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Abstract

Motivation: DNA sequencing archives have grown to enormous scales in recent years, and thou-

sands of human genomes have already been sequenced. The size of these data sets has made

searching the raw read data infeasible without high-performance data-query technology.

Additionally, it is challenging to search a repository of short-read data using relational logic and to

apply that logic across samples from multiple whole-genome sequencing samples.

Results: We have built a compact, efficiently-indexed database that contains the raw read data for

over 250 human genomes, encompassing trillions of bases of DNA, and that allows users to search

these data in real-time. The Terabase Search Engine enables retrieval from this database of all the

reads for any genomic location in a matter of seconds. Users can search using a range of positions

or a specific sequence that is aligned to the genome on the fly.

Availability and implementation: Public access to the Terabase Search Engine database is avail-

able at http://tse.idies.jhu.edu.

Contact: richard.wilton@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The 1000 Genomes Project, which began in 2008, had within a

few years created the largest public archive of human genome data

ever seen (The 1000 Genomes Project Consortium, 2015). The pro-

ject website now contains sequence data from many thousands of

individuals, ranging from sparse sampling of the exome to deep

sequencing of the entire genome. Since its inception, other large

projects have been announced and some, notably the Simons

Genome Diversity Project (Mallick et al., 2016), have also released

large numbers of deeply sequenced genomes. The websites that

provide access to data from these and similar projects have pro-

vided interfaces that let users explore the single-nucleotide varia-

tions (Shringarpure and Bustamente, 2015) and download large

raw data files, but the data sets are too large to permit real-time

searching.

Searching sequence databases has been a mainstay of genomics

research for three decades. The BLAST program (Altschul et al.,

1997) and other alignment methods provide a means to inquire

whether any of millions of sequences match a query sequence.

However, no system has previously been available that would allow

a user to compare a sequence to the raw read data from hundreds or

thousands of deeply sequenced human genomes. Instead, data pro-

ducers have aligned reads from human sequence projects to the ref-

erence genome [currently GRCh38 (Schneider et al., 2017)], using

programs such as Bowtie2 (Langmead and Salzberg, 2012) or BWA
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(Li and Durbin, 2009), and from these alignments have produced

summaries that contain only the locations where a target genome

differs from the reference. These summaries, in the form of variant

call format (VCF) files, are far smaller than the raw data, and can

readily be shared or displayed in graphical genome browsers.

Nonetheless, some scientific questions can only be answered

with access to the raw human read data. For example, if one is look-

ing for a sizeable insertion in an individual genome, a VCF file will

not provide an answer because the novel DNA in the individual

would simply fail to align. Or if one wants to look for extra copies

of a tandem repeating sequence, such as those that affect the severity

of cystic fibrosis (Guo et al., 2011), the raw reads provide much

more accurate information than a simple variant file. Motivated by

these and other examples, we have designed a database that allows

real-time searching and retrieval of very large repositories of human

reads.

Implementing a large repository of short-read sequences poses

challenges in both data storage and data access. The amount of

space required for storage can be minimized by converting raw se-

quencer or read-aligner output into compressed formats more suit-

able for large-scale archival. When large numbers of reads all derive

from the same species (e.g. human), one can use the genome itself as

part of the storage format, and save storage space by encoding the

differences for each read (Hsi-Yang Fritz et al., 2011), a strategy

used in the current CRAM format.

As with any compressed data, however, optimal compression

requires additional computation for both compression and decom-

pression. The first step is to align every read to the reference gen-

ome. This is a computationally-intensive operation, but alignment

information adds significant value to raw sequencer reads for almost

all searches of the read data. In addition to permitting more efficient

storage of the read, associating each read with a reference-sequence

locus makes it possible to search the archive for reads that map

within a defined region of reference-sequence locations. One can

also use the locations to create a natural index ordering of the reads

in the archive, based on where each read maps to the reference.

