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Overview

Extensive studies over nearly half a century provide overwhelming 
evidence for a role of the basal ganglia in the control of voluntary 
movement and the pathophysiology of movement disorders.1–3 In 
this regard, the basal ganglia do not work in isolation but func-
tion in concert with the substantia nigra, cortex, thalamus, raphe 
nuclei, brain stem nuclei, and other regions (Figure 1). A basal gan-
glia region central in this regulation is the striatum, with extensive 
work suggesting a significant involvement of the striatal cholinergic 

system.4–7 This idea stems from numerous studies showing that 
lesions of the striatum disrupt movement while drugs that modulate 
the cholinergic system can improve motor disabilities in preclinical 
studies and/or clinical trials.8–12

The objective of this article is to present emerging data that rein-
forces the assumption of a critical role for the striatal cholinergic sys-
tem in movement disorders, with a focus on the nicotinic cholinergic 
system. We first briefly review the anatomy of striatal neuronal cir-
cuits and summarize evidence for a role of cholinergic interneurons 
in movement dysfunction. These combined studies form the basis for 
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Abstract

Emerging studies indicate that striatal cholinergic interneurons play an important role in synaptic 
plasticity and motor control under normal physiological conditions, while their disruption may 
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suggests they are primary players in this regulation, although multiple central nervous systems 
appear to be involved.
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L-dopa-induced dyskinesias, as well as antipsychotic-induced tardive dyskinesia, and may be use-
ful in Tourette’s syndrome and ataxia. Subtype selective muscarinic cholinergic drugs may also 
provide effective therapies for Parkinson’s disease, dyskinesias and dystonia. Continued studies/
trials will help address this important issue.
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understanding the beneficial role of nicotinic, as well as muscarinic 
receptor drugs in improving various types of motor disabilities.

Cholinergic Interneurons and Striatal Circuitry

Striatal circuitry consists of various intrinsic neuron subtypes, as well 
as an extensive array of excitatory and inhibitory connections from 
the substantia nigra, cortex, thalamus, raphe nuclei, locus coeruleus, 
and other regions (Figures 1 and 2). These inputs synapse onto striatal 
neurons that may be of several subtypes. These include GABAergic 
medium spiny neurons (MSNs) that form the greater majority (95%) 
of striatal neurons, as well as smaller populations of several types of 
striatal interneurons that constitute the remaining 5% of neurons.5,13–18

MSNs are medium sized projection neurons with wide-ranging 
dendritic trees densely covered with spines that extensively arborize 
and synapse with striatal interneurons and numerous incoming neu-
rons.5,13–18 The primary afferents to MSNs are glutamatergic corticos-
triatal, glutamatergic thalamostriatal, and dopaminergic nigrostriatal 
neurons (Figures 1 and 2). Additional afferents include serotonergic 
raphestriatal, noradrenergic locus coeruleus, and cholinergic pedun-
culopontine projections. MSNs innervate a variety of basal ganglia 
structures, including the globus pallidus and substantia nigra.5,13–18 
There appear to be two functionally distinct subpopulations of MSNs 
that are responsible for different aspects of motor control, which act in 
a somewhat opposing fashion. These include the D1 dopamine recep-
tor expressing direct pathway MSNs that project to and disinhibit the 
inhibitory output neurons of the globus pallidus internus and substan-
tia nigra pars reticulata (Figure 1); this pathway is thought to be the 
driving factor for movement facilitation under normal physiological 
conditions. By contrast, indirect pathway MSNs express D2 dopa-
mine receptors and project to the globus pallidus externus to disin-
hibit the subthalamic nucleus and promote the tonic inhibitory output 
of the globus pallidus internus/substantia nigra reticulate (Figure 1). 
The indirect pathway is thought to be inhibited during movement and 
active during lack of movement. Overall motor function involves a 
complex balance between the direct and indirect pathways to allow 
for the fine control of motivation and action. Degeneration of the 
dopaminergic nigrostriatal pathway as occurs in Parkinson’s disease 
results in an imbalance in the functions mediated by the direct and 
indirect pathway leading to the resultant bradykinesia and other 
movement abnormalities observed in this disorder.

In addition to the GABAergic MSN projection neurons, the 
striatum also contains several subtypes of medium size striatal 
GABAergic interneurons with distinct physiological, chemical, and 
morphological properties.5,13–18 These include interneurons that 
selectively express calcium-binding proteins such as parvalbumin 
or calretinin, as well as various neuropeptides and enzymes, includ-
ing neuropeptide Y, somatostatin, and nitric oxide synthase. Some 
examples of interneuron subtypes include GABAergic parvalbumin-
immunoreactive fast-spiking interneurons, GABAergic low-thresh-
old spiking interneurons, GABAergic calretinin-immunoreactive 
interneurons, and tyrosine hydroxylase-immunoreactive interneu-
rons. For a discussion on the role of these different interneuron 
subtypes in striatal function, the reader is referred to some recent 
excellent reviews.5,13–18 The involvement of these select neuronal 
populations in neurological disease is an area just beginning to be 
understood.

