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Published online: 18 February 2019 Tissye resident adult stem cells are known to participate in tissue regeneration and repair that follows
. cell turnover, or injury. It has been well established that aging impedes the regeneration capabilities

at the cellular level, but it is not clear if the different onset of stem cell aging between individuals can
be predicted or prevented at an earlier stage. Here we studied the dental pulp stem cells (DPSCs),
a population of adult stem cells that is known to participate in the repair of an injured tooth, and
its properties can be affected by aging. The dental pulp from third molars of a diverse patient group
were surgically extracted, generating cells that had a high percentage of mesenchymal stem cell
markers CD29, CD44, CD146 and Strol and had the ability to differentiate into osteo/odontogenic and
adipogenic lineages. Through RNA seq and qPCR analysis we identified homeobox protein, Barx1,
as a marker for DPSCs. Furthermore, using high throughput transcriptomic and proteomic analysis
we identified markers for DPSC populations with accelerated replicative senescence. In particular,
we show that the transforming growth factor-beta (TGF-3) pathway and the cytoskeletal proteins
are upregulated in rapid aging DPSCs, indicating a loss of stem cell characteristics and spontaneous
initiation of terminal differentiation. Importantly, using metabolic flux analysis, we identified a
metabolic signature for the rapid aging DPSCs, prior to manifestation of senescence phenotypes. This
metabolic signature therefore can be used to predict the onset of replicative senescence. Hence, the
present study identifies Barx1 as a DPSCs marker and dissects the first predictive metabolic signature
for DPSCs aging.

In the adult human body, stem cells are present in most of the organs in varying proportions performing the bio-
logical function of ensuring normal regeneration needed for the maintenance of the organ'~>. Understanding the
basic molecular mechanisms that govern the regenerative capacity of adult stem cells may allow us to utilize these
cells for future therapeutic approaches such as regenerative medicine and tissue engineering.

Mammalian teeth are formed during development by the interactions between the cranial neural crest
derived mesoderm and the stomodeal ectoderm®®. Previous studies have revealed a stem cell population that
remains regenerative in adult teeth, the perivascular dental pulp stem cells (DPSC) in postnatal human dental
pulp®. DPSCs in humans are known to be involved in regeneration of dentin structure produced by odontoblast
cells®10-13,

Stem cells isolated from dental pulp have been successfully differentiated into adipogenic, chondrogenic, oste-
ogenic and odontogenic lineages'*1°. DPSCs are thought to express mesenchymal cell surface markers such as
CD44, CD45, CD73, CD90, CD146, CD29 and Stro-1'>"'Y and some reports suggest that they might express
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pluripotent markers OCT3/4, NANOG and SOX2%. While many studies use MSC markers to characterize these
unique stem cells and attribute their differentiation capacity to the combinatorial expression of these molecular
markers, no specific markers have been identified for DPSCs.

As observed with many adult stem cells, mesenchymal stem cells (MSC) from various tissues also show
age-dependent decline in their regenerative capacity. Proliferation and differentiation capacities of MSCs isolated
from older individuals’ bone marrow?!, adipose tissue?, or teeth® are significantly reduced compared to young
individuals. The clinical data correlate with this notion as well. In the dental field, pulp capping is a treatment
utilized by many dentists by introducing protective materials such as calcium hydroxide on an exposed vital pulp
to induce the pulp cells to differentiate and produce a protective dentin-like layer on top. The success rate of this
treatment after 1-5 years follow-up is reported to be significantly lower in older age groups®*-°. This correlates
with the reduced properties of DPSCs isolated from senior individuals. However, it is not clear if the different
onset of stem cell aging between individuals can be predicted or prevented at an earlier stage.

While many studies have reported the common indicators of aging such as telomerase shortening, reduction
in differentiation potential and cells’ morphological abnormalities, little is known about the aging mechanism
and metabolic signature. We now analysed the metabolic signature in DPSCs derived from multiple individuals
to characterize reliable DPSC specific signature. We showed that DPSC cell surface markers CD29, CD44, CD146
and Stro-1 are differentially expressed across individuals. We also employed assays to quantitatively measure
the differentiation capabilities of these cells into osteo/odontogenic and adipogenic lineages. Through genome
wide RNA seq analysis we identified homeobox protein, Barx1, as a marker for DPSCs. Using high resolution
proteomic analysis, we identified markers for rapid aging DPSC populations. In particular, we showed that the
TGEF-(3 pathway and the proteins associated with regulation of cytoskeleton are upregulated in rapid aging DPSCs,
indicating a loss of stem cell character and early initiation of terminal differentiation. Importantly, using meta-
bolic flux analysis we identified how the metabolic signature differs between normal vs. rapid aging DPSCs. This
metabolic signature is predictive since the differences can be observed prior to replicative senescence phenotypes.