2 Materials and methods

The Terabase Search Engine (TSE) was designed and implemented

as a repository of whole-genome sequencing (WGS) samples whose

reads have been aligned to an appropriate reference genome. All of

the information in the original sequencer output resides in the TSE

database. This information is stored in indexed tables managed by a

general-purpose commercial relational-database management sys-

tem and distributed across multiple database-server instances in

order to support the concurrent execution of queries and to scale ef-

ficiently as new data is accumulated on additional server computers.

All reads were aligned to the human reference genome,

GRCh38, as a pre-processing step in order to load the reads into the

database. Alignments were performed using the Arioc GPU-based

aligner (Wilton et al., 2015), using computers with a minimum of

128 GB of system memory and multiple NVidia GPU devices. Most

of the alignments were performed on two computers equipped with

dual Intel Xeon 12-core (24-hyperthread) CPUs running at 2.1 GHz

and three NVidia K40 GPUs. The remaining alignments were car-

ried out in a GPU cluster where each node had two Intel Broadwell

12-core CPUs at 2.6 GHz and two NVidia K80 GPUs.

Five computers with dual Intel Xeon 6-core CPUs at 2.1 GHz

were configured as database-server instances, each running

Microsoft SQL Server 2016 under Microsoft Windows Server 2012

R2. Each machine was configured with 128 GB of system memory

and with a single NVidia GTX750i GPU. These computers were

also provisioned with 8TB of SSD drives as well as a 1TB NVMe de-

vice; these high-bandwidth disk devices were used for ‘transient’

data operations (intermediate tables for data loading, sorting and

indexing) as well as for high-usage, randomly-accessed database

indexes.

2.1 Whole-genome sequencing data
The TSE data comprises 266 human WGS samples from public

repositories and published studies. Of these WGS samples, 247 were

obtained from the Simons Foundation Human Genome Diversity

Project (Mallick et al., 2016), 17 from the 1000 Genomes Project

and two from other sources (Ajay et al., 2011; Illumina Corpor-

ation, 2012).

The minimal criteria for inclusion of WGS samples in the TSE re-

lational database were:

• paired-end reads generated by Illumina sequencing technology
• reads at least 100 bp long
• at least 30� total coverage of each genome.

These minimum requirements ensured that reads from different

WGS samples were sequenced using similar experimental technique

and that search queries could be constructed in a consistent manner

without the need to account for variations between samples in read

length or the presence of paired-end mates.

2.2 Software implementation
Transformation of raw sequencer read data into a format that can

be accessed in the TSE relational database was a four-step process:

• Read-alignment
• Loading data into database tables
• Indexing
• Data validation and backup.

Each of these steps was implemented in a pair of parameterized

XML-scripted workflows that automate the entire process. The

amount of time required to load one full WGS sample into the data-

base depends primarily on the size of the sample. For the WGS sam-

ples described above, the end-to-end elapsed time to execute the

workflows was about 12 h.

2.3 Read-alignment
We parameterized the read-aligner to report at most two valid map-

pings for each sequencer read, because two mappings suffice to pro-

vide evidence for the computation of mapping quality. We also

specified Smith–Waterman alignment-score parameters that permit-

ted the aligner to optimize mappings for reads with localized struc-

tural differences from the reference (local alignments, þ2�6

�5�3, minimum score 2N/2). These scoring parameters were

designed to match the parameters used by default in Bowtie 2.

The read-aligner assigned a unique 64-bit integer identifier

through which the read’s provenance can be determined (Supple-

mentary Fig. S1). The 64-bit value was constructed as a set of bit

fields that identify the WGS sample that originally contained the

read, a mate-pair specifier and a flag that indicated whether the read

mapping was the highest-scoring ‘primary’ mapping or a ‘secondary’

mapping with the second-highest alignment score.

We also configured the read-aligner to emit results in binary-

formatted files that could be bulk loaded directly into SQL database
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tables. We limited the amount of data in each SQL bulk-format file

to 10 MB so that the alignment results for each WGS sample were

separated into a set of 50 or more files. This made it possible to de-

crease the time required to transfer data into the database by loading

multiple discrete subsets of the data concurrently into database

tables.

