mexican Amer-
icans (227). As might be expected from the role of the HBP as a
central node of metabolism (Fig. 1), fat-induced insulin resis-
tance is also associated with increased end products of the HBP,
suggesting that elevated free fatty acids induce skeletal muscle
insulin resistance by increasing the flux of fructose 6-phosphate
into the hexosamine pathway (228). Palmitate also activates the
HBP in human myotubes (229). Expression of the ob gene to
make leptin, a potent adipokine released by adipocytes in
response to increased energy storage, is controlled by end prod-
ucts of the HBP (88, 230, 231).

�-Cells of the pancreas have the highest relative amounts of
OGT and O-GlcNAc of any tissue (232, 233). Prolonged eleva-
tion of O-GlcNAcylation contributes to �-cell death by apopto-
sis in diabetes (66). Elevated O-GlcNAc leads to deterioration of
glucose-stimulated insulin secretion by the pancreas of diabetic
Goto–Kakizaki rats (234). Key transcription factors that con-
trol expression of proinsulin are dynamically regulated by
O-GlcNAcylation. Glucose regulates the nuclear transport of
NeuroD1 via its O-GlcNAcylation. O-GlcNAc regulates the
DNA binding by PDX-1 (102), and glucose controls the expres-
sion of the MAF-1 transcription factor via O-GlcNAcylation of
unknown nuclear proteins (235). Collectively, these studies
indicate a direct role for O-GlcNAcylation in regulating the
production and secretion of insulin. It has been proposed that a
chronic increase in O-GlcNAcylation may be a major factor
leading to the deterioration of �-cell function (236).

Hyperglycemia qualitatively and quantitatively alters the
O-GlcNAcylation or expression of many proteins within the
nucleus. Abnormal O-GlcNAcylation of transcription factors,
especially Sp1, appears to play a significant role in the abnormal
expression of proteins observed in diabetes (90). Hyperglyce-
mia increases O-GlcNAc on Sp1 and induces expression of
plasminogen activator inhibitor-1 (237), which leads to the
expression of genes that contribute to the pathogenesis of
diabetic complications. In contrast, activation of PPAR�, a

ligand-activated nuclear receptor that increases insulin sensi-
tivity, reduces O-GlcNAcylation of Sp1 (238). Enhanced
O-GlcNAcylation is associated with insulin resistance in
GLUT1-overexpressing muscles (239). Hyperglycemia, via
O-GlcNAcylation, impairs activation of the IR/IRS/PI3K/AKT
pathway, resulting in deregulation of eNOS activity (240). Ele-
vated O-GlcNAc also results in insulin resistance associated
with defects in AKT activation in 3T3-L1 adipocytes (241).

Increased O-GlcNAcylation has also been implicated in dia-
betic complications of the eye. The elevated expression of
O-GlcNAc–modified proteins and O-GlcNAc transferase plays
a causative role in the corneal epithelial disorders of diabetic
GK rats (242). There is growing evidence that increased
O-GlcNAcylation contributes to the pathogenesis of diabetic
retinopathy (243), including the early loss of retinal pericytes
(244).

Abnormal O-GlcNAc modification of nucleocytoplasmic
proteins appears to also be involved in glucose toxicity in vas-
cular tissues (67, 245). O-GlcNAcylation of AKT kinase pro-
motes vascular calcification (246). Prolonged elevation of
O-GlcNAcylation impairs cardiac myocyte function and leads
to the development of diabetic cardiomyopathy (247).
O-GlcNAcylation of cardiac mitochondrial proteins appears to
play a direct role in diabetic cardiomyopathy. Several proteins,
which are components of the respiratory chain, including the
subunit NDUFA9 of complex I, subunits core 1 and core 2 of
complex III, and the mitochondrial DNA-encoded subunit I of
complex IV (COX I), are O-GlcNAcylated. Hyperglycemia
increases mitochondrial protein O-GlcNAcylation. Increased
mitochondrial O-GlcNAcylation impairs activity of complex I,
III, and IV in addition to lowering mitochondrial calcium and
cellular ATP content. Mitochondrial function improves when
O-GlcNAc is reduced by OGA expression, resulting in return-
ing the activities of complex I, III, and IV, mitochondrial cal-
cium, and cellular ATP content to control levels (248).