Materials and Methods

Extraction and primary culture of DPSCs. Dental pulp stem cells were isolated from human third molars
or deciduous teeth from 300 patients ranging from 9 to 58 years old. Teeth were collected from the University of
Washington dental clinic after obtaining an informed consent from the patient or legal guardian. This study was
approved by the Human Subjects Division of the University of Washington (HSD#51634-EJ) and all methods
were performed in accordance with the relevant guidelines and regulations. The teeth were stored in DMEM
Glutamax media (Gibco) with 10% Fetal Bovine serum (FBS) (VWR) solution immediately after tooth extraction.
Each individual tooth was cut using a dremel at the cemento-enamel junction which exposed the pulp chamber.
The pulp was then removed and minced into small pieces. The isolation of pulp tissue was done as previously?’
with the slight modifications and optimization. The pulp tissue underwent an enzymatic digestion with a solution
of collagenase type I (92 pM) (Sigma-Aldrich, 9001-12-1) and dispase (444 pM) (Gibco, 17105-041) for an hour
at 37 °C with occasional vortexing. Digested pulp pieces were centrifuged to remove the enzyme solution and
seeded into proliferation media containing DMEM Glutamax media (Gibco), 10% FBS (Invitrogen), ascorbic acid
(0.1 mM) and 1X antibiotic antimycotic solution (Sigma-Aldrich) in a 35-mm cell culture plate. The DPCS292
was isolated from an intact deciduous tooth that was surgically extracted from a nine-year-old patient by the
dentist. Pulp tissues from the deciduous teeth were isolated with the same protocol and seeded in proliferation
media supplemented with insulin growth factor (IGF-1) to increase proliferation success. Once seeded, the pulp
pieces were incubated at 37 °C with 5% CO, with media changed every 3 days until cells migrated out and opti-
mal confluence was achieved. When the cells were ~70% confluent, they were trypsinized and passaged to allow
expansion in a 10 cm plate for cryopreservation or further experimentation. The passaged DPSCs were cultured
and maintained in media containing 10% FBS and 1% Penicillin-Streptomycin (Invitrogen) in DMEM. The cell
lines that were selected for further studies DPSC 29, DPSC 43 and DPSC 44 orginate from female donors, while
DPSC 45 orginate from a male donor.

Cell Culture. HeLa (ATCC), human foreskin fibroblasts (HFFs)?%, DPSCs (PT-5025) and MSCs derived from
bone marrow (MSC, PT-2501) cell lines (Lonza) were cultured with the same media composition as DPSCs
later passages (10% FBS and 1% Penicillin-Streptomycin in DMEM). Human embryonic stem cells (hESCs) [Elf-
1(NIH_hESCs Registry #0156)] were cultured as previously described in hESCs media®. Briefly, cells were grown
in either mTeSR1 media (StemCell Technologies) or 2iL-I-F media (DMEM/F-12 media supplemented with 20%
knock-out serum replacer (KSR), 0.1 mM nonessential amino acids (NEAA), 1 mM sodium pyruvate, penicillin/
streptomycin (all from Invitrogen, Carlsbad, CA), 0.1 mM (-mercaptoethanol (Sigma-Aldrich, St. Louis, MO),
1uM GSK3 inhibitor (CHIR99021, Selleckchem), 1 uM of MEK inhibitor (PD0325901, Selleckchem), 10 ng/
mL human LIF (Chemicon), 5ng/mL IGF1 (Peprotech) and 10 ng/mL bFGE In one differentiation experiment,
the DPSCs were primed for short term (4 days) with TeSR media supplemented with a metabolite-cocktail
(TeSRmeta) containing kynurenine (KY) and methylnicotinamide (MNA), which was previously shown to be
beneficial to stem cells®.