Besides medium size interneurons, there exists a small pop-
ulation of large aspiny cholinergic interneurons in the stria-
tum.5,13–18 Although they are sparse in number (~2% of the 

neuronal population), they have very widespread dendritic and 
axonal fields that extensively arborize throughout the striatum 
to synapse with the GABAergic projection neurons and interneu-
rons described above. In addition, they extensively overlap with 
nigrostriatal dopaminergic terminals, corticostriatal glutamater-
gic afferents, serotonergic terminals from the raphe, and other 
inputs to the striatum. These cholinergic interneurons are toni-
cally active and fire action potentials at a slow rate to result in 
a continuous pulsatile release of acetylcholine under basal con-
ditions. Acetylcholine release from cholinergic interneurons is 
controlled by numerous neurotransmitter systems as recently 
reviewed by Lim and coworkers.16 This includes both intrinsic 
and extrinsic GABAergic inputs, with data indicating that GABA 
can directly modulate acetylcholine release through stimulation 
of GABAA receptors on striatal cholinergic neurons.19,20 Groups 
I  and II metabotropic glutamate receptors located on the axon 
terminals of striatal cholinergic interneurons also modulate ace-
tylcholine release,21,22 as do ionotropic glutamate receptors.16 
Dopamine directly regulates striatal cholinergic transmission via 
D1/D5 and D2 dopamine receptors.23–27 Evidence for this stems 
from a variety of studies including pharmacological work show-
ing that selective D1 receptor agonists increased acetylcholine 
release, while both D1 receptor antagonists and D2 receptor ago-
nists reduced acetylcholine release.23,24 Thus, D1 and D2 receptors 

Figure  1. Direct and indirect pathway circuitry within the basal ganglia. 
Dopaminergic projections from the substantia nigra pars compacta (SNc) 
and cortical glutamatergic afferents synapse onto the medium spiny neurons 
(MSNs) of the striatum. These neurons are classically subdivided into the 
“direct” or “indirect” pathways based on their expression of D1 or D2 
dopamine receptors, respectively. Direct pathway D1 MSNs project directly 
to the enteropeduncular nucleus (EPN; internal segment of the globus 
pallidus in primates) or the substantia nigra pars reticulata (SNr), and thence 
to the brain stem or thalamus/cortex, respectively. Indirect pathway D2 MSNs 
project to the globus pallidus (GP; external segment of the globus pallidus 
in primates) en route to the EPN and SNr via the SNc or the subthalamic 
nucleus (STN). Depicted are also the cholinergic projections from the 
pedunculopontine tegmental (PPT) and laterodorsal tegmental (LDT) nuclei 
to the striatum, STN and SNc, which in addition to cholinergic interneurons 
regulate basal ganglia function.
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have opposing roles in the control of striatal acetylcholine release 
to allow for the fine tuning of dopamine receptor-mediated regu-
lation of locomotor activity.11

Histamine also influences acetylcholine release from striatal 
interneurons via an action at H1, H2, and H3 receptors.28,29 In 

addition, serotonin released from raphe-striatal neurons is able to 
inhibit the release of acetylcholine from striatal interneurons through 
a variety of serotonin receptor subtypes.30,31 This multimodal regula-
tion of acetylcholine release by numerous neurotransmitters allows 
for extensive fine tuning of striatal function. The acetylcholine 

Figure 2. Cholinergic signaling via nAChRs and muscarinic acetylcholine receptors (mAChRs) regulates striatal function. (A) Diagrammatic representation of 
the primary striatal neurotransmitter systems. Cholinergic interneurons are the primary source of striatal acetylcholine (ACh) and regulate its function via pre-
and post-synaptic nAChRs and muscarinic receptors. Acetylcholine regulates the activity of direct and indirect GABAergic medium spiny neurons (MSNs) by 
acting at α4β2* nAChRs, as well as M1 and/or M4 muscarinic receptors. In addition, acetylcholine modulates striatal dopamine (DA) release via an interaction 
at α6β2* and α4β2* nAChRs along with M2 and/or M4 muscarinic receptors on nigrostriatal dopaminergic and serotonergic (5-HT) terminals, which further 
regulates the output of direct and indirect pathway MSNs. Likewise, acetylcholine can modulate GABAergic interneuron activity via α7 and α4β2* nAChRs, as 
well as M2 muscarinic receptors. Acetylcholine can further control striatal function via α7 nAChRs and M2 and M3 muscarinic receptors located on the excitatory 
glutamatergic (GLU) inputs arising from the cortex. (B) Molecular signaling modulated by nAChRs. Stimulation of nAChRs increases intracellular Ca2+ which 
promotes activation of PKA and CAMKII to initiate ERK1/2 cascade activity. nAChR signaling can also occur via Ca2+ -independent mechanisms thru the JAK2/
STAT3 pathway. (C) Molecular signaling via mAChRs. These receptors are coupled to G proteins. M2 and M4 receptors couple preferentially to Gi/0, whereas M1, 
M3 and M5 receptors mainly couple to Gq/11. Upon stimulation, M2 and M4 receptors inhibit adenylyl cyclase (AC) activity, leading to a decrease in intracellular 
cAMP levels and PKA activity to ultimately regulate ERK1/2 activity. M1, M3, and M5 receptors activate PKC by means of upstream PLC activation and increase 
in IP3 and Ca2+ levels. PKC activity leads to the activation of the MAP kinase cascade and ERK1/2.
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released from cholinergic interneurons subsequently acts at cho-
linergic receptors located on neuronal terminals and/or cell bodies 
of dopaminergic, GABAergic, glutamatergic, and serotonergic neu-
rons, as well as on the cholinergic neurons themselves (Figure 2). 
Acetylcholine then exerts its effects by acting at both nicotinic and 
muscarinic receptors as described in detail below.