Glycomic analyses of purified rat heart mitochondria from
normal and streptozocin-treated diabetic rats identified 88
O-GlcNAcylated proteins (84, 249, 250). OGT is strikingly
increased in diabetic cardiac mitochondria, whereas mitochon-
drial OGA is concomitantly decreased. Most importantly, OGT
is mislocalized in diabetic cardiac mitochondria. In normal car-
diac mitochondria, OGT is mostly localized in complex IV of
the respiratory chain. However, in diabetic cardiac mitochon-
dria, much of the OGT is now found in the matrix and in com-
plex III, resulting in altered O-GlcNAcylation on many pro-
teins. Inhibition of OGT or OGA activity within neonatal rat
cardiomyocytes significantly affects energy production,
mitochondrial membrane potential, and mitochondrial oxy-
gen consumption. Therefore, not only do cardiac mitochon-
dria have robust O-GlcNAc cycling, but also dysregulation of
O-GlcNAcylation likely plays a key role in mitochondrial
dysfunction associated with diabetes (84).

Increased O-GlcNAcylation of an important kinase, CAM-
KII, that helps to regulate heart contractions contributes to
arrhythmias associated with diabetes (202). Acute hyperglyce-
mia increases O-GlcNAcylation of CaMKII at Ser-279, which
activates CaMKII autonomously, even after Ca2� concentra-
tion declines. O-GlcNAcylation of CaMKII is increased in the
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heart and brain of diabetic humans and rats. In cardiomyocytes,
increased glucose concentration significantly enhances
CaMKII-dependent activation of molecular processes that can
contribute to cardiac mechanical dysfunction and arrhythmias.
These effects are prevented by pharmacological inhibition of
O-GlcNAc signaling or by genetic ablation of CaMKII�. In intact
perfused hearts, arrhythmias are exacerbated by increased glucose
concentration through O-GlcNAc– and CaMKII–dependent
pathways. In diabetic animals, acute blockade of O-GlcNAcylation
inhibited arrhythmogenesis. It was concluded that O-
GlcNAcylation of CaMKII contributes critically to cardiac and
neuronal pathophysiology in diabetes and other diseases (202).

O-GlcNAcylation also appears to play a role in diabetic
nephropathy. Diabetic patients have significantly increased
numbers of O-GlcNAc–positive cells in their glomeruli and sig-
nificantly elevated staining in the tubuli (both in the nucleus
and in the cytosol), suggesting that increased O-GlcNAcylation
might contribute to the development of diabetic nephropathy
(251). Increased O-GlcNAcylation of cytoskeletal proteins is
closely associated with the morphological changes in the podo-
cyte foot processes in the glomerulus and in microvilli of prox-
imal tubules in the diabetic kidney (252). Hyperglycemia-in-
duced elevation of O-GlcNAcylation also contributes to the
progression of diabetic nephropathy via inhibition of AKT/eNOS
phosphorylation and HSP72 induction (253).

Likewise, O-GlcNAcylation contributes to diabetic neurop-
athy. Hyper-O-GlcNAcylation of a neuronal protein, Milton,
appears to contribute to diabetic neuropathy of the foot (254).
To meet the high energy demands at the synapse, mitochondria
need to be trafficked from the cell body to the nerve terminal.
Milton serves as a bridge protein between the mitochondria
and the motor protein, which carries the mitochondria along
microtubules. When Milton is hyper-O-GlcNAcylated, as occurs
in diabetes, mitochondrial motility is arrested. Because the longest
axon in the body is from the spinal cord to the foot, neuropathy
often manifests itself in the feet. It was proposed that OGT nor-
mally modulates mitochondrial dynamics in neurons based on
nutrient availability, but when the modification becomes exces-
sive, it abnormally arrests mitochondrial transport (254).

The relationship between Alzheimer’s disease (AD) and dia-
betes is still unclear. However, based upon many common
underlying mechanisms, some researchers refer to AD as “dia-
betes type 3” (255–258). Recent studies have shown that hyper-
glycemia in the diabetic patient appears to induce greater
expression and activity of the mitochondrial isoform of OGT
(mOGT). Changes in mOGT modify the structure and func-
tionality of mitochondria in hippocampal cells, accelerate neu-
ronal damage, and favor the early events in AD. It was proposed
that mOGT activity could be a key point for AD development in
patients with diabetes (259). An understanding of O-GlcNAc’s
roles in both diabetes and AD will clearly require many more
detailed investigations.