Protein isolation and Western blotting. Protein extraction and Western blot analysis were performed
following previously described procedures®. Proteins were isolated from 80% confluent plate by direct lysis with
a lysis buffer containing 20 mM Tris-HCI (pH 7.5), 150 mM NaCl, 15% Glycerol, 1% Triton, 3% SDS, 25 mM
3-glycerophosphate, 50 mM NaF, 10 mM Sodium Pyrophosphate, 0.5% Orthovanadate, 1% PMSF (all chemicals
were from Sigma-Aldrich, St. Louis, MO), 25 U Benzonase Nuclease (EMD Chemicals, Gibbstown, NJ) and
protease inhibitor cocktail (Pierce™ Protease Inhibitor Mini Tablets, Thermo Scientific, USA). Total protein was
quantified by Bradford’s assay and 10 ug of protein extracts were loaded, separated by either 7.5% SDS-PAGE,
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or by 4-20% Mini-PROTEAN TGX gels (Bio-Rad Laboratories, Hercules, California, United States. Cat. #456-
1094) and transferred to nitrocellulose membrane (0.2 pM, Bio-Rad Laboratories, Hercules, California, United
States). Membranes were blocked with 5% non-fat dry milk for at least 60 minutes at room temperature and
incubated overnight at 4 °C with primary antibody. The next day, the membranes were incubated for one hour
with horseradish peroxidase-conjugated secondary antibodies, and then visualized using Immobilon Western
Chemiluminescent HRP Substrate (Millipore Corp, Billerica, MA). Primary antibodies used were CD29 (Abcam
1:1000), CD146 (Abcam, Cambridge, MA; 1:1000), BARX1 (Santa Cruz Biotechnology, sc-81956, 1:200) and 8311
tubulin (Promega, 1:1000).

Flow Cytometry. Cells grown to an optimal confluence of 70% were used for FACS analysis. Single
cell suspension was prepared by dissociating the cells using 0.05% Trypsin and triturating in PFN
(PBS + 5%FBS + 0.1%Sodium Azide). The cells were fixed with 4% paraformaldehyde in PFN over ice for
1 hour. The fixed cells were incubated with two primary antibodies per experiment (CD29[Abcam, 1:100]/
CD146[Abcam, 1:50 and CD44[Abcam, 1:50]/Stro1[R&D Systems, 1:50]) at 4 °C overnight. Subsequently, the
cells were incubated with fluorescent secondary antibodies over ice for 1 hour and analysed by flow-cytometer
(Canto II, BD Biosciences). Flow]Jo software was used for gating and further analysis.

Directed differentiation. DPSCs were cultured in 6 well plates for a period of 4-7 days until they reached
70% confluency and differentiated into adipogenic and osteo/odontogenic cells using different conditions
supplemented in media. A serum free media (SFM) (Supplementary Table S1) was used as the base media for
differentiation. The cells were treated with differentiation media for 10 days for osteo/odontogenesis (media
components®*2: Supplementary Table S2) and 7 days for adipogenesis (media components®*: Supplementary
Table S3) with media change every 3 days.

Osteo/odontogenesis quantification assay. The candidate cell lines (29, 44, 43 and 45) were cultured in
osteo/odontogenic differentiation media for 10-days, followed by fixation with 4% paraformaldehyde in PBS and
stained with DAPI. After DAPI quantification, the cells were stained with Alizarin Red stain (binds to extracel-
lular calcifications). The alizarin stain was released with 10% acetic acid and neutralized with 0.1 M ammonium
hydroxide. The staining intensity was then quantified in Wallac EnVision system and the relative absorption was
calculated by normalizing the alizarin dye absorption with the DAPI emission.

Adipogenesis quantification assay. Cells were incubated in the adipogenic medium for 10 days. The
media was removed, and the cells were fixed with 4% paraformaldehyde for 10 minutes. The excess paraformalde-
hyde was washed off with PBS. 1X BODIPY stain was added and incubated in the dark for 5 minutes. The excess
BODIPY stain was removed and rinsed with PBS. The cells were counter stained with DAPI and visualized under
fluorescent microscope (Zeiss). Alternatively, after the 7-days adipogenic differentiation, cells were fixed with 4%
paraformaldehyde in PBS and stained with DAPI. The total DAPI emission was quantified in a Wallac EnVision
multiplate reader. Then the cells were stained with Oil Red O (ORO) (binds to the neutral lipids). The ORO stain
was released by dissolving in 100% isopropyl alcohol for 10 min on a rocker. 80% of the total extraction volume
was used for colorimetric quantification with the Wallac EnVision system, and the relative absorption was calcu-
lated by normalizing the ORO absorption with the DAPI emission.