Nicotinic Acetylcholine Receptor Signaling in 
Striatum

Neuronal nicotinic acetylcholine receptors (nAChRs) are members 
of the Cys-loop gene super family of ligand-gated ion channels.11,32,33 
They consist of complexes of five subunits around a central hydro-
philic pore or channel. Twelve distinct neuronal nAChR subunits 
have been identified to date and fall into two major subclasses, 
including α (α2 to α10) and β (β2 to β4) subunits. The α subunits 
bear the distinction of possessing an acetylcholine recognition site, 
whereas the β subunits do not, although they influence the proper-
ties of acetylcholine binding to the α subunit.11,32,33 nAChRs have 
been classified into two main types that may be heteromeric or 
homomeric. The results of mRNA expression work, nAChR subunit 
knockout experiments, nAChR subunit selective antibody testing 
and nAChR subtype selective drug studies indicate that the main 
heteromeric receptor subtypes in the striatum are α4β2* and α6β2* 
nAChRs, with the asterick indicating the presence of other subunits 
in the receptor complex. These may be the α5 and β3 subunits to 
yield α4α5β2, and α4α6β2β3 receptors.34 The primary homomeric 
receptor present in the striatum is the α7 subtype, which is composed 
of five identical α subunits.

nAChR subtypes are differentially distributed throughout the 
brain and may be localized on presynaptic nerve terminals or post-
synaptically on neuronal cell bodies11 (Figure 2). In the striatum, the 
greater majority of nAChRs are expressed on incoming afferent ter-
minals arising from the substantia nigra, cortex, raphe nuclei, and 
other regions. In addition, nAChRs may be located on GABAergic 
and cholinergic interneurons within the striatum, although their 
numbers are sparse as suggested from the results of in situ hybrid-
ization studies that identified little, if any, nAChR subunit mRNA in 
this region.35

Functionally, the different nAChR subtypes mediate fast excita-
tory transmission in response to acetylcholine or nAChR agonists, 
when exposed to rapidly changing concentrations of agonist. 
However, volume transmission of acetylcholine is known and the 
pharmacokinetics of agonist delivery to the CNS may result in rela-
tively slow changes in agonist concentrations and therefore slower 
kinetics of nAChR function. In addition, the different nAChR 

subtypes have diverse functional and pharmacological properties, 
and may thus mediate unique and varied cellular activities.11,32,33

Activation of presynaptic nAChRs enhances permeability to 
small monovalent and divalent cations such as Na+, K+, and Ca2+ 
to facilitate release of various striatal neurotransmitters into the 
synaptic cleft. nAChR-evoked striatal dopamine release is one of 
the best studied. Cholinergic interneurons extensively overlap with 
nigrostriatal dopaminergic terminals expressing α4β2* and α6β2* 
nAChRs (α4β2, α4α5β2, α6β2β3, α4α6β2β3) to modulate dopa-
mine release.34,36,37 Striatal α7 nAChRs located on corticostriatal 
glutamatergic efferents also indirectly regulate dopamine release by 
modulating striatal glutamate release.38 Additionally, acetylcholine 
released from cholinergic interneurons can also stimulate α4β2* 
nAChRs to induce GABA release from GABAergic interneurons.39 
nAChR stimulation may also elicit 5-HT release from striatal raphe 
nucleus afferents.40 Thus, acetylcholine released from striatal cholin-
ergic interneurons can act at distinct nAChR subtypes on different 
neurotransmitter terminals to result in an intricate regulation of stri-
atal function. This, in turn, has the potential to allow for a complex 
control of movement under physiological conditions, and to result 
in varied movement deficits under pathological conditions (Table 1).

Role of the Nicotinic Cholinergic System in 
Movement

Parkinson’s Disease
Parkinson’s disease is the second most common neurodegenerative 
disease with an incidence of 1% over the age of 60. It is character-
ized by movement disabilities including tremor, rigidity, bradykin-
esia/hypokinesia, and postural instability as well as numerous other 
deficits in cognition, affect, sleep, and autonomic nervous system 
function.9,67–69 Parkinson’s disease is associated with a generalized 
loss of neuronal systems throughout the brain, with the most prom-
inent feature being a degeneration of nigrostriatal dopaminergic 
neurons. This results in a decline in dopamine release and a reduced 
stimulation of D1 and D2 receptors on MSNs of the direct path-
way and indirect pathway, respectively. This ensuing dysregulation 
of dopamine function leads to an overall decline in movement facili-
tation mediated by the direct pathway and increase in the inhibitory 
influence of the direct pathway to result in the bradykinesia, rigidity, 
freezing, and other motor deficits observed in Parkinson’s disease. 
This idea is supported by extensive work showing that dopamine 
replacement with the dopaminergic precursor 3,4-dihydroxypheny-
lalanine (L-dopa) and/or treatment with dopaminergic receptor ago-
nists dramatically improve the motor symptoms.9,67–69

Table 1. Involvement of CNS cholinergic systems in movement disorders 

System Movement disorder Cholinergic system implicated Cholinergic receptors involved Reference

Nicotinic 
cholinergic

Parkinson’s disease Striatal cholinergic interneurons α4β2*, α6β2*, α7 41–45

L-dopa-induced dyskinesias Striatal cholinergic interneurons α4β2*, α6β2*, α7 46–56