Because O-GlcNAcylation is highly sensitive to glucose, it
was postulated that monitoring O-GlcNAcylation of human
erythrocyte proteins might serve as a biomarker for predia-
betes prior to detectable changes in HbA1c. Indeed,
O-GlcNAcylation of certain sites on human erythrocyte proteins
(e.g. catalase) increases significantly in prediabetic patients prior to

elevated HbA1c, reflecting the glycemic status of the individual. If
validated on a larger clinical trial, O-GlcNAc site occupancy on
erythrocyte proteins may eventually be useful as a diagnostic tool
for the early detection of diabetes (260, 261).

O-GlcNAc and cancer

There is a rapidly growing literature suggesting that
O-GlcNAcylation contributes to the properties and progres-
sion of cancer cells (Fig. 4) (for a review, see Refs. 262–266).
Whereas it has generally been observed that O-GlcNAc cycling
is universally elevated in cancer cells and, indeed, preventing
increased O-GlcNAcylation can block cancer progression, it is
still early days, and mechanistic details are often lacking.

Aberrant expression and activities of O-GlcNAc cycling
enzymes, especially OGT, have been reported in all human can-
cers studied to date (267). Altered cellular metabolism is a
major hallmark of cancer. Glucose uptake and glycolysis are
accelerated in cancer cells (“Warburg Effect”), which gives can-
cer cells an advantage for intensive growth and proliferation.
O-GlcNAc– dependent regulation of signaling pathways, tran-
scription factors, enzymes, and epigenetic changes are all likely
involved in metabolic reprograming of cancer (265, 266). Sev-
eral researchers have proposed that inhibition of hyper-O-
GlcNAcylation could be a potential novel therapeutic target for
cancer treatment (264, 265). It has also been proposed that
aberrant O-GlcNAcylated proteins might be novel biomarkers
of cancer (268).

Recent studies suggest that O-GlcNAcylation plays a direct
role in the Warburg effect (196). In response to hypoxia,
O-GlcNAcylation at serine 529 of phosphofructokinase 1
(PFK1) is increased, inhibiting the enzyme and redirecting glu-
cose flux through the pentose phosphate pathway. This meta-
bolic switch confers a selective growth advantage on cancer
cells. Blocking O-GlcNAcylation of PFK1 at serine 529 reduces
cancer cell proliferation in vitro and impairs tumor formation
in vivo. Other metabolic processes involving O-GlcNAc are
also involved in cancer cell reprogramming. For example,
O-GlcNAcylation also regulates glycolysis in cancer cells via
hypoxia-inducible factor 1 (HIF-1�) and its transcriptional tar-
get GLUT1. Reducing O-GlcNAcylation in cancer cells results
in endoplasmic reticulum stress and cancer cell apoptosis.
Human breast cancers with high levels of HIF-1� contain ele-
vated OGT and lower OGA levels, which correlate with poor
prognosis (269). DNA methylation plays a direct role in aber-
rant silencing of tumor suppressor genes in cancer. Because
OGT and O-GlcNAcylation regulate the TET proteins that hy-
droxymethylate DNA, it has been suggested that the cross-talk
between OGT and TET proteins might play an important role
in cancer cells (270).

Many oncogene and tumor suppressor gene products,
such as c-Myc, SV40 large T antigen, Rb, and p53, are
O-GlcNAcylated (271). In nongrowing cells, Thr-58, the
major hot spot mutation site in Burkitt’s lymphoma, is
O-GlcNAcylated; however, in growing cells, this same site is
phosphorylated. Mutation of Thr-58 to a nonhydroxy amino
acid converts the transcription factor, c-Myc, into a potent
oncoprotein (11, 12, 271). More recent studies have identified
c-MYC as a key target of OGT’s effects in prostate cancer cells
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(272). The tumor suppressor HIC1 (hypermethylated in cancer
1) is O-GlcNAcylated (273). O-GlcNAcylation regulates the
nuclear localization and stabilization of �-catenin, a dual-func-
tion protein that is both a transcription factor and a regulator of
E-cadherin trafficking, a protein that is key to the epithelial–
mesenchymal transition in cancer (114).