RNA extraction and RT-qPCR analysis. RNA was extracted using Trizol (Life Technologies) according
to manufacturer’s instructions. RNA samples were treated with Turbo DNase (Thermo Fisher Scientific) and
quantified using Nanodrop ND-1000. Reverse transcription was performed using iScript cDNA Synthesis Kit
(Bio-Rad). 10 ng of cDNA was used to perform qRT-PCR using SYBR Green (Applied Biosystems) or TagMan
(Applied Biosystems) on a 7300 real time PCR system (Applied Biosystems). The PCR conditions were set up as
the following: stage 1 as 50 °C for 2 mins, stage 2 as 95°C for 10mis, 95 °C for 15 sec, 60 °C for 1 min (40 Cycles).
B-actin was used as an endogenous control. The primer sequences used in this work are shown in Supplementary
Table S4.

Transcriptomic data analysis. RNA was isolated from freshly revived cell samples (Passage 3-5) of the
candidate cell lines and forwarded/directed for transcriptome analysis to Covance Genomics lab. RNA-seq were
aligned to Ensembl GRCh37 using Tophat (**, version 2.0.13). Raw RNA-seq reads from this study and oth-
ers”*~42 were used. Gene-level read counts were quantified using FeatureCounts*’ using Ensembl GRCh 37 gene
annotations. Prcomp function from R was used to for Principal Component Analysis. DESeq** was used for dif-
ferential gene expression analysis. TopGO R package* was used for Gene Ontology enrichment analysis, as well
as DAVID 6.8 online analytic tool*®*”. SPIA R package® was used for signalling pathway impact analysis utilizing
pathway topology data downloaded from KEGG’s website* on: 3/25/2018. RNA-seq datasets generated for this
study are available in the NCBI GEO database under accession number (GSE123973).

Overexpression of BARX1 and validation of BARX1 antibody in HeLa cells. HeLa cells were
transfected overnight with 2 pg/ml of a pcDNA3.1") plasmid, constitutively expressing BARX1 under the con-
trol of CMV promoter, supplied by Genescript (CloneIlD: OHu15603). The transfection was carried out with
Lipofectamine 3000 transfection kit (Thermo Fisher Scientific). Protein isolation and quantification was done
after 48 h as described in protein isolation and western blotting section. DPSC Lonza were transfected with elec-
troporation (Amaxa Nucleofector device) with 2 jig/ml of the same plasmid. Transfected HeLa cells and DPSC
Lonza were plated in a 4-well glass chamber slide system (Thermo Fisher Scientific) overnight and fixed the fol-
lowing day as described in immunostaining and confocal imaging section.
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Immunostaining and confocal imaging.  Cells were fixed in 4% paraformaldehyde in PBS for 15 minutes,
and blocked in 2% BSA, 0.1% Triton X-100 in PBS. The cells were then incubated in Anti-BARX1 (1:100, Santa Cruz
Biotechnology, sc-81956) overnight. The cells were washed with PBS and incubated with Alexa 488-conjugated
secondary antibody (Molecular Probes, 1:500) in 1 hr. DAPI (Nuclear stain) and Alexa Flour 568 phalloidin
(Selectively stains F-Actin, 1:250, Thermo Fisher Scientific) were used as counter stains and mounted with 2% of
n-Propyl Gallate in 90% Glycerol + PBS solution. Analysis was done on a Leica TCS-SPE Confocal microscope
using a 40x objective and Leica Software.

SeaHorse Extracellular Flux assay. DPSCs, MSCs and hESCs were seeded on a 96 well seahorse plate at
2 x 10* or 4 x 10* cells/well. The following day culture medium was replaced with base medium (Agilent Seahorse
XF base medium, USA) and 1 mM Sodium pyruvate (Gibco). Then, based on the assay type, the media was sup-
plemented with 25 mM glucose (mitostress assay), 25 mM glucose and 50 uM carnitine (palmitate assay) or 2mM
glutamine (glucose stress assay) 1 hour before starting the assay. The cells were treated with various substrates and
selective inhibitors. Mitostress: oligomycin (2.5 M), FCCP (1 pM), rotenone (2.5uM) and antimycin (2.5 uM).
Palmitate assay: palmitate (50 uM in BSA), BSA and ETO (50 puM). Glucose assay: glucose (2.5 mM), oligomycin
(1pM) and 2-DG (50 mM). The OCR values were then normalized with readings from Hoechst staining which
corresponded to the number of cells in the well.