Tardive dyskinesia Striatal cholinergic interneurons β2* 10

Tourette’s syndrome Striatal cholinergic interneurons β2* 57,58

Ataxia Cerebellar cholinergic system β2*, α7 59,60

Gait disturbances in 
Parkinson’s disease

Pedunculopontine system Not known

Muscarinic 
cholinergic

Parkinson’s disease Striatal cholinergic interneurons M1, M4 4,61

L-dopa-induced dyskinesias Striatal cholinergic interneurons M4, other 12,62,63

Dystonia Striatal cholinergic interneurons M1, M2, M4 64–66
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However, variable and incomplete responses to dopaminergic ther-
apy suggest the involvement of other neurotransmitter systems, with 
a prominent role for the cholinergic one.5,7,8,70,71 Indeed, muscarinic 
cholinergic antagonists were the first drugs used to treat Parkinson’s 
disease, as is discussed in a later section. In addition, studies have 
been done to evaluate the effect of nAChR drugs on acute motor 
symptoms in Parkinson’s disease. Although there was improvement 
in about half the trials, no change or a worsening was found in the 
others.72–82 Possible explanations for these variable results include dif-
ferences in the duration of nicotine treatment and/or in the nicotine 
dosing regimen, the relatively small study sizes, the clinical tests used 
and the stage of Parkinson’s disease. Of particular note, however, is 
that the improvement in motor symptoms were associated with the 
open-label studies, while no effect or a worsening was observed in the 
double-blinded trials. These clinical data are consistent with results 
in parkinsonian animal models that generally also found no acute 
improvement in motor symptoms with nAChR drugs.83,84

Although nicotine and nAChR drugs may not improve acute 
motor symptoms in Parkinson’s disease, there is an extensive litera-
ture suggesting that nAChR drugs may protect against nigrostriatal 
damage. This idea initially stemmed from the results of epidemio-
logical studies which consistently found a negative association 
between Parkinson’s disease and tobacco use. This reduced inci-
dence of Parkinson’s disease with tobacco use appeared to be due 
to a true biological effect of smoking based on several lines of evi-
dence, as follows85–89: (1) the effect was dose and time dependent, 
with the decline in Parkinson’s disease incidence greater with more 
years of smoking and more cigarettes smoked; (2) the reduced risk 
was lost with smoking cessation; (3) there was a decreased incidence 
of Parkinson’s disease with other forms of tobacco; (4) twin stud-
ies showed that Parkinson’s disease develops less in the twin that 
smoked;90 and (5) lastly, the decreased risk of Parkinson’s disease in 
smokers was not due to a selective mortality.85–89

Although there are many chemical components in cigarette 
smoke, a role for nicotine in the apparent protective effect was 
suggested from studies showing that nicotine and nAChR drugs 
reduced neuronal damage in culture systems.91,92 More importantly, 
extensive studies in toxin-induced parkinsonian models, including 
MPTP-treated monkeys, MPTP-treated mice, and 6-hydroxydopa-
mine-treated rats and mice, also demonstrated that nicotine and 
nAChR agonist administration protected against nigrostriatal dopa-
minergic damage.91 Studies with selective nAChR drugs and α4, 
α6, α7, or β2 nicotinic receptor subunit knockout mice suggested 
a role for both β2* and α7 nAChR subtypes.41–45 These preclinical 
studies formed the basis for an ongoing Michael J. Fox Foundation 
funded clinical trial, to investigate the ability of the nicotine patch 
to protect against Parkinson’s disease (ClinicalTrials.gov Identifier 
NCT01560754).

L-Dopa-Induced Dyskinesias
L-dopa-induced dyskinesias (LIDs) are abnormal involuntary move-
ments that occur as a side effect of L-dopa therapy, the gold standard 
treatment for Parkinson’s disease motor symptoms.93–96 They gen-
erally only arise after months or more commonly years of L-dopa 
treatment; however, they occur in most patients to some degree 
and may become debilitating.97 At present, therapeutic options are 
limited. Amantadine has historically been the only drug approach; 
however, data on efficacy were limited.94–96 Recent placebo-con-
trolled trials utilizing a novel sustained-release formulation aman-
tadine support efficacy, although side effects were common and may 

limit generalizability of use.98,99 Deep brain stimulation has proved 
very effective but involves surgery with its related drawbacks.100–102 
Additional approaches for treatment would thus be a great asset.

As might be expected, the nigrostriatal dopaminergic system 
is key in the development of LIDs.103–105 Administration of L-dopa 
is thought to lead to unregulated dopamine release and excessive 
activity of striatal MSN projection neurons of the D1 direct path-
way. D2-mediated activity of the indirect pathway also becomes 
overactive, with a resultant decline in activity of this pathway to 
lead to the overall enhanced motor activity characteristic of dys-
kinesias.93,96 In addition, numerous other CNS neurotransmitters 
have been implicated including the serotonergic, glutamatergic, 
opioid, GABAergic, noradrenergic, histaminergic, and various pep-
tidergic systems.93,94,96,106–108 More recent work also indicates a role 
for striatal cholinergic interneurons and the nicotinic cholinergic 
system. Experimental studies show that ablation of striatal cho-
linergic interneurons in mice before initiation of L-dopa treatment 
markedly reduced LIDs without compromising the therapeutic effi-
cacy of L-dopa.109 Additionally, long duration optical stimulation 
of cholinergic interneurons decreased LIDs, again without affect-
ing parkinsonism.62 These combined studies provide direct evi-
dence for the involvement of cholinergic interneurons in selectively 
regulating LIDs.

A role for the nicotinic system stems from extensive preclinical 
work showing that administration of nicotine to parkinsonian mon-
keys, mice, and rats decreased LIDs 50–60% (Table 2).46,83,84 Long 
term molecular mechanisms appeared to be involved since the reduc-
tion in LIDs required several weeks to develop, and was maintained 
for several weeks after nicotine discontinuation. Importantly, all 
modes of nicotine administration tested reduced LIDs,83,110 with no 
tolerance in the ability of nicotine to reduce dyskinesias.111 These 
latter properties indicate that nicotine treatment may be useful in the 
clinic. Evidence that the effect of nicotine is mediated via nAChRs 
stem from studies with α4, α6, α7, and β2 nAChR null mutant mice, 
and work which showed that β2* and α7 subtype selective nAChR 
agonists reduced LIDs in both monkeys and rodents (Table 2).46–56

It should be noted that nicotine or nAChR agonist administration 
had no acute symptomatic effects on parkinsonism in either rodents 
or nonhuman primates. Moreover, optical stimulation of choliner-
gic interneurons or cholinergic interneuron ablation did not affect 
parkinsonism.62,109 These data indicate that cholinergic interneurons 
selectively regulate LIDs.

A mechanism that explains the decline in LIDs with nAChR 
agonists and the longer duration optical stimulation of choliner-
gic interneurons is receptor desensitization. Notably, the extent of 
the decline in LIDs with longer duration optical stimulation was 
50–60%, which is similar to that observed with nicotine and nAChR 
agonist treatment.62 Numerous studies have shown that chronic 
exposure nicotine and nAChR agonists result in nAChR desensitiza-
tion and a consequent functional receptor blockade.114,115 The longer 
duration optical stimulation would be expected to enhance extracel-
lular acetylcholine levels and consequently desensitize nAChRs. This 
receptor desensitization may subsequently lead to further molecular 
changes to mediate overall functional changes. Possible mechanisms 
may include those previously implicated in nicotine-mediated neu-
roprotection. Nicotine modulates neurotoxicity by enhancing phos-
phatidylinositol 3-kinase and altering levels of phosphorylated AKT, 
as well as Src, B-cell lymphoma (Bcl) 2, and Bcl-x.116,117 The mito-
gen-activated protein kinase/extracellular signal-regulated kinases 
pathway and the JAK2/STAT3 pathway have also been implicated 
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in nAChR-mediated neuroprotection,118–121 as well as other down-
stream mechanisms including alterations in phospholipase C,118 
nerve growth factor,122 proinflammatory cytokines,123 caspases, and 
reactive oxygen species124 Figure 2).

In addition to numerous preclinical studies, a small clin-
ical trial has been conducted to evaluate the potential of nico-
tine to reduce LIDs in Parkinson’s disease patients. Oral nicotine 
(designated NP002) administration to 50 patients for sev-
eral months significantly reduced a variety of outcome meas-
ures related to LIDs (www.prnewswire.com/news-releases/
neuraltus-pharmaceuticals-reports-clinical-results-from-phase-
12-np002-study-in-the-treatment-of-dyskinesias-resulting-from-lev-
odopa-therapy-for-parkinsons-disease-111255279.html).

Overall, these results demonstrate that striatal cholinergic 
interneurons play a critical role in LIDs. Moreover, the finding that 
nicotine and nAChR drugs targeting β2* and α7 nAChRs reduce 
LIDs in parkinsonian animal models and in a small clinical trial sug-
gest that nAChR drugs may be useful therapeutically.

Tardive Dyskinesia
Antipsychotics are key in treating schizophrenia and bipolar dis-
order, and are also used off-label for depression, sleep disorders, 
autism, attention deficit hyperactivity disorder, tic disorders, obses-
sive compulsive disorder, and post-traumatic stress disorder.125–129 
They exert their beneficial effect by blocking D2 dopamine receptors 
and reducing excess dopaminergic activity in brain regions linked to 
neurological disorders. However, they also affect dopaminergic sys-
tems associated with motor control, and induce side effects includ-
ing tardive dyskinesia.130 These are potentially irreversible late onset 
repetitive abnormal involuntary movements primarily of the face 
and limbs.126,131–134 They occur in up to 30% of treated patients and 
may be debilitating and socially stigmatizing. The second-generation 
antipsychotics cause less tardive dyskinesia; however, it still devel-
ops at an annual incidence of 4%.126,135–138 Acquired sensitivity or 
dysregulation of nigrostriatal dopamine signaling has been hypoth-
esized to underlie the development of tardive dyskinesia. This idea is 
based on studies showing that selective vesicular monoamine trans-
porter 2 inhibitors (VMAT2I), such as tetrabenazine, act by reducing 
dopamine release in the synaptic cleft. Tetrabenazine efficacy is often 
limited by side effects, though recently valbenazine and deutetra-
benazine have been shown efficacious and well tolerated in clini-
cal trials.139,140 These agents collectively reduce but do not resolve 
tardive movements, therefore additional or adjunctive therapeutic 

options are needed. However, this has proved difficult most likely 
due to our incomplete understanding of the cellular and molecular 
mechanisms that underlie tardive dyskinesia.

One possible new approach may involve the use of nAChR 
drugs. Pre-clinical studies in rodents point to a beneficial effect of 
nicotine against tardive dyskinesia. Chronic nicotine dosing of halo-
peridol-treated rats or mice reduced vacuous chewing movements 
(VCMs),10,141 an analog of tardive dyskinesia in rodents. Both oral 
or minipump nicotine treatment attenuated VCMs ~50%.141 This 
decrease appeared to be due to an interaction at nAChRs, since 
varenicline, an agonist that acts at several nAChR subtypes also 
reduced haloperidol-induced VCMs.10 Unexpectedly, the general 
nAChR agonist varenicline reduced VCMs to a greater extent (90%) 
than nicotine (50%),10 possibly due to an interaction at 5-HT3 
receptors.142–145 Optogenetic studies also showed that stimulation 
of striatal cholinergic interneurons or striatal D2 MSNs reduced 
haloperidol-induced VCMs ~50% via an interaction at nAChRs.62

The animal studies above suggest that nAChR drugs may reduce 
tardive dyskinesia in humans. Schizophrenic patients are well known 
to consume several packs of cigarettes per day,146,147 and thus would 
consume nicotine in this manner. Unfortunately, data in humans are 
unclear as to whether smoking improves tardive dyskinesia. This most 
likely relates to inconsistencies among studies in neuroleptic dosing, 
cigarette consumption, length of time of antipsychotic medication and 
smoking, association with alcohol consumption, differential psychi-
atric morbidities, and other variables.148–151 One query that arises is 
why smoking schizophrenics exhibit tardive dyskinesia at all if nico-
tine attenuates their occurrence. However, it should be noted that 
nicotine administration maximally reduced abnormal movements 
only up to 50% in the animal studies.141,152 Thus, tardive dyskinesia 
may be less pronounced in schizophrenic patients that smoke. A care-
fully controlled, double-blind clinical trial is essential to address the 
question whether smoking reduces tardive dyskinesia in the clinic.

In summary, preclinical studies provide direct evidence for a role 
of both striatal cholinergic interneurons and D2 MSNs in tardive 
dyskinesia. Moreover, work with nAChR drugs in rodents indicate 
that such agents may be useful to reduce antipsychotic-induced 
tardive dyskinesia. Further clinical trials will help understand the 
potential of nAChR drugs to reduce tardive dyskinesia in humans.

Tourette’s Syndrome
Tourette’s syndrome is a relatively common disorder (1% incidence) 
that arises in childhood and is characterized by motor and vocal 

Table 2. nAChR drugs decrease LIDs in parkinsonian rats, mice, or monkeys

Receptor subtype Drug Decline in LIDs References

Nonselective agonist Nicotine ~35–60% 62,83,84,110–112

Varenicline ~10–50% 48,49

β2* selective agonist ABT-089 ~50% 51

ABT-894 ~60% 51

AZD1446 ~30% 113

Sazetidine ~23% 50

TC2696 ~30% 50

TC-8831 ~25–50% 47,48,50

TC-10600 ~30% 50

β2* nonselective antagonist Mecamylamine 62,110

α7 selective agonist ABT-107 ~60% 54

ABT-126 ~60% 55

AQ051 ~60% 56
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tics, and common comorbid symptoms of obsession, compulsion, 
impulsivity, distractibility, and hyperactivity.153–155 Antidopaminergic 
therapy is one of the most effective symptomatic treatments with 
dopamine receptor blockers improving the motor and vocal tics.153–

156 However, it is only partially effective and there are unacceptable 
side effects. Other medications are also used, again with only partial 
success.153,155,156 Thus alternative approaches are essential.

Although pathophysiology of the dopaminergic system is a major 
problem in Tourette’s syndrome, the motor symptoms are also linked 
to a dysfunction of the striatal cholinergic system.157,158 Preclinical 
evidence for this idea stems from studies showing that targeted abla-
tion of 50% of striatal cholinergic interneurons in mice led to tic-
like stereotypies and a loss of coordination.158 Clinically, there is a 
down regulation of striatal interneuron transcripts and a decreased 
number of cholinergic interneurons in Tourette’s syndrome brains.159

Because of this link between the striatal dopaminergic and cho-
linergic systems, the nAChR agonist nicotine was tested in Tourette’s 
syndrome. Initial open label trials with the nicotine gum or patch 
showed a decrease in tics and improved attention in haloperidol-
treated Tourette’s patients.160–164 In addition, the nicotine patch 
reduced symptoms in haloperidol-treated patients in a double-blind 
placebo-controlled trial.165 The acetylcholinesterase inhibitor done-
pezil also significantly reduced tics in an open-label study.166 The 
observation that the beneficial response in Tourette’s was of longer 
duration with the nicotine patch than gum,167 suggested that nAChR 
desensitization or blockade may be involved.167,168 This possibility 
led to two trials with the nAChR blocker mecamylamine. There 
was improvement in relieving the motor and vocal tics, as well as 
some behavioral measures, in a retrospective open-label study of 24 
patients. Mecamylamine was also somewhat effective in a double-
blind placebo-controlled study in haloperidol-treated patients.57,58

These clinical trial data, coupled with the experimental animal 
studies, indicate an involvement of the striatal nicotinic cholinergic 
system in Tourette’s syndrome and suggest that nAChR drugs have 
potential as an adjunct to antipsychotic therapy.

Ataxia
Ataxia is a motor disorder characterized by poor coordination of 
voluntary muscle movements. It is associated with various genetic 
abnormalities that result in mitochondrial and other cellular deficits, 
which lead to spinocerebellar, Friedreich’s, Fragile X associated, and 
other forms of ataxia.

Currently, there is an absence of therapeutic options for ataxia169; 
however, drugs that enhance CNS cholinergic activity appear useful. 
The centrally acting acetylcholinesterase inhibitor physostigmine, 
which increases brain acetylcholine levels, improved spinocerebel-
lar degeneration and various inherited ataxias in open label and 
double-blind randomized trials, possibly via an interaction with the 
nicotinic cholinergic system.170–172 On the other hand, physostigmine 
was not effective against autosomal dominant cerebellar ataxia and 
idiopathic cerebellar ataxia.173 In earlier work, the acetylcholine pre-
cursor choline improved Friedreich’s ataxia, idiopathic cerebellar 
degeneration, multiple sclerosis-linked ataxia, and ataxias associated 
with sporadic cerebellar degeneration and atypical spinocerebellar 
degeneration.174–177

Trials with more selective agents have also been done. In small 
case reports, the nAChR agonist varenicline improved ataxia and 
imbalance in one individual with Fragile X tremor/ataxia syndrome, 
enhanced proprioception in two patients with Friedreich’s ataxia 
and ameliorated gait, balance, and depth perception in a patient with 

spinocerebellar ataxia.178–180 A pilot double-blind, placebo-controlled, 
randomized trial with 20 patients with spinocerebellar ataxia showed 
that 2 months of varenicline treatment improved axial symptoms and 
rapid alternating movements.181 However, in a different study minimal 
benefit was observed in patients with other forms of ataxia.182

Studies in animal models of ataxia have been done to understand 
the receptor subtype and location of the nAChRs involved. Acute 
intracerebellar administration of nicotine or an α4β2* nAChR agon-
ist reduced ethanol-induced ataxia.183 This improvement did not 
occur with intracerebellar administration of an α4β2* nAChR antag-
onist providing evidence for a role for cerebellar α4β2* nAChRs.184 
This idea is supported by other studies showing that nicotine and the 
β2* selective nAChR agonist varenicline reduced ataxia in rats with 
a lesion of the olivocerebellar pathway.59 α7 nAChR drugs admin-
istered into the cerebellum also attenuated ethanol-induced ataxia, 
providing evidence for a role of cerebellar α7 nAChRs.60

Thus, there also appears to be dysfunction of the cholinergic sys-
tem in ataxia. This appears more closely linked to aberrant nicotinic 
cholinergic signaling in the cerebellum (Table 1) than striatum and 
involves both α4β2* and α7 nAChRs. Drugs targeting these receptors 
may therefore be useful for the treatment of certain forms of ataxia.

Muscarinic Acetylcholine Receptor Signaling in 
Striatum

In addition to nAChRs, the striatum also densely expresses mus-
carinic acetylcholine receptors, including the M1 through M5 sub-
types.16,185,186 These G-protein coupled receptors (Figure 2) serve a 
longer term modulatory role (over 100’s msec) in contrast to the 
ionotropic nAChRs that typically mediate transmission on a more 
rapid time scale (msec). It has long been known that striatal muscar-
inic cholinergic receptors are critical in motor function as evidence 
by the observation that muscarinic antagonists reduce motor symp-
toms in Parkinson’s disease.8,187

Muscarinic receptors are distributed throughout the striatum 
with M1 and M4 receptors expressed on GABAergic MSNs4,188,189 
(Figure 2). The M3 and M5 appear to be on nigrostriatal nerve termi-
nals where they play a key role in dopamine release.190,191 M2 and M4 
muscarinic receptors present on striatal cholinergic terminals serve an 
autoinhibitory role, with M4 muscarinic antagonists inhibiting striatal 
acetylcholine release while M2 antagonists increase release.189,192–194 
This released acetylcholine may subsequently regulate striatal dopa-
mine release195 and consequently modulate motor control.

Various intracellular signaling pathways may mediate these func-
tional changes (Figure  2). M2 and M4 receptors couple preferen-
tially to Gi/0, whereas M1, M3, and M5 receptors mainly couple 
to Gq/11. Upon activation, M2 and M4 receptors inhibit adenylyl 
cyclase (AC) activity which leads to a decrease in intracellular cAMP 
levels and PKA activity that subsequently regulates ERK1/2 activity. 
M1, M3, and M5 receptors activate PKC by means of upstream PLC 
activation and increase in IP3 and Ca2+ levels. PKC activity leads to 
the activation of the MAP kinase cascade and ERK1/2. 

Role of the Muscarinic Cholinergic System in 
Movement

Parkinson’s Disease
As mentioned, muscarinic receptor blockers were the first 
drugs used to provide acute relief of Parkinson’s disease motor 
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symptoms and drugs such as trihexyphenidyl, benztropine, and 
others are still sometimes used in a secondary role, particularly 
for tremor. The rationale for their use derived from work suggest-
ing that normal motor function appeared to be a balance between 
dopaminergic and muscarinic cholinergic signaling in the stri-
atum, which is disrupted in Parkinson’s disease.11 Anticholinergic 
drugs appear to correct the disequilibrium that develops between 
striatal dopaminergic inputs and the intrinsic cholinergic innerv-
ation.11 The efficacy of anticholinergics is attributed to a decrease 
in the over activity of cholinergic interneurons and the hyper-
activity of corticostriatal glutamate neurotransmission that arises 
with nigrostriatal damage. In addition, studies in parkinsonian 
animal models indicate that this improvement may be due to 
a blockade of postsynaptic M1 and M4 receptors on MSNs to 
alleviate lesion-induced motor deficits.4,61 Evidence that cholin-
ergic interneurons are key players stems from studies showing 
that optogenetic activation and inhibition of these neurons modu-
lates motor deficits in parkinsonian mouse models.196,197 Although 
muscarinic cholinergic drugs were initially useful in the treatment 
of Parkinson’s disease, they are now less used because of side 
effects, including cognitive impairment, confusion, constipation, 
dry mouth, urinary issues, and others.

In contrast to the benefit of muscarinic receptor blockers on 
motor function in Parkinson’s disease, acetylcholinesterase inhibi-
tors that increase acetylcholine’s action at both muscarinic receptors 
and nAChRs yielded no significant improvement in Parkinson’s dis-
ease motor symptoms.71 They may, however, reduce gait disturbances 
and the risk of falls in a subgroup of patients with Parkinson’s dis-
ease.198–201 With respect to mechanisms, recent preclinical studies in 
mice lacking the vesicular acetylcholine transporter from mesopon-
tine nuclei suggest that cholinergic neurons in the pedunculopontine 
nucleus are critical for gait (Table 1) and may be the target for cho-
linesterase inhibitors.202,203

In summary, antimuscarinic drugs may still be used for 
Parkinson’s disease treatment in combination with other antiparkin-
sonian drugs.187 A drawback is their side effect profile which is less 
favorable than other antiparkinsonian medications as neuropsychi-
atric and cognitive adverse events may develop.187 Selective mus-
carinic subtype antagonists may prove more promising as potential 
targets for the symptomatic treatment of parkinsonian-like motor 
symptoms. Additionally, acetylcholinesterase inhibitors may be use-
ful for gait disturbances.

L-Dopa-Induced Dyskinesias
Extensive work points to a role of the striatal nicotinic cholin-
ergic system in LIDs, as detailed in a previous section. In add-
ition, muscarinic cholinergic receptors may be involved with the 
muscarinic receptor antagonist dicyclomine reducing LIDs in a 
mouse parkinsonian model.63 An M4 muscarinic positive allosteric 
modulator also decreased LIDs in mouse and nonhuman primate 
parkinsonian models via long term depression of corticostriatal 
glutamatergic synapses, suggesting that M4 muscarinic receptors 
may selectively be involved.12 Striatal cholinergic interneurons 
most likely play a role, as short duration optogenetic stimulation 
of these neurons induces LIDs that are blocked by the muscarinic 
antagonist atropine.62 However, atropine also blocked the stim-
ulation-induced decrease in LIDs that arises with long duration 
optogenetic stimulation62; this observation suggests that nonspe-
cific muscarinic receptor drugs such as atropine may not reduce 

LIDs clinically. Possibly subtype selective drugs may prove useful 
in the treatment of LIDs.

Tardive Dyskinesia
Less work has been done to understand the involvement of the mus-
carinic system in tardive dyskinesia. However, because of the close 
interrelationship between the dopaminergic and cholinergic system 
in the basal ganglia, a variety of cholinergic agents have been tested 
in clinical trials. These drugs generally failed to show a clear benefit 
for the treatment of tardive dyskinesia and, in addition, resulted in 
side effects including cognitive problems, dry mouth, urinary distur-
bances, constipation and others.204 Some studies have also suggested 
that muscarinic blockers cause a worsening of tardive dyskinesia205 
and would therefore not be useful. Possibly the development of sub-
type selective muscarinic receptor drugs would prove of benefit.

Dystonia
Dystonia is a movement disorder characterized by twisted posturing 
due to abnormal muscle contraction. The finding that anticholin-
ergic therapy is often beneficial in dystonia patients suggested an 
involvement of the cholinergic system in its pathophysiology.206 
Evidence from animal models of dystonia indicate a role for the 
basal ganglia,18 with a crucial involvement of the striatal choliner-
gic system. Elevated extracellular striatal acetylcholine was identi-
fied in a knock-in mouse model of human DYT1 dystonia (TorAE/+ 
mice), suggestive of a striatal hypercholinergic state.64 The mutation 
in TorAE mice and consequent enhanced extracellular acetylcholine 
levels may lead to an imbalance in acetylcholine-dopamine interac-
tions. A selective M1 antagonist and M2/M4 muscarinic antagonist 
specifically targeted to muscarinic receptors expressed by cholinergic 
interneurons improved the dystonic behavior.64–66 These data directly 
indicate a role for striatal cholinergic interneurons and the muscar-
inic system in dystonia.

Summary

Accumulating data from preclinical studies and clinical trials suggest 
that drugs targeting CNS cholinergic systems may be useful for symp-
tomatic treatment of various movement disorders. In particular, exten-
sive studies in multiple animal models show that nicotinic cholinergic 
drugs reduce L-dopa-induced dyskinesias, as well as antipsychotic-
induced tardive dyskinesia. Both the general nAChR agonist nicotine 
and selective nAChR agonists effectively improved movement. In add-
ition, there is some evidence that nicotine and other general nAChR 
agonist may be useful in Tourette’s syndrome and ataxia, although the 
data is less compelling possibly because the nAChR drugs tested to 
date stimulate all nAChR subtypes, whereas only select subtypes may 
be affected in these latter diseases. Studies/trials with subtype select-
ive drugs would help address this issue. Muscarinic cholinergic drugs, 
particularly subtype selective agonists and/or antagonist, also have the 
potential to provide effective therapies for Parkinson’s disease, dyskine-
sias, and dystonia; continued studies/trials with subtype selective drugs 
are necessary to understand their full potential.

It should be noted that the best therapeutic strategy for any dis-
ease is to reduce or halt disease progression. In this regard, extensive 
studies have shown that nicotine and nAChR drugs reduce neurode-
generation in animal models of Parkinson’s disease. A Michael J. Fox 
funded trial with Parkinson’s disease patients is currently in progress 
to address this important question in the clinic.
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