Reduction of O-GlcNAcylation by RNAi knockdown of OGT
in breast cancer cells inhibits tumor growth both in vitro and in
vivo and concomitantly decreases cell cycle progression.
Reducing O-GlcNAcylation in breast cancer cells decreases
expression of the transcription factor, FoxM1, resulting in
lower levels of multiple FoxM1-specific targets, including Skp2
and matrix metalloproteinase-2. Reducing O-GlcNAcylation
decreased cancer cell invasion and growth (274). In human
breast cancer, poorly differentiated tumors (grade II and III)
have significantly higher OGT expression than grade I tumors.
In contrast, OGA transcript levels are lower in grade II and III
compared with grade I tumors. Lymph node metastasis is sig-
nificantly associated with decreased OGA expression (275). In
breast cancer cells, O-GlcNAcylation at Ser-108 of cofilin, a
regulator of actin assembly, is required for its proper localiza-
tion to invadopodia at the leading edge during cell invasion.
Loss of O-GlcNAcylation of cofilin leads to destabilization of
invadopodia and impairs cell invasion (276). Treatments that
increase O-GlcNAcylation in MCF-7 breast cancer cells protect
them from death induced by tamoxifen. In contrast, inhibition
of OGT potentiates cell killing by tamoxifen (277).

O-GlcNAcylation is also universally elevated in prostate can-
cer. Reducing O-GlcNAcylation in prostate cancer cells
decreases expression of matrix metalloproteinase (MMP)-2,
MMP-9, and VEGF and inhibits invasion and angiogenesis.
These effects are mediated by the degradation of the transcrip-
tion factor, FoxM1, a known regulator of invasion and angio-
genesis. Overexpression of a degradation-resistant FoxM1
mutant abrogated OGT RNAi-mediated effects on invasion,
MMP levels, angiogenesis, and VEGF expression. In a mouse
model of metastasis, reduction of OGT expression blocks bone
metastasis (278). Strikingly, increasing O-GlcNAcylation by itself
induces malignant transformation of nontumorigenic prostate
cells. It was proposed that inhibiting the formation of the
E-cadherin/catenin/cytoskeleton complex underlies O-GlcNAc–
induced prostate cancer progression (279).

The roles of O-GlcNAcylation have now been examined in
many different cancer types with similar findings. Elevation of
OGA activity has been reported in thyroid cancers (280). His-
tochemical analyses showed that OGT and O-GlcNAcylation
are significantly elevated in lung and colon cancer tissue, rela-
tive to adjacent normal tissue. O-GlcNAcylation also markedly
enhanced the anchorage-independent growth of lung and
colon cancer cells in vitro (281). Studies of colorectal cancer
cells support the hypothesis that metabolic disorders underly-
ing colorectal cancer occur by up-regulation of the hexosamine
biosynthetic pathway that leads to abnormally high O-
GlcNAcylation of �-catenin (282).

Colorectal cancer SW620 metastatic clones exhibit
increased O-GlcNAcylation and decreased OGA expression
compared with primary clone cells, SW480. Increasing
global O-GlcNAcylation by RNAi knockdown of OGA

results in phenotypic alterations that include acquisition of a
fibroblast-like morphology, concomitant with epithelial
metastatic progression and growth retardation. OGA silenc-
ing altered the expression of about 1300 genes, mostly
involved in cell movement and growth, and specifically affected
metabolic pathways of lipids and carbohydrates, suggesting
that O-GlcNAcylation serves as a link between metabolic
changes and cancer (283). O-GlcNAcylation is increased in pri-
mary colorectal cancer tissues on proteins including, cytokera-
tin 18, heterogeneous nuclear ribonucleoproteins A2/B1
(hnRNP A2/B1), hnRNP H, annexin A2, annexin A7, laminin-
binding protein, �-tubulin, and protein DJ-1. It was proposed
that aberrantly O-GlcNAc–modified proteins may provide
novel biomarkers of cancer (284). It also has been proposed that
the urinary content of OGA and OGT may be useful for bladder
cancer diagnostics (285). Overexpression of OGT increases the
aggressiveness of mass-forming cholangiocarcinomas (286).

O-GlcNAcylation, OGA, and OGT levels were examined in
hepatocellular carcinoma (HCC) tissues of patients who under-
went liver transplantation and compared with healthy liver tissues.
Global O-GlcNAcylation levels were significantly elevated in HCC
tissues more than that in healthy liver tissues. Importantly, low
expression of OGA was an independent prognostic factor for pre-
dicting tumor recurrence of HCC following liver transplantation.
In vitro assays demonstrated that O-GlcNAcylation plays impor-
tant roles in migration, invasion, and viability of HCC cells, partly
through regulating E-cadherin, MMP1, MMP2, and MMP3
expression (287).

Pancreatic cancer cells evade cell death, in part by up-regu-
lating HSP70. A prodrug, Minnelide, down-regulates HSP70 to
enhance killing of pancreatic cancer cells. Minnelide causes
decreased O-GlcNAcylation of the transcription factor Sp1,
preventing its nuclear localization and affecting its DNA bind-
ing. This in turn down-regulates prosurvival pathways in pan-
creatic cancer cells, allowing the drug to facilitate their killing
(288). Hyper-O-GlcNAcylation in human pancreatic ductal
adenocarcinoma (PDAC) results from elevation of OGT and
reduction of OGA. Reducing hyper-O-GlcNAcylation has no
effect on nontransformed pancreatic epithelial cell growth
but inhibits PDAC cell proliferation, anchorage-indepen-
dent growth, orthotopic tumor growth, and triggers apopto-
sis. Many of these effects appear to be mediated by
O-GlcNAcylation of NF-�B (289).

Roles of O-GlcNAc in neurons and neurodegeneration

Except for the endocrine cells of the pancreas, O-
GlcNAcylation, OGT, and OGA levels are the highest in the
brain and in neurons. Functions ascribed to O-GlcNAcylation
in the nervous system include modulation of circadian clocks
(185, 290 –293), synaptic functions and maturation (294–296),
neuronal development (297–299), neuroprotection (300–302),
learning and memory (303–307), neuronal apoptosis (245, 308–
310), and appetite regulation (311). Mutations in OGT cause
X-linked intellectual disability (312, 313). Given O-GlcNAc’s
abundance, cross-talk with phosphorylation, and involvement in
many neuronal functions, it is not surprising that many research-
ers have reported a direct role for the cycling sugar in neurodegen-
erative diseases associated with aging (214, 314–317).
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Although mostly indirect, the evidence that O-
GlcNAcylation plays a major role in neurodegeneration is
compelling: virtually every protein involved in AD or other
forms of neurodegeneration is O-GlcNAcylated and phosphor-
ylated, often reciprocally (168, 318). Glucose metabolism is
impaired in AD neurons (319 –321), which globally lowers
O-GlcNAcylation. The Tau protein is normally O-
GlcNAcylated, but O-GlcNAc is reduced and phosphorylation
of Tau increases dramatically in AD (176). Amyloid precursor
protein is O-GlcNAcylated, and the sugar regulates its traffick-
ing and processing (322, 323). In addition, one of the subunits of
the �-secretase (nicastrin), which cleaves amyloid precursor
protein to generate the toxic A� peptides, normally is
O-GlcNAcylated. Many studies have documented the reciproc-
ity between O-GlcNAcylation and phosphorylation of the Tau
protein (179, 180, 324 –327). Autopsies have shown reduced
O-GlcNAcylation in patients with AD (180). The OGA gene
maps to 10q24.1 coincident with the late AD locus in humans
(328), and OGT maps to X13 coincident with the Parkinson
dystonia locus (329). Overexpression of OGT in neurons
increases O-GlcNAcylation at sites on Tau important to AD
and concomitantly decreases protein phosphorylation at these
same sites (180, 330). Cre-Lox brain targeted deletion of OGT
causes hyperphosphorylation of Tau prior to neuronal death
(27). Synaptic loss occurs in AD, and myriad synaptic proteins
are modified by O-GlcNAc (188). Highly specific OGA inhibi-
tors prevent hyperphosphorylation of Tau, decrease the pro-
duction of toxic A� peptides, and improve memory in mice
models of AD (48, 306, 331–333). It appears that one function
of O-GlcNAcylation is to “cap” phosphorylation sites used at
certain stages of development that are no longer required in the
adult. We hypothesized (176) that as the brain ages, or due to
vascular insufficiency, glucose utilization by certain neurons
drops, leading to lower O-GlcNAcylation, which in turn uncov-
ers phosphorylation sites recognized by ubiquitous kinases
present in the brain. The exposure of these sites and/or the lack
of O-GlcNAc itself causes the proteins to aggregate and form
abnormal complexes and contributes to the abnormal pro-
cessing of amyloid precursor protein.

Although much less studied, evidence is also emerging for
O-GlcNAcylation’s roles in Parkinson’s disease (305, 317). As
stated above, OGT maps to the Parkinson dystonia locus at
Xq13 (329). Parkinson’s disease results in degeneration of dop-
aminergic neurons in the substantia nigra, leading to a reduc-
tion of striatal dopamine levels. Tyrosine hydroxylase, which is
the rate-limiting step in the biosynthesis of dopamine, is regu-
lated by reciprocal O-GlcNAcylation/phosphorylation (334).
�-Synuclein, a toxic aggregating protein involved in Parkin-
son’s disease, is O-GlcNAcylated on at least eight sites, and even
substoichiometric O-GlcNAcylation of �-synuclein affects its
phosphorylation and blocks its degradation by calpain.
O-GlcNAcylation also blocks the toxicity of �-synuclein added
to cultured cells (335–338). Enzymatic O-GlcNAcylation by
OGT also inhibits �-synuclein aggregation and promotes the
formation of soluble SDS-resistant oligomers that stain nega-
tive for amyloid formation (339). However, O-GlcNAcylation’s
roles in Parkinson’s disease may be much more complicated
than preventing the formation of toxic protein aggregates.

O-GlcNAcylation was found to be elevated in lysates from the
post-mortem temporal cortex of Parkinson’s disease patients
compared with age-matched controls. Treatment of rat pri-
mary cortical neurons with a potent inhibitor of OGA signifi-
cantly increased protein O-GlcNAcylation, activated MTOR
signaling, decreased autophagic flux, and increased �-synuclein
accumulation. Inhibition of MTOR by rapamycin decreased
basal levels of protein O-GlcNAcylation, decreased AKT acti-
vation, and partially reversed the effect of the OGA inhibitor on
�-synuclein monomer accumulation. It was postulated that
excessive O-GlcNAcylation is detrimental to neurons by inhib-
iting autophagy and by increasing �-synuclein accumulation
(340). Perhaps at moderate levels, O-GlcNAcylation is benefi-
cial by preventing toxic protein aggregation, but when it is too
high, the sugar modification alters other processes in a delete-
rious manner. Clearly, O-GlcNAcylation is a fertile area in
which to explore new avenues for treatment of AD and other
neurodegenerative diseases.

Conclusions and future directions

After more than 3 decades of research on O-GlcNAcylation,
it is now clear that O-GlcNAcylation serves as a major nutrient
sensor, acting like a rheostat, to modulate most cellular pro-
cesses in response to the nutrient and stress status of the cell.
Despite the efforts of many laboratories, this field is still in its
infancy. The technological challenges of studying this protein
modification remain a major hurdle, and there is an acute need
for the development of new tools to study O-GlcNAc cycling in
living cells. Tools to selectively modify O-GlcNAcylation on a
single protein or at a specific site will be essential for elucidating
molecular mechanisms underlying the sugar’s physiological
functions. Whereas nearly every protein involved in transcrip-
tion is O-GlcNAcylated, and it is evident that nutrients regulate
gene expression, in part, by the cycling of O-GlcNAc, we know
very little about the molecular mechanistic roles that
O-GlcNAcylation plays in the transcription machinery.
O-GlcNAcylation is extraordinarily abundant in neurons and
in the brain, and limited data suggest that the sugar plays major
roles in neuronal functions and in neurodegeneration. How-
ever, so far, very little research with respect to the specific func-
tions of O-GlcNAcylation in neuronal processes has been
performed. The O-GlcNAcylation field is a major largely unex-
plored frontier that not only will have a huge effect on our
understanding of fundamental biological processes, but also
will impact future development of novel treatments for the
chronic diseases of aging. The study of O-GlcNAcylation rep-
resents a wide open and exciting area for young researchers
looking for a challenging yet important problem to tackle.
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