Cell surface area measurements. Bright-field images of cell culture were taken with ZEISS Axio Observer
inverted microscope equipped with AxioCam MR R3 camera sensor. Images were processed by manually draw-
ing a line around the cells and then individual cell area were measured with Fiji software distribution of Image]J
v1.51n°05%,

Senescence assay. Analysis of cellular senescence was carried out using a Cellular Senescence Live Cell
Analysis Assay Kit (Enzo Life Sciences, NY, USA. Catalog number: ENZ-KIT130-0010). Briefly, cells were treated
with pretreatment solution at 37 °C for 2 h. Next, senescence-associated (3-galactosidase (SA-3-gal) substrate solu-
tion was added to the cells overnight. The stained cells were trypsinized and washed twice in PBS containing 2%
FBS. Cells were analysed by flow-cytometer (Canto I, BD Biosciences) and FlowJo software (TreeStar, Ashland,
OR, USA).

Proteomics. Cells were analysed as described previously®*>* with minor modifications. Briefly, cells were
lysed in 1 M urea, 50 mM ammonium bicarbonate, pH 7.8, and extracted proteins were quantified with a BCA
(Bicinchoninic Acid) assay. Proteins were reduced with 2mM DTT, alkylated with 15 mM iodoacetamide, and
digested overnight with trypsin. The resulting peptides were desalted on Waters Sep-Pak C18 cartridges. Peptides
were analysed by nano-LC-MS/MS on a Fusion Orbitrap (Thermo Fisher Scientific). Peptides were separated
online by reverse phase chromatography using a heated 50 °C 30 cm C18 columns (75 mm ID packed with Magic
C18 AQ 31M/100 A beads) in a 280 min gradient (1% to 45% acetonitrile with 0.1% formic acid) separated at
250 nL/min. The Fusion was operated in data-dependent mode with the following settings: 60000 resolutions,
350-1500 m/z full scan, Top Speed 2 seconds, and a 1.8 m/z isolation window. Identification and label free quan-
tification of peptides were done with MaxQuant 1.5.7.4 using a 1% false discovery rate (FDR) against the human
Swiss-Prot/TrEMB database downloaded from Uniprot on June 27 2016. The databases contained forward and
reverse human sequences as well as common contaminants. Peptides were searched using a 5 ppm mass error
and a match between run window of 2 min. The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD011962.

String analysis. Protein-protein interaction networks were generated using the STRING software version
10.5°%. A list of proteins found in the proteomics analysis were analysed in the software to show the known and
predicted interactions under medium confidence settings.

Secretome prediction analysis. DPSCs transcriptomic data were submitted for secretome prediction
analysis by using the online tool of the Vertebrate Secretome Database (VerSeDa)™>. The VerSeDa algorithms
analyse the amino acid sequences, calculate the probability of secretion by classical or non-classical mechanisms,
and return a list of predicted secretome. All default settings were used in our analysis.

Results

Previously identified MSC markers are differentially expressed across DPSC lines generated
from patients. We isolated DPSCs from dental pulp extracted from the human third molars or surgically
obtained deciduous teeth of 300 patients (Fig. 1a). Some of the samples were used to optimize the protocol by
identifying the window of time at which the samples could be stored in DMEM media (4 °C) prior to DPSCs
isolation, without loss of DPSCs viability. The samples that took more than 20 days to reach confluence for the
first passage were considered unviable. We observed that the percentage of viability and proliferation capacity of
the cells decreased substantially when the pulp isolation was delayed for more than 2 days after extraction of the
tooth (Supplementary Fig. S1).

The DPSCs were expanded and passaged at least twice before protein isolation or cell harvest. Western blot
analysis of previously identified MSC surface markers (CD29 and CD146,*) were used as a means of preliminary
molecular screening. We observed heterogeneity in the expression pattern of these markers (Fig. 1b). A candidate
set of DPSCs (DPSC 29, 43, 44, 45), which showed mid-level expression of the CD29 and CD146 markers were
selected for further analysis. We used this subgroup to test if DPSC with similar CD29 and 146 levels might show
different kinetics of senescence in vitro. Differential potential for replicative capacity would give us tools to ana-
lyse the process in detail.
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Figure 1. Extraction summary and preliminary screening. (a) A simplified summary of the isolated DPSC
lines and the initial project design to model DPSCs aging in vitro. (b) Preliminary screening of cell lines with
cell surface markers, CD29 and CD146 using western blot shows differential expression of these markers.

(c,d) Fluorescent cytometry of candidate cell lines (DPSC 29,44,43,45) demonstrates high percentage of
mesenchymal markers