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Abstract

Food chain theory is one of the cornerstones of ecology, providing many of its basic predictions, 

such as biomass pyramids, trophic cascades and predator–prey oscillations. Yet, ninety years into 

this theory, the conditions under which these patterns may occur and persist in nature remain 

subject to debate. Rather than address each pattern in isolation, we propose that they must be 

understood together, calling for synthesis in a fragmented landscape of theoretical and empirical 

results. As a first step, we propose a minimal theory that combines the long-standing energetic and 

dynamical approaches of food chains. We chart theoretical predictions on a concise map, where 

two main regimes emerge: across various functioning and stability metrics, one regime is 

characterised by pyramidal patterns and the other by cascade patterns. The axes of this map 

combine key physiological and ecological variables, such as metabolic rates and self-regulation. A 

quantitative comparison with data sheds light on conflicting theoretical predictions and empirical 

puzzles, from size spectra to causes of trophic cascade strength. We conclude that drawing 

systematic connections between various existing approaches to food chains, and between their 

predictions on functioning and stability, is a crucial step in confronting this theory to real 

ecosystems.
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Introduction

The concept of food chain, since its formulation by Elton (1927), has become one of the 

most widely studied in empirical and theoretical ecology (Fretwell 1987). It provides a lens 

through which we can understand many ecological phenomena, by partitioning species into 
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trophic levels, describing how biomass or energy is distributed among these levels, and 

studying their dynamics, from population cycles to trophic cascades (Loreau 2010).

Yet, its fundamental predictions have a chequered history of success outside of textbook 

examples. When predicted patterns are not observed, it is often unclear whether the issue lies 

with the theory and its application, or the influence of other factors such as complex 

interactions and spatial fluxes (Hairston et al. 1960; Pace et al. 1999; Micheli 1999; Chase 

2000; Strong 1992; Shurin & Seabloom 2005; Borer et al. 2005; Fox 2007). Even when 

predictions do agree with empirical data, they might not be sufficient to ascertain the 

underlying trophic structure (Shurin et al. 2006; Fath & Killian 2007; McCauley et al. 2018; 

Woodson et al. 2018).

This lack of consensus may be due to an increasing fragmentation of the literature. Food 

chains are characterised by an interconnected set of structural, functional and dynamical 

properties. Yet, these properties have grown into separate topics of investigation, delineating 

two main paradigms (Fig. 1).

The energetic paradigm, following Lindeman (1942), focuses on macroscopic energy flows 

up the food chain. Based on scaling arguments and statistical relationships, it is associated 

with large-scale empirical and applied studies, notably in marine systems (Hemmingsen 

1960; Sheldon et al. 1972; Andersen et al. 2015). It seeks laws describing how aggregated 

metrics of functioning (e.g. biomass, growth or consumption) vary across trophic levels or 

body sizes (Banse & Mosher 1980; Sprules & Barth 2015), how they scale with each other 

within a level (Hatton et al. 2015) and how they relate to environmental or physiological 

parameters. These static relationships are built upon the implicit assumption that ecosystems 

operate at, or close to, some steady regime.

The dynamical paradigm, following Lotka (1956) and Volterra (1928), focuses on how the 

impacts of predation ripple down the food chain. It often operates at the scale of individual 

species, with an attention to the response and behaviour of predators and prey. Drawing on a 

rich mathematical literature, it emphasises the importance of feedback mechanisms and non-

equilibrium phenomena such as cycles or collapse (McCann 2011). Some of its predictions, 

including trophic cascades and the paradox of enrichment (Rosenzweig 1971), have 

prompted extensive empirical investigations, but theory and empirics have rarely been 

matched at a quantitative level (Shurin et al. 2002).

While these two paradigms usually address different questions, it is possible to apply one’s 

methods to the other’s objects, revealing unexpected conflicts. Jonsson (2017) noted that 

energetic arguments produce pyramidal biomass distributions, whereas dynamical models 

often do not. We will exhibit a number of other discrepancies in relations between 

metabolism, biomass, productivity and stability.

Yet, we believe that these theoretical approaches can and must be embedded within a single 

framework. This systematic viewpoint has been argued for at a conceptual level by Leibold 

et al. (1997). But the field is still lacking a general quantitative formalism: a concise map of 

all essential food chain behaviours and their interplay, along with the key ecological 

parameters that govern them.
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As a first step towards this synthesis, we propose an approach that captures aspects of both 

paradigms. We use a simple dynamical food chain model that includes metabolic rates and 

self-regulating mechanisms within a trophic level. In distinct parameter ranges, this model 

can recover either the energetic paradigm’s scaling relationships, or the stability patterns 

investigated in the dynamical paradigm.

We show that the modelling assumptions of the two paradigms can be understood as 

opposite corners in a multidimensional spectrum (Fig. 2), and we systematically explore 

how functioning and stability properties vary across the full spectrum. The most important 

axis is the relative strength of predation and self-regulation, which predicts the transition 

between two qualitatively different regimes. In the bottom-up regime dominated by self-

regulation, all the properties studied here, from biomass to variability, exhibit pyramidal 

patterns. In the top-down regime dominated by predation, these properties all display 

cascade (alternating) patterns.

We finally illustrate how this approach can lead to new insights into empirical data and 

quantitative tests of food chain theory. We discuss how these results may extend to more 

complex food webs and functional responses.

A Synthetic Model

The energetic and dynamical paradigms

The energetic and dynamical paradigms described above appear to be at odds (Fig. 1), yet 

they can be understood as two different limits in a unified framework. We will demonstrate 

this with the minimal food chain model presented in Box 1.

We first establish a list of key ecological parameters, used throughout this study, which are 

common to both approaches. The environment determines the energy influx into the basal 

level, g (McNaughton et al. 1989). Two important physiological parameters are the ratio m 
of predator and prey metabolic rates (Brose et al. 2006b) and the efficiency ε with which 

consumed biomass is converted into growth (Welch 1968; Madenjian et al. 1998). Finally, 

we must account for two types of ecological interactions: trophic interactions between 

levels, and self-regulation (e.g. direct competition) within a level (Berlow et al. 2004; 

Skalski & Gilliam 2001), which we denote by α and D respectively. The ratio a = α/D plays 

a central role in our results, as it captures the relative strength of trophic and non-trophic 

feedbacks.

The two paradigms share a basic account of biomass creation, loss and transfer between 

levels (Lindeman 1942). Given the biomass Bi and production Pi (biomass created per unit 

time) of trophic level i, we can write the dynamical and static equations

dBi
dt = − Li + Pi − 1

ε Pi + 1, Pi + 1 ≤ εPi equilibrium . (9)
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where ε is the conversion efficiency defined above and Li represents all non-trophic biomass 

losses. The static inequality becomes an equality when Li = 0. Since ε < 1, any food chain at 

equilibrium must display smaller energy flux (production) at higher levels.