2.4 Data loading
For each aligned WGS sample, we used the native binary ‘bulk load’

mechanism of the database-server to transfer each file of alignment

results into a corresponding database table. Because each such data

transfer is a single-threaded, serial operation, we carried out mul-

tiple bulk load operations concurrently on disjoint subsets (parti-

tions) of the alignment results. The tables were then combined into a

single unified table. The contents of this table were validated, com-

pared with previously-loaded data to eliminate duplication, indexed

and finally backed up to compressed archival storage.

To conserve storage space, we stored each read’s sequence using

lossless 3-bit (ACGTN) binary run-length encoding of the differen-

ces between the reference genome and the actual sequence data

(Supplementary Appendix A1). For the base quality scores associ-

ated with each read sequence we used dynamic 3-bit (8-value) bin-

ning (Supplementary Appendix A2); this level of quantization

provides a significant reduction in storage space while delivering suf-

ficient fidelity for downstream applications such as variant calling,

which suffer no loss in accuracy with quantized quality values (Yu

et al., 2015).

To store mates without valid mappings, we used a run-length

encoded 3-bit (ACGTN) representation of the entire read sequence.

For these reads, we also computed a 64-bit integer signature value

that is used for locality-sensitive hashing and similarity searching

(Zola, 2014).

2.5 Indexing
We created SQL indexes that best served the types of queries we

expected to be most common. In particular, read mappings were

indexed and stored according to the reference-genome location at

which they mapped. The intention was to provide optimal perform-

ance for queries for a set of reads with mappings associated with a

short contiguous region of the reference genome, as in the following

model:

select. . .from mapping_table where POS between. . .and. . .

This indexing strategy does not preclude other kinds of queries,

but queries are best optimized for speed when they contain a predi-

cate that uses the POS-based indexes.

2.6 Data validation
We relied on low-level data-integrity validations internal to the

database-server to detect data-transmission errors and other poten-

tial sources of data corruption. In addition, we analyzed the distri-

bution of mapping positions (mapping widths, number of mappings

per chromosome, proportion of reads without valid mappings) to

prevent systematic errors in read-alignment and data loading.

2.7 Searching the database
Once data resides in the database, it is searched either by writing

SQL queries or through a set of pre-compiled SQL stored proce-

dures. The stored procedures support queries through a website that

provides basic visualization of read-mapping distributions and

allows for extraction of read-alignments from the database in SAM

format.

The TSE also supports searches using a given query sequence.

The implementation uses Bowtie 2 to identify reference-sequence

regions where the query sequence has valid mappings. The TSE then

returns all of the reads in the TSE database that have valid mappings

in those regions.

For reads that do not have valid mappings in the reference gen-

ome, the TSE supports a mechanism for returning unmapped reads

whose sequences are similar to a given query sequence (Wilton,

2017). This implementation computes a Jaccard similarity index be-

tween the query sequence and each unmapped read sequence, using

the pre-computed 64-bit signature values associated with each un-

mapped read. It then computes Smith–Waterman alignments be-

tween the query sequence and all unmapped read sequences with a

sufficiently high Jaccard similarity index and returns those reads

associated with high alignment scores.

2.8 Mapping footprint
Because the TSE database contains paired-end reads, it is useful to

devise queries that relate the mapping of each mate in a pair to a re-

gion of interest in the reference genome. Individually, the mapping

for each mate may either intersect some part of the region (that is, at

least one mapped base lies within the region) or be completely cov-

ered by the region (all mapped bases lie within the region). When

the mappings for both mates are considered together, there are sev-

eral additional possible relationships between the ‘mapping foot-

print’ and the region.

The TSE supports queries that specify any of these mapping foot-

prints (Fig. 1). It also allows arbitrary combinations, so that (for ex-

ample) all pairs with a mapping where both mates ‘touch’ a region

may be found by aggregating ‘cover-cover’ and ‘intersect-intersect’

mapping footprints.

3 Results

The current TSE database contains WGS samples from 266 individ-

uals (164 male, 102 female). In total, the genomes contain 354.8 bil-

lion reads (length 94–102), of which 340.4 billion (95.9%) have

valid mappings to the human genome. Of the 14.4 billion (4.1%)

unmapped reads, there are 6.6 billion distinct read sequences; i.e.

many of them are duplicates.

On average, each WGS sample contained about 662 million

paired-end reads (1.32 billion mates, 44� coverage), of which

94.5% had proper (concordant) mappings. For mapped reads, the

Fig. 1. Mapping footprints. The mapping footprint of a read describes the rela-

tionship between the region covered by a read mapping and an arbitrary re-

gion on the reference genome. For an unpaired mate, the mapping footprint

may be covered by the reference region (that is, every mapped base in the

read lies within the region) or intersected (at least one mapped base lies with-

in the region and at least one mapped base lies outside it). For paired-end

mappings, the mapping footprint is described by the relationship of the refer-

ence region to the mappings of both mates
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average alignment score was 193 and the average mapping quality

was 50 (Supplementary Figs S2 and S3).

3.1 Data loading and storage
The data for each WGS sample was obtained from a pair of FASTQ-

formatted files downloaded from their repositories of origin. Read-

alignment throughput for individual WGS samples ranged from

25 000 to 95 000 alignments/second (roughly 4–8 h elapsed), de-

pending on the sample and upon available GPU hardware. Data

loading, indexing and validation required an additional 3–7 h per

WGS sample.

The TSE data for all of the WGS samples in the database (includ-

ing indexes and metadata) occupies 50.5 TB of disk space, distrib-

uted across five database-server instances.

3.2 Query performance
For queries that define a contiguous region of interest in the human

reference genome, the TSE database can retrieve �10 000 reads per

second. Depending upon the actual coverage of the region of inter-

est, all reads mapped entirely within a region 1000 bases wide can

be obtained within about 10 s.

Queries that involve similarity searching of unmapped reads re-

quire �30 s to return both the locations at which a specified query

sequence maps to the human reference genome (on-the-fly align-

ment) as well as a set of unmapped reads whose sequence is similar

to the query sequence.

4 Discussion

The TSE implementation demonstrates that it is feasible to trans-

form large volumes of raw DNA sequences into a format that can be

efficiently queried using relational-database operations. The work

of loading data into a relational-database storage format yields the

ability to compose complex relational queries. As a tool for the exe-

cution of relational operations, a SQL database provides both higher

speed and greater flexibility than the use of flat file formats such as

SAM, BAM and VCF, which are the dominant formats in the field

of genomics today. A relational database-server implementation can

use optimizations such as multithreading and asynchronous file in-

put/output to accelerate queries. It can also analyze the relational

logic implicit in complex SQL queries so as to choose optimal strat-

egies for sorting, merging, and index usage.

4.1 SQL queries
Although the TSE database provides access to WGS samples for

only 266 individuals, the amount of data represented in the database

would make it unwieldy if a large proportion of the data had to be

accessed in order to generate query results. Even computationally

simple queries (for example, generating a histogram of values from

one mapping-table column) can take several hours to process be-

cause all of the data in the table must be read in order to produce an

aggregate result.

Our strategy for using the database efficiently is therefore to cre-

ate queries such that only an efficiently-defined subset of data rows

is used, and then to further manipulate the data to produce desired

results. Because WGS samples were loaded separately into the TSE

database and indexed primarily by reference-sequence mapping lo-

cation, high-performance queries of the data filter their results first

by sample and/or by mapping region. A subset of the database that

has been filtered in this way may still contain millions of data rows,

but result sets of this size can be manipulated in seconds on currently

available hardware.

Even queries that cannot immediately be defined in terms of a

known genomic region can be managed in this way. In particular, it

is possible to extract reads from the database based on their similar-

ity to a given query sequence by first aligning the query sequence to

the human reference genome. The result of this procedure is to iden-

tify one or more regions where the query sequence has a valid map-

ping; these regions can then be used for efficient queries of the TSE

read-mapping data.

4.2 Interactive access
In addition to direct SQL queries of the data, it is useful to visualize

the distribution of read mappings within a specified region of the

reference genome. For this reason, we developed a simple web-

browser-based coverage-visualization tool that displays the

reference-sequence positions at which reads in each of the WGS

samples are mapped to the reference genome (Fig. 2). High-

variability regions with lower coverage are visually apparent in this

display, yet it is possible to examine the individual reads within each

WGS sample within the same display context. This same tool can be

used to save the reads in individual samples (or, if desired, all of the

available samples) for subsequent download in SAM format.

The TSE visual interface emphasizes the relational nature of the

underlying implementation. Instead of providing a ‘service’ with a

set of pre-defined query types, the TSE web pages are designed to fa-

cilitate the parameterization of relational operations on the raw se-

quencer reads in the database. In other words, a query such as ‘does

a particular variant exist at a specified genome locus?’ is executed

through the TSE as a request for mapped reads at or near a particu-

lar locus; the additional work of characterizing the variants at that

locus is left to the user.

4.3 TSE query examples
The benefit of an interactive design based on relational operations is

that a TSE user can craft queries that identify sequencer reads

related to any genomic region, with full access to the alignment

results associated with each read. Typical queries might include any

of the following:

• prevalence of a SNP
• identifying an inversion
• prevalence of an uncatalogued deletion
• variations in the length of a tandem repeat
• prevalence of a polymorphic L1 (LINE-1) insertion.

The Supplementary Material contains details and screen snap-

shots of each of these potential use cases (Supplementary

Appendixes A3–A7) as well as visualizations of the query results

exported from the TSE and imported into the Integrative Genome

Viewer (Thorvaldsdóttir et al., 2013).

5 Conclusions

As the above examples suggest, the fact that the TSE implements

search queries as relational operations makes it possible to identify

sets of raw sequencer reads that meet a wide variety of complex

search conditions. The TSE’s visual interface is, in effect, a simpli-

fied representation of a set of parameterized relational-database

queries. It is possible, of course, to query the TSE in a straightfor-

ward manner—for example, to retrieve all reads whose mappings lie

entirely within a specified region of the genome—but the approach
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used in the TSE also supports the rapid retrieval of more precisely-

defined results from a large repository of sequencer reads.

In terms of performance, these examples each execute in fewer

than 15 s when executed against a TSE database that contains about

355 billion reads representing 266 individual WGS samples. This

level of performance is typical for TSE queries where the primary

criterion for selecting reads is their mapping location within a fairly

small (up to 1000 bp) region of the reference genome. Other rela-

tional queries are feasible as well, but query patterns that involve

scanning the entire database of reads (for example, a request for the

average alignment score across all mapped reads) will be limited by

disk hardware speeds and may execute in minutes or hours, depend-

ing on the complexity of the query.

The TSE database schema was designed to support 1000–10 000

human WGS samples, although we were unable to find anywhere

near that number of public-domain samples with which to initialize

the database. Because queries execute concurrently on independent

database-server instances, database performance scales efficiently as

new server instances are added to accommodate additional data.

With these performance constraints in mind, the TSE implemen-

tation demonstrates that one may quickly and interactively achieve

tangible results for queries against hundreds of billions of raw reads.

This performance is made possible by leveraging the query-

optimization capabilities of a database-server and using database

tables and indexes whose layout facilitates the optimization of

meaningful data queries. In this way, the TSE embodies a general-

purpose tool that makes it possible to provide real-time access to

sequencing reads from hundreds or thousands of WGS projects.
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