The energetic paradigm emphasises static relationships such as the equilibrium condition in 

(9). To predict biomass distributions, various studies (Borgmann 1987; Jennings et al. 2007; 

Andersen et al. 2009) have proposed heuristic equations for energy stocks rather than fluxes:

miBi = Emi − 1Bi − 1 (10)

where mi is the metabolic rate of trophic level i and miBi is interpreted as its energy content. 

Some studies identify fluxes and stocks, Pi = miBi (Trebilco et al. 2013), and thus E = ε. In 

general, this identification does not hold and E is not an efficiency, but a phenomenological 

factor (Borgmann 1987). Our model yields the relationship E = εma (Appendix S1) and we 

note that, contrary to fluxes, no physical principle prevents the accumulation of larger 

energy stocks at higher levels, E > 1.

By contrast, the dynamical paradigm emphasises the non-equilibrium patterns arising in (9) 

from feedbacks between predator and prey. Behaviour and physiology are encapsulated in a 

functional response (Holling 1965) specifying how consumer production, Pi, depends on 

consumer biomass, Bi, and resource biomass, Bi–1. To facilitate comparisons, we follow a 

classic model with metabolic scaling (Brose et al. 2006b) and adopt a simpler Lotka–

Volterra (Type 1) functional response, giving

1
Bi

dBi
dt = mi( − r + εBi − 1) − mi + 1Bi + 1 (11)

where r represents metabolic costs. This corresponds to setting production Pi = εmiBiBi–1 

and losses Li = rmiBi in (9). More complex models are considered in the Discussion.

Our central observation is that the energetic formula (10) cannot arise as an equilibrium of 

the dynamical equation (11), but that it could with the addition of self-regulation. We 

construct our synthetic model (Box 1) as a dynamical equation with self-regulation, and 

show in Fig. 2 that it admits both (10) and (11) as special cases (we show in Appendix S1 

that this holds for other ways of modelling self-regulation, e.g. predator interference). This 

allows a quantitative comparison between energetic and dynamical models.

Connecting the paradigms

We show in Fig. 2 how the synthetic model developed in Box 1 connects with both 

paradigms.

The first discrepancy between the two paradigms lies in the role of self-regulation, which is 

central, if implicit, in the energetic argument, yet often absent from dynamical models. We 

will see that these two choices correspond to opposite extremes in the value of the synthetic 
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parameter λ = mεa2, which encapsulates the balance between self-regulation and predation 

losses (Box 1).

This discrepancy may reflect the difference between a microscopic viewpoint, where a 

predator species may dramatically deplete its prey species in a small locality, and a 

macroscopic viewpoint, where we generally find stable coexistence of trophic levels (Power 

1992). Yet, even locally, empirical evidence suggests the underestimated role of self-

regulation, notably in the form of predator interference (Skalski & Gilliam 2001).

The second difference is that energetic models generally assume negligible energy loss 

through metabolic costs, ρ = r/g≪1 (Box 1). In that limit, basal energy influx g plays no role 

in the dynamics, only acting as a constant factor in the equilibrium biomass of all levels. The 

dynamical paradigm, however, assumes significant losses and thus assigns a major role to 

basal energy influx g, which can determine whether higher trophic levels go to extinction. 

This can notably lead to the paradox of enrichment (Rosenzweig 1971), where an increase in 

nutrient supply may cause a loss of stability.

The third difference lies in the metabolic scaling of interactions (see Box 2 and Fig. 2). 

Dynamical models (11) again adopt the consumer’s perspective: a predator with a faster 

metabolism is expected to have a higher attack rate, hence the consumption rate αi+1,i scales 

with the consumer’s metabolism mi+1 (Brose et al. 2006b). On the other hand, energetic 

models assume that consumption – or energy transfer, the right-hand term in (10) – scales 

with the metabolic rate of the resource.

As a result of these conflicting assumptions, we expect the two paradigms to emphasise 

either bottom-up or top-down effects, but also make different predictions about the effects of 

nutrient enrichment and metabolic scaling.

Bottom-up and top-down control

We now explain how the assumptions of the energetic and dynamical paradigms lead to a 

prevalence of bottom-up or top-down patterns, respectively, in the food chain. We also point 

out that the two paradigms have conflicting notions of bottom-up control.

Consider a two-level chain as an illustration. In the absence of any self-regulation, setting Di 

= 0 (and metabolic scaling αi,i–1 = miα) in (1), the chain reaches the equilibrium

0 = g − m α B2, 0 = − r + ε α B1 (12)

where we see that each level controls the other. Resource biomass B1 is fixed by consumer 

mortality r, corresponding to top-down control (if r is small, the resource is almost driven to 

exhaustion). On the other hand, consumer biomass B2 is fixed by the basal energy influx g. 

While consumers are limited by a constraint from below (and this is sometimes called a 

bottom-up effect), this is a consequence of their own control of the resource, as they grow 

until they divert all of the resource’s production to maintain their biomass.
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This situation persists if at least one trophic level lacks self-regulation: whether consumers 

or resources, that level will grow until it is limited by the antagonistic interaction, i.e. until 

consumers remove all extra resource growth and cannot grow further themselves.

It is only with self-regulation Di > 0 at both levels that the two populations can stabilise 

before resource production is entirely consumed. Self-regulation thus gives rise to the classic 

notion of donor control, where a trophic level’s biomass is fixed by its prey’s, but does not 

increase enough to exert a negative impact on that prey. This low-impact coexistence of 

predator with prey cannot happen if even a single level lacks self-regulation.

An important difference between these two settings is the relationship between biomass Bi 

and production Pi or productivity pi = Pi/Bi, widely studied empirically (Cebrian & Duarte 

1994; Hatton et al. 2015) and illustrated in Fig. 1.

Donor control is characterised by the fact that a level’s production determines its own 

equilibrium biomass Bi. In our model (Box 1), per-capita losses from self-regulation are 

proportional to Bi, and when they equilibrate with per-capita growth pi, we obtain Bi ~ pi.

On the other hand, antagonistic control is characterised by the fact that each level’s growth 

or losses determines the other’s biomass. All prey production goes to predators, hence Bi ~ 

pi–1. Counter-intuitively, there is no correlation between a trophic level’s biomass and its 

own productivity or mortality, as we see in (12).

Following usage in empirical studies, ‘bottom-up’ will hereafter be used in the donor sense, 

rather than in the antagonistic sense in which top-down and bottom-up control co-occur as 

two sides of the same interaction.

Functioning Patterns

We now use our model to clarify theoretical relationships between food web patterns, 

illustrating them for a four-level food chain in the limit of low mortality or high basal energy 

influx ρ≪1. This limit ensures that trophic levels cannot go extinct, and that our description 

is robust to changes in food chain length or primary production. We show in Appendix S1 

how our results can be extended to arbitrary mortality rates.

Biomass and production

One of the most central predictions of food chain theory is the distribution of energy among 

trophic levels, in the form of either biomass or growth. Since Elton (1927), energetic 

arguments have been used to predict pyramidal or hierarchical patterns (Fig. 3), but few 

studies have investigated when this structure can emerge dynamically (Teramoto 1993; 

Cheon 2003; Jonsson 2017).

We see in Fig. 3a that biomass patterns vary along two dimensions: ma and εa, the strength 

of negative and positive interactions in (4) (Box 1). To better understand how biomass is 

distributed, we must combine these two quantities, taking either their product or their ratio,
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λ = mεa2, κ = ε/m (13)

that is the diagonals represented on Fig. 3b.

As shown in Box 1, the product λ denotes the strength of predation feedback, that is, how 

much a trophic level limits itself through its predators. The ratio κ indicates whether 

biomass accumulates towards the top or the bottom of the chain. Notice in (4) that if we can 

neglect predation losses, then Bi/Bi − 1 ∼ εa = κλ, whereas if we can neglect self-regulation, 

then Bi+1/Bi–1 ~ ε/m = κ. In both limits, larger κ leads to more top-heavy chains.

Between these two limits, a useful proxy for the importance of top-down control is

f i =
maBi + 1
εaBi − 1

=
Bi + 1
κBi − 1

(14)

which can be interpreted as the fraction of production at level i lost to consumer i+1.

If we assume a pyramidal structure, that is, a constant biomass ratio between adjacent levels 

Bi+1/Bi, then fi must also be constant and we get the scaling

Bi + 1 = κ f Bi − 1, Bi ∼ κ f i/2 (15)

This is indeed a possible solution of the equilibrium eqn (4) with f given by

f
1 − f 2 = mεa2 ≡ λ . (16)

Thus, λ and κ together define the trend of the biomass pyramid (15) towards bottom-

heaviness (κf < 1) or top-heaviness (κf > 1), illustrated in Fig. 3.

Yet, we also expect this pyramidal structure to disappear for strong top-down control, that is, 

low self-regulation, as in (12). For λ≳1, a cascade pattern emerges. Starting from the top 

level, the chain alternates between high and low-biomass levels (Fig. 3a), controlling each 

other through their antagonistic interaction. High-biomass levels remove a large fraction f of 

their prey’s production, and they still follow the scaling (15), which we call the global slope 

of the cascade. With increasing λ, low-biomass levels converge towards the same scaling, 

with a smaller pre-factor.

We can show (see Appendix S1) that the biomass ratio between high- and low-biomass 

levels is Bi + 1/Bi ≈ kλ . Since f≤ 1, for large λ this ratio can become much larger than the 

global slope k f . Thus, if one can only observe two adjacent trophic levels, their biomass 
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ratio may give the illusion of a steep inverted pyramid, as in the empirical example in Fig. 3c 

discussed below.

Biomass-size scaling

The distribution of energy among trophic levels is more readily observed when these levels 

are clearly distinct, for example in simple plant–herbivore–carnivore chains. In many 

systems, however, trophic height is not so easily assessed. Instead, the most immediate 

property of an organism is often its size, especially in aquatic food webs. The study of these 

ecosystems thus relies on the distribution of abundance or total biomass per size class 

(Sheldon et al. 1972; Sprules & Barth 2015).

Assuming a fixed relationship between size and trophic height, the pyramidal slope (15) can 

be translated into a continuous distribution as a function of body mass (or size) Wi. Since the 

metabolic rate mi is also less accessible than body size, many studies posit an allometric 

scaling of metabolism with size, mi ∼ W i
−β (Brose et al. 2006b) with some exponent β 

measured empirically.

Let us define the predator–prey body mass ratio M, which is assumed to be constant 

throughout the chain:

M =
W i + 1

W i
, W i ∼ Mi, i ∼ log W i/log M . (17)

We thus have an expression for the trophic level i for size class Wi. By substituting this into 

the exponent in (15) and using the allometric scaling m ~ M−β, we find the biomass-size 

scaling for a continuous variable W

B(W) ∼ Wb, b = 1
2 β + log (ε f )

log M . (18)

We can deduce the number of individuals per size class, B (W)/W, also known as size 

spectrum Sheldon et al. (1972); Andersen et al. (2015). Previous studies (Borgmann 1987) 

have used the energetic argument (10) and obtained a similar prediction, but with a different 

exponent: b = β+ log E/ log M. Our formula extends it with two terms coming from the 

predation feedback: the fraction of production removal f, and the pre-factor 1/2. The two 

formulas coincide if f≪1 (f≈λ) as shown in Appendix S1.

From metabolic data, it is generally estimated that β ∈ 0, 1
3  (Makarieva et al. 2008; White 

& Seymour 2003; Glazier 2009). While top-heavy pyramidal distributions are allowed by 

(18), they are expected to have at most exponent b ≤ β /2 ≤ 1
6  (given ε,f≤1 and assuming 

that consumers are larger, M > 1). For instance, in an oceanic food chain, large mammal 

biomass could at most exceed unicell biomass by two orders of magnitude. It has been 
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proposed that B(W) is approximately flat, b≈0, over many orders of magnitude in marine 

data (Sprules & Barth 2015).

A steeper slope in the scaling may only be seen over a limited size range, between a low-

biomass level and a high-biomass level in a cascade pattern, Bi + 1/Bi ≈ kλ = εa, giving

b = log εa
log M . (19)

We now show that we can use the biomass-size exponent to probe the structure of an 

empirical food chain.

The ‘paradox’ of steep biomass-size scaling

Fish in kelp forests exhibit a top-heavy biomass distribution per size class, as shown in Fig. 

3c. A recent study (Trebilco et al. 2016) described this pattern as a paradox, because its 

slope appears steeper than allowed by energetics: the authors find B(W) ~ Wb with exponent 

b≈0.4, suggesting an impossible efficiency ε > 1 in formula (18).

To solve this paradox, we first notice that the exponent b is measured over a limited size 

range, spanning less than two trophic levels. Indeed, the study uses stable isotope analysis to 

estimate the mass ratio between trophic levels, but the observed spectrum covers only body 

masses from 32 to 2048 g (a ratio of 64 between the largest and the smallest fish). Thus, it 

may be misleading to analyse this spectrum as a multi-level biomass pyramid described by 

formula (18).

Instead, we suggest a top-down cascade pattern (Fig. 3c), with the largest fish in the sample 

belonging to a high-biomass level. In that case, equation (19) yields εa≈28, suggesting 

trophic interactions far stronger than self-regulation. We thus expect strong trophic cascades, 

which could be tested by predator removal. It is also important to note that the assumption of 

constant mass ratio M, used by (Trebilco et al. 2016) to convert between size classes and 

trophic levels, may be problematic as M is very widely distributed in different interactions 

(Fig. S4).

Stability Patterns

Trophic cascades and response to a press

Trophic cascades are studied by comparing systems where the top predator is absent or 

present (e.g. Jessup et al. 2004), or modifying its abundance by a smaller amount.

More generally, we consider a long-term decrease or increase in any trophic level’s biomass, 

due for instance to harvesting or nutrient enrichment. It can be modelled as a press 

perturbation (Box 3), equivalent to a change Δgi of the growth or mortality rate, gi, of one 

trophic level in (1). We then study the matrix of the relative responses ΔBj/Bj to a press 

Δgi/Bi, shown in Fig. 4a.
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Upward propagation of perturbations, whereby a decrease (increase) in the abundance of a 

trophic level leads to a decrease (increase) at all higher levels, appears as a blue lower 

triangle in the press response matrix in Fig. 4a. This dominates the community response 

when λ < 1. Downward cascades are characterised by alternating negative and positive 

responses of the levels below the perturbed level, which appear in alternating red and blue in 

the upper triangle of the response matrix. They dominate when λ > 1. This coincides with 

the qualitative shift in the shape of the biomass distribution (Fig. 3), illustrating the tight 

connection between patterns in biomass and patterns in stability (see e.g. Shanafelt & 

Loreau 2018).

We show here these patterns when the food chain is not limited by energy loss (small ρ = 

r/g, see Box 1), and cascade strength only depends on λ. In energy-limited food chains 

(large ρ), the picture is more complex. In Appendix S1, we compare a trophic level’s 

biomass before and after predator removal, and show that, depending on all dynamical 

parameters, both increase with basal energy flux g but either may increase faster. There is no 

simple prediction for how g (e.g. nutrient enrichment) affects trophic cascades: when it is 

large, cascade strength is independent from it, and when it is small, the dependence may go 

in either direction.

Variability under stochastic perturbations

Bottom-up and top-down effects can also be measured as correlations in empirical time 

series (Frederiksen et al. 2006; Tronstad et al. 2010). Correlative measures capture 

directional trends, such as the press response discussed above, as well as undirected 

fluctuations. These fluctuations also contain information about the food chain structure.

In the model, we can impose stochastic noise on one level and measure the variances and 

covariances of all levels’ time series (Fig. 4b). We rescale them by equilibrium biomasses to 

obtain a relative covariance matrix (Box 3). The diagonal elements of this matrix are the 

squares of the coefficient of variation (hereafter CV) for each trophic level.

For low λ≪1, the trophic level with the highest CV (shown on the diagonal of the relative 

covariance matrix) is the one that is directly perturbed, and this perturbation propagates only 

to higher levels, which covary positively.

For intermediate and large λ≳1, we see a distinct checker-board pattern (covariance 

cascade) for all levels below the perturbed one, reflecting the tendency of prey abundances 

to fluctuate in opposition to their predators.

We also note that, deep in the top-down regime λ≫1, the level with the lowest CV is always 

the top predator, while its prey has the highest CV, and lower levels alternate between the 

two, similarly to theoretical patterns in production and biomass (Hairston et al. 1960; Loreau 

2010; Shanafelt & Loreau 2018). Perturbing intermediate levels (see C(3) in Fig. 4b) gives 

rise to a ‘two-step’ covariance cascade: species two levels apart exhibit anti-correlated 

fluctuations. This can be interpreted as a cascade between predator–prey pairs, rather than 

between individual levels, due to the prey being tightly controlled by its predator.
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In a dynamical model with a nonlinear functional response, these anti-correlated fluctuations 

around equilibrium could announce the transition to more complex dynamical regimes such 

as predator–prey cycles, or chaos, as we note in Discussion.

Empirical Applications

We now illustrate how the synthetic model can be used to interpret and connect diverse 

empirical phenomena.

Theoretical patterns, from pyramids to cascades, have been identified above under the 

assumption that the parameters λ and κ are constant throughout the chain, due to eqns (2) 

and (3). These idealised patterns provide meaningful intuitions, but they can be distorted by 

large parameter variations between trophic levels (Teramoto 1993; Jonsson 2017).

In empirical settings, we do not expect all trophic levels and interactions to follow this 

simple parameterisation. Different ecological processes need not follow the same scaling 

with metabolic rates, and most food chains involve organisms belonging to distinct 

taxonomic classes, with vastly different physiologies.

We compiled data on thousands of predator–prey pairs (Figs S3–S5) and found that the 

metabolic ratio m varies over four orders of magnitude, m ∈ [10−2, 102]. While the body 

size ratio M displays a clear skew towards predators being larger than their prey, there is no 

such skew in metabolic ratio: faster and slower consumers are equally common in the data 

set, with significant variation between and within taxonomic classes.

Biomass conversion efficiency ε has a smaller range of variation, often estimated around 10–

20% (Welch 1968; Pauly & Christensen 1995; Madenjian et al. 1998; Andersen et al. 2009), 

but it may still differ between trophic levels (Brose et al. 2006b), and we note in Discussion 

the issues with quantifying interaction strength α and self-regulation D.

In the following, we thus allow different parameters for each trophic level, and show how the 

model can be parameterised using empirical evidence to produce quantitative predictions.

Differences between aquatic and terrestrial herbivory

Food web ecology has long focused on explaining dissimilarities between aquatic and 

terrestrial food webs (Chase 2000). One striking difference is that aquatic herbivores 

consume on average f = 51% of primary production across many ecosystems, while 

terrestrial herbivory only removes f = 18% of plant production (Cyr & Pace 1993). This 

discrepancy has been explained by terrestrial autotrophs having slower turnover than their 

consumers, while aquatic autotrophs, especially phytoplankton, have much faster turnover 

(Chase 2000). In some systems, this allows aquatic herbivores to consume close to 100% of 

phytoplankton biomass and production each day (Cebrian & Duarte 1994).

The consistency of this explanation can be tested quantitatively in our model, as we show in 

Fig. 5. Using measurements on f, we can compute λ = f/(1 – f)2. Then, using the median 

metabolic ratio m for either aquatic or terrestrial herbivory in the metabolic data (Figs S3–
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S5), we check that λ ~ 1/m, in agreement with the scenario of resource-driven consumption 

(Box 2, energetic paradigm).

Furthermore, aquatic herbivore populations have been shown to be less stable (higher CV, 

defined in Box 3) than terrestrial herbivores (Rip & McCann 2011). Using the scaling λ ~ 

1/m and the data for herbivore-plant metabolic ratios m, we have computed herbivore CV for 

each pair in the simplest theoretical setting (a two-level chain with equal noise on both 

levels). Doing all possible pair comparisons between aquatic herbivores and terrestrial ones, 

we find that the former tend to have higher CV. The aquatic-terrestrial CV ratio is widely 

distributed but centred around the empirical range [1.5, 2.1] found in (Rip & McCann 2011).

Hence, functioning and stability differences between aquatic and terrestrial food chains 

could both have a physiological origin in metabolic rates, consistent with the metabolic 

scaling assumed in the energetic paradigm, but accounting for predation mortality.

Cascade strength in tritrophic chains

Trophic cascade strength is commonly measured as the logarithmic change (log ratio) in 

plant biomass Δlog B1 in response to predator manipulation (Hedges et al. 1999). It is 

related to the relative response shown in Fig. 4a by ΔB1/B1 = exp(Δ log B1) – 1.

In a meta-analysis, the plant biomass log ratio was found to exhibit strong positive 

correlation to the carnivore’s metabolic rate, m3, and negative correlation to herbivore’s, m2 

(Borer et al. 2005). This correlation can be predicted in a three-level chain (see Appendix 

S1) under two conditions: first, the carnivore must have significant self-regulation D3; 

second, its attack rate must scale with its own metabolic rate, α32 ~ m3, in agreement with 

consumer-driven consumption (Box 2, dynamical paradigm) and in contrast with what was 

found above for herbivory.

Another salient property of cascades is whether the effect attenuates or intensifies down the 

chain, for example whether plants are less or more affected than herbivores by carnivore 

removal (Micheli 1999; Schmitz et al. 2000). This factor has been measured empirically, and 

explained by different biological mechanisms (from plant defences to external subsidies) in 

a variety of systems. In the three-level chain, we find

τ ≡ −
Δ B1/B1
Δ B2/B2

=
f 1

1 − f 1
, (20)

indicating that, without the need to invoke additional mechanisms, attenuation happens if the 

fraction of consumed primary production is less than half, f1 < 50%, while intensification 

happens otherwise.

From data on herbivory (Cyr & Pace 1993), we estimate an amplification factor τ≈1 in 

aquatic food webs, meaning that cascade effects tend to propagate without attenuation. By 

contrast, we expect fast-decaying cascades with τ≈0.2 in terrestrial systems. In Fig. 5, we 

use additional data on τ from (Shurin et al. 2002) and f from (Cebrian & Duarte 1994) to 
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show that these predictions are plausible, although with large variance. Combined with the 

previous section, this is indicative evidence that metabolic rates may cause the main trend in 

trophic cascade attenuation.

The stabilising role of metabolic scaling

Previous studies have emphasised a possible stabilising role of allometric scaling (Brose et 
al. 2006b). Since predators are larger than their prey, allometric scaling suggests that they 

should have slower metabolism. With a median size ratio M≈80 (Brose et al. 2006a), 

mi ∼ W i
−1/4 gives a metabolic ratio m≈0.3. These studies have shown that this favours 

stability and coexistence in dynamical simulations of complex food webs.

Our food chain model can reach a similar or opposite conclusion, with a simple explanation. 

Consumer-driven consumption (αi+1,i ~ mi+1) gives λ ~ m, as noted in Box 2. Therefore, 

slower predators with lower m induce weaker predation feedback λ, which leads to greater 

stability (Fig. 4), in qualitative agreement with the simulation studies. This scaling is 

supported by observations on cascade strength in the previous section.

On the other hand, for resource-driven consumption (αi+1,i ~ mi), we reach the opposite 

conclusion: λ ~ 1/m and slower consumers destabilise the system. This is supported by the 

fact that aquatic herbivores have both lower metabolic ratio m and higher variability than 

terrestrial ones (Fig. 5).

These two conflictual lines of evidence challenge any simple and universal stability 

argument for metabolic scaling (Brose et al. 2006b). We note that, despite predators being 

generally larger than their prey, there is no global tendency for them to have a slower 

metabolism, as we show in data compiled from multiple studies (Figs S3–S5). Therefore, it 

may be that different ecological settings favour either slower or faster consumer metabolism.

Discussion

Our understanding of many ecological phenomena relies on intuitions developed from 

simple food chains. Despite its fundamental role, this body of work has become increasingly 

fragmented. First, functioning and stability patterns, such as biomass pyramids and trophic 

cascades, have become disjoint topics. The former are often analysed with energetic 

arguments, and the latter with dynamical models (Fig. 1). But these approaches are based on 

conflicting assumptions, as we clarified by embedding them in the same formalism (Fig. 2).

Second, food chain behaviours arise from the interaction of multiple ecological parameters: 

basal energy influx g, predator–prey metabolic ratio m, biomass conversion efficiency ε or 

interaction strength a. Many empirical and theoretical studies have investigated a single axis 

at a time, occasionally reaching contradictory conclusions. We have shown here that the 

action of these key parameters can only be understood in conjunction.

We have summarised the main food chain patterns, and the parameters that control them, in 

a concise map with two main axes. Its first axis is given by the synthetic parameter λ, which 
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denotes the strength of top-down control in the chain, as it quantifies the feedback of a 

trophic level on itself through its predators (Box 1).

The bottom-up regime (λ < 1) is characterised by pyramidal patterns, regular or inverted, in 

various functioning and stability properties (Figs 3 and 4). In the top-down regime (λ > 1), 

alternating cascade patterns are found instead.

The second synthetic parameter, κ, controls the overall top-heaviness of the biomass 

distribution, but has no effect on essential stability properties (Fig. 4). Counter-intuitively, 

top-heavy distributions do not imply strong top-down control: species with more efficient 

assimilation and slower turnover can acquire and store larger amounts of energy, without 

necessarily exerting stronger pressure on lower levels.

A third parameter, ρ, modulates these patterns without creating qualitatively new regimes. It 

represents the fraction of energy lost to mortality and metabolic costs, and is important only 

if these losses significantly reduce a trophic level’s biomass. When ρ≪1 (low metabolic 

costs r or high basal energy influx g), its precise value becomes irrelevant to food chain 

dynamics.

By combining the ingredients of the energetic and dynamical paradigms (Fig. 2), the 

synthetic approach explains their discrepancies, recovers their main results, and extends 

them beyond their traditional scope.

These results provide an intuitive basis for understanding relationships observed in data or 

complex simulations, and advancing our understanding of a number of standing empirical 

paradoxes. We have shown that they could provide new quantitative predictions on 

relationships between consumption, metabolism and trophic cascade strength.

Self-regulation

We have shown that self-regulation is at the heart of the main disagreement between the 

energetic and dynamical approaches (Fig. 2). By preventing consumers from growing until 

they divert all of their resource’s production, self-regulation stabilises the dynamics 

(Barabás et al. 2017), attenuates top-down cascades and gives rise to bottom-up pyramidal 

patterns, where each level’s dynamics depends on its energy influx only.

Few studies reliably quantify trophic interaction strength α (Berlow et al. 2004), and fewer 

provide estimates of self-regulation D (Skalski & Gilliam 2001). But we have shown in Fig. 

5 that indirect estimates of their ratio a = α/D can be obtained from various empirical 

patterns, allowing us to evaluate the relative importance of self-regulation.

Many food web models (e.g. Brose et al. 2006b), do not admit explicit self-regulation in the 

form of density-dependent mortality Di, except at the basal level. Nevertheless, they often 

contain predator interference (Beddington 1975) which is widely supported by empirical 

evidence (Skalski & Gilliam 2001; Hatton et al. 2015).

Interference plays a similar self-regulating role at equilibrium. For instance, this can be seen 

in the dynamics of a consumer with a Type II functional response and predator interference,
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1
Bi

dBi
dt = − r + ε

α Bi − 1
1 + IBi

Interference
+ H α Bi − 1

Handling

(21)

where I is the interference strength and H is the handling time. At equilibrium, we find

0 = − r − rI Bi + ε − rH α Bi − 1 (22)

which is identical to the top predator’s equilibrium in our Lotka–Volterra model (1) with 

self-regulation D = rI and a reduced conversion efficiency ε–rH.

The limit of strong interference, where the denominator in (21) reduces to IBi, has been 

widely discussed as a ratio-dependent functional response (Arditi & Ginzburg 1989). We 

show in Appendix S1 that it also allows a pyramidal biomass distribution. We interpret ratio 

dependence and density-dependent mortality as two examples in a wider range of self-

regulation mechanisms, and expect that our qualitative results may extend to other forms of 

density dependence stabilising the dynamics (Hatton et al. 2015; Kawatsu & Kondoh 2018).

Disentangling effects of primary productivity

This synthetic approach sheds a new light on the effects of primary productivity on food 

chain behaviours (Rosenzweig 1971; Rip & McCann 2011). In Box 1, we defined primary 

productivity as g1 = gm1, where g is tied to nutrient supply and m1 to autotroph metabolism. 

There are thus two ways in which ecosystems can differ in their primary productivity.

Nutrient enrichment increases the basal energy influx g. All else being equal, this will 

increase the total biomass, but produce inconsistent effects on stability and trophic cascades. 

We show in Appendix S1 that these effects can be positive or negative depending on the 

other parameters, and they vanish at high values of g, when growth is not limited by 

metabolic losses.

On the other hand, an increased metabolic rate m1 can have a consistent effect on stability. 

The evidence in Fig. 5 suggests that when primary producers have faster metabolism than 

their consumers, as in aquatic systems, one finds stronger trophic cascades and more 

variability.

This provides a tentative explanation for conflicting empirical findings on the effects of 

primary productivity, especially in cross-ecosystem comparisons where g, m1 and other 

parameters may all vary (Pace et al. 1999; Borer et al. 2005).

Application to real food webs

Our idealised food chain model trades realism for ease of interpretation and mathematical 

treatment. Yet, a complex web structure is an ubiquitous feature of real trophic interactions, 

and nonlinear functional responses (how consumption depends on the density of predator, 
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prey and even third parties) can be added to capture physiological and behavioural 

characteristics (Holling 1965).

We expect these two ingredients to have predictable effects in the region of bottom-up 

control, but far more complex ones in the region of top-down control.

When self-regulation greatly exceeds predation losses (λ≪1), there are no complex 

dynamical feedbacks, as each species determines its consumers’ abundance but is almost 

unaffected by them. In that case, food chain models can easily be amended to account for 

additional fluxes, for example for omnivorous predators (Woodson et al. 2018) or structured 

populations (Andersen et al. 2009). Different functional responses affect quantitative results, 

but may not lead to qualitatively different dynamical regimes.

For weak self-regulation (λ≫1), however, food web dynamics may become excitable and 

lead to cycles or chaos, unless species satisfy complex conditions (Freedman & So 1985; 

Redheffer & Zhiming 1981; Redheffer & Walter 1984). Even qualitative functioning and 

stability properties become sensitive to interactions motifs and functional responses, as 

described in a vast literature (DeAngelis et al. 1975; McCann & Yodzis 1994; Shurin & 

Seabloom 2005; Rip et al. 2010; McCann 2011), and it is challenging to extend our near-

equilibrium results to these non-equilibrium dynamics.

Nevertheless, coherent top-down patterns, such as trophic cascades, are well-attested in 

various ecosystems (Pace et al. 1999; Worm & Myers 2003). This suggests that our simple 

approach remains valid in some limits: either for particular sets of species, or for averages 

over large communities. One might be able to unfold a complex web into its essential chain-

like structure (Kato et al. 2018) to parameterise our model from more realistic descriptions.

Conclusions and prospects

While static energy pyramids, dynamical fluctuations and trophic cascades have been 

studied with different approaches, they all arise from the same food chain structure. We have 

synthesised these basic predictions in a simple two-dimensional map, whose axes combine 

physiological and ecological parameters.

This map is divided into two regions, in which either pyramidal or cascade patterns can be 

found across a wide range of stability and functioning properties. This dichotomy reflects 

two intrinsically different dynamical regimes, one dominated by donor control and the other 

by antagonistic feedbacks. But rather than extremes on a continuum, these regimes have 

often been approached as alternative ways to understand and model food chains, each 

ingrained in a long tradition and associated with its own set of questions and methods.

We therefore emphasise the need for consistency between the results of these different 

approaches. Considerable empirical and theoretical efforts have been expended on prediction 

and cross-ecosystem comparison of particular patterns. It is now important to systematically 

confront these diverse observations within each ecosystem, from metabolism and density 

dependence to variability and trophic cascades, to provide rigorous foundations for our 

understanding of trophic dynamics.
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Another issue is the possibility for patterns to have causes outside the studied ecosystem. 

External energy subsidies, for example influxes of organic matter, or a predation range 

coupling multiple local communities, may be responsible for stronger trophic cascades 

(Leroux & Loreau 2008) and top-heavy distributions (Del Giorgio et al. 1999; McCauley et 
al. 2018). While a single pattern cannot rule out external causes, multiple stability and 

functioning patterns all pointing towards the same food chain structure would be a strong 

signal against this possibility.

This synthesis has been called for in conceptual frameworks (Leibold et al. 1997), but it 

must become quantitatively precise if it is to solve long-standing empirical paradoxes. The 

relationships that we have summarised here should become part of a larger quantitative 

toolbox designed to provide better insight into the essential trophic structure of an 

ecosystem. For these predictions to hold in diverse ecological communities, they must be 

robust to the addition of complex structure, a question which emerging theoretical tools 

(Barbier et al. 2018) and better integration with data may help answer in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Synthetic food chain model and key parameters

We propose the simplest model that can synthesise the predictions of both energetic and 

dynamical paradigms (Fig. 1 and 2).

dBi
dt = Bi gi − DiBi + ε αi, i − 1 Bi − 1 − αi + 1, i Bi + 1 (1)

where Bi is the biomass of trophic level i, demographic processes are represented by 

intrinsic biomass growth or loss gi and self-regulation Di, ε is the biomass conversion 

efficiency and αij the strength of trophic interactions. All the rates appearing in this 

equation may depend on the species’ metabolic rate mi. For simplicity, we assume a 

linear scaling:

Di = miD, g1 = m1g basal growth , gi = − mir i > 1, consumer mortality . (2)

Here, g represents the basal energy influx, including nutrient supply and autotroph 

efficiency, while r represents biomass loss and mortality due to metabolic costs. Note that 

the carrying capacity g1/D1 of the autotroph level sets the scale for the total biomass in 

the chain. To allow direct comparison between density-dependent and independent terms, 

we can choose biomass units such that g1 = D1. The model further simplifies if the 

predator–prey metabolic ratio and the ratio of interaction strength to self-regulation

m = mi + 1/mi, a = αi + 1, i /Di (3)

are both constant throughout the chain. The equilibrium condition for surviving 

consumers (i > 1), which we derive and solve in Appendix S1 in Supporting Information, 

is then

0 = − r /g
metabolic costs

− Bi
self–regulation

+ εaBi − 1
consumption

− maBi + 1
predation loss

. (4)

Its solution is the equilibrium biomass distribution, which depends on three synthetic 

parameters:

ρ = r /g, λ = εa × ma = mεa2, κ = εa/ma = ε/m . (5)

The product λ denotes the strength of top-down control in the chain. It represents the 

feedback of a trophic level on itself through its predators: how much one unit of prey 

biomass increases predator biomass at equilibrium (εa), times how much this additional 
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predation suppresses the prey (ma), normalised by the prey’s self-regulation. The ratio κ 
represents how much biomass is gained by consumers per unit biomass lost by resources, 

and we see in Fig. 3 that large κ allows top-heavy distributions. Finally, ρ captures the 

balance between metabolic losses r and basal energy influx g. Losses can limit growth or 

even cause extinctions, but if g is comparatively large (ρ≈0), their effect becomes 

negligible, and equilibrium patterns are instead determined by interactions alone.
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Box 2

Metabolic scaling of interactions

In the model defined in Box 1, interactions αi+1,i can depend on both consumer 

metabolism mi+1 and resource metabolism mi. The dynamical paradigm assumes that 

attack rate is proportional to consumer metabolism, hence αi+1,i ~ mi+1. In the energetic 

paradigm, energy transfer is proportional to the resource’s energy content (see Fig. 2). 

This implies that interactions scale with resource metabolism, αi+1,i ~ mi. These two 

choices can be summarised in a generalised equation, with a parameter ν = −1 (resource-

driven) or ν = 0 (consumer-driven):

αi + 1, i ∼ mνmi + 1 a ∼ mν . (6)

Note that λ = mϵa2 ~ m1+2ν. In the dynamical paradigm (ν = 0), top-down control 

increases with metabolic ratio, λ ~ m. In the energetic paradigm (ν = −1), top-down 

control decreases with metabolic ratio, λ ~ 1/m. We discuss the empirical evidence for 

each scaling in the main text (see Fig. 5).
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Box 3

Stability properties

We study the quantitative stability properties of the model in Box 1, that is, its response 

to various types of perturbations. The dynamical equation (1) becomes

1
Bi

dBi
dt = ξi(t) + gi − DiBi + ε αi, i − 1 Bi − 1 − αi + 1, i Bi + 1 (7)

where ξi(t) represents the perturbation. We focus on two types of long-term 

perturbations. In the first case, we compute the effect of a constant press perturbation 

ξi(t) = ξ on one trophic level at a time. This can be interpreted as a permanent change Δgi 

of its growth or mortality term, up to complete removal of the level. We predict the 

resulting change in abundance ΔNj at each level. In the second case, we add demographic 

stochasticity to one level at a time, ξi(t) = W(t)/ Bi with W(t) a white noise term (see 

Appendix S1). For each choice of the perturbed level, we then compute the covariance 

matrix of the biomass fluctuations of all levels. On the diagonal of this matrix, we find 

the variance of each level. The inverse of its trace, invariability, has been widely used as 

an empirical stability measure (Arnoldi et al. 2016). These two properties are connected 

to other stability properties, such as structural stability and return time to equilibrium 

(Arnoldi & Haegeman 2016; Arnoldi et al. 2018). In Fig. 4, we show results for relative 

stability metrics, rescaled by equilibrium abundances Bi
eq:

V i j =
ΔBi/Bi

eq

Δgi/B j
eq , Ci j

(k) =
cov(Bi(t), B j(t))

Bi
eqB j

eq (8)

with Vij the relative response of level i to a press on j, and C(k) the relative covariance 

matrix between all levels created by perturbing level k only. The diagonal element Cii
(k) is 

the coefficient of variation (CV) of level i. This rescaling reveals clear pyramidal or 

cascade patterns that are essentially determined by a single parameter, λ. When using 

absolute metrics (Fig. S1), these patterns are skewed by the biomass distribution and less 

apparent to the eye.
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Figure 1. 
The energetic and dynamical approaches to food chain behaviours. The energetic paradigm 

focuses on static and macroscopic patterns, while the dynamical paradigm emphasises 

temporal patterns and individual species characteristics. Beyond these complementary 

concerns, each paradigm also offers a different vision of how trophic levels interact. In 

donor control, each level’s biomass scales with its production, fixed by the biomass of the 

level below. We explain in the main text that this scaling requires self-regulation. 

Antagonistic control, seen in dynamical models without self-regulation (11), is less intuitive: 

each level’s biomass is set either by its prey’s productivity, or by its predator’s mortality, and 

is uncorrelated with its own productivity. These two assumptions lead to clashing theoretical 

expectations, and empirical puzzles specific to each approach. We list here four such 

challenges that we address in the main text.
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Figure 2. 
Synthesising the energetic and dynamical paradigms and deriving systematic predictions. In 

the energetic paradigm, the biomass Bi of trophic level i is often predicted using the heuristic 

formula (10) reproduced in the figure. The dynamical paradigm emphasises the role of 

predators in regulating their prey, and explores the role of different functional responses 

(Rosenzweig 1971) such as the Lotka–Volterra model (11) shown here. By embedding both 

paradigms in our synthetic model (defined in Box 1), we can highlight their differences. At 

equilibrium, dBi/dt = 0, we can identify the equations term-by-term. Terms are colour-coded 

by their dependence in Bi, Bi–1 and Bi+1. Each approach emphasises some terms over others, 
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as symbolised by the colour gradients and arrows in ‘Synthetic parameter regime’. We see 

that the energetic formula (10) neglects predation mortality (λ≪1) and ignores metabolic 

losses (ρ≈0, equivalent to high basal growth). This leads to pyramidal patterns in various 

properties, from biomass (Fig. 3) to stability (Fig. 4). On the other hand, the dynamical 

paradigm emphasises predation loss but ignores consumer self-regulation (right-hand 

arrows), leading to cascade patterns, that is, alternating patterns of positive and negative, or 

high and low, values across trophic levels. In addition, the energetic formula assumes that 

consumption is proportional to resource metabolism, while dynamical models (Brose et al. 
2006b) generally assume it is proportional to consumer metabolism (Box 2). This leads to 

divergent predictions on the role of metabolism in biomass distribution and stability, see 

main text and Fig. 5. The labels (a) and (b) relate assumptions to predictions.
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Figure 3. 
Theoretical map of equilibrium biomass patterns in a food chain, and application to an 

empirical puzzle. The parameters (defined in Box 1) are predator–prey metabolic ratio m, 

conversion efficiency ε and the strength of interactions a relative to self-interaction. Results 

are illustrated for a four-level chain with negligible metabolic losses ρ≪1 (other examples in 

Supporting Information). (a) Biomass distribution. For each trophic level, a coloured bar 

represents its equilibrium biomass (in log scale), and a grey bar represents the amount of 

biomass lost to its predator, reflecting the intensity of top-down control. (b) Two parameter 

regimes define the shape of the biomass distribution. The main diagonal λ = mϵa2 

distinguishes the region of bottom-up control λ < 1 with pyramids (both regular and 

inverted), from the region of top-down control λ > 1 with cascade (alternating) patterns. The 

other diagonal κ = ε/m affects the top-heaviness of the biomass distribution, as the global 

slope of the distribution is given by Bi + 1/Bi κ f . The fraction f of production lost to 

consumers is given by (16). In cascade patterns, low-biomass and high-biomass levels i and i
+1 alternate, with Bi + 1/Bi κλ = ϵ a (larger than the global slope, which still holds between 

levels Bi+1 and Bi−1). (c) Identifying trophic structure from data. Given the biomass per 

trophic level and the mass ratio M between levels, we can compute the total biomass in each 

body size class W. Fish in kelp forests exhibit a top-heavy (positive) scaling B(W)~W0.45 

(Trebilco et al. 2016). We show in main text that this scaling cannot hold across multiple 

trophic levels, except for an unphysical value of conversion efficiency ε > 1 in formula (18). 

It may, however, be found between two adjacent levels under strong top-down control (19).
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Figure 4. 
Map of responses to perturbations (Box 3). Some food chains display bottom-up patterns 

where variations in abundance are correlated across all trophic levels (Frederiksen et al. 
2006). Other chains display top-down trophic cascades, with anti-correlations between 

adjacent levels (Tronstad et al. 2010). These correlations can be measured in directional 

trends, resulting from press perturbations such as nutrient enrichment, or in undirected 

population fluctuations. (a) Long-term response to a press perturbation. The matrix Vij 

measures the relative biomass change ΔBi/Bi in response to a relative change of growth rate 

Δgj/Bj. (b) Covariance of fluctuating time series. Applying a stochastic perturbation on one 

level k at a time gives a covariance matrix Ci j
(k), different for each perturbed level k. The 

diagonal element Cii
(k) is the squared coefficient of variation (CV) of level i. The CV of the 

perturbed level is highlighted for comparison. In (a) and (b), colours (and arrows on the side 

diagrams) represent the sign and strength of the response, rescaled here by the largest 

coefficient of each matrix. We see that the main diagonal axis of the map, λ = ma×εa (the 

feedback of a level on itself through its predators), determines the nature of the response. 

Matrices V and C(k) are both invariant along the other diagonal κ = εa/ma, which controls 

the chain’s top-heaviness in Fig. 3. This invariance does not hold for absolute stability 
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metrics, see Fig. S1. In the bottom-up region (λ≪1), the perturbed species is the one that 

responds most strongly, and perturbations only propagate upward, as illustrated by C(1) and 

C(4) where we affect either the basal or top level. In the top-down region (λ≫1), a trophic 

cascade pattern (anti-correlated levels) is seen in V and C(k). We also find an alternating 

pattern in the CV, with the top level being least variable and its prey being most variable, no 

matter which level is perturbed (Shanafelt & Loreau 2018).
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Figure 5. 
Empirical functioning and stability patterns, and their relationships predicted by the 

synthetic model. (a) Aquatic herbivory accounts on average for f = 51% primary production 

removal across various ecosystems, while (b) terrestrial herbivory only removes f = 18% of 

production (Cyr & Pace 1993). They also differ by their median metabolic ratio m, measured 

from compiled data in Fig. S3 (Makarieva et al. 2008; Poelen et al. 2014). The 

corresponding values of λ are compatible with the scaling λ ~ 1/m predicted by resource-

driven consumption (Box 2). We then study stability properties (Box 3) using a two-level 

chain model with uniform noise. Parameterising this model with m for each pair of species 

in the data set, we obtain a distribution of CV for each ecosystem. We find that aquatic 

herbivores are less stable (higher CV) than terrestrial ones, in agreement with empirical data 

(Rip & McCann 2011). (c) Empirical measurements of the trophic cascade amplification 

factor τ in tritrophic chains (Shurin et al. 2002), compared to predictions from data on 

removed production f for the basal level (Cebrian & Duarte 1994). Measurements are 

grouped by the nature of the primary producer (bars are 25th to 75th percentiles), with 

phytoplankton-based chains exhibiting weaker cascades than expected from their large 

consumed fraction f. Despite considerable variance, we find indicative evidence of 

consistency between these various patterns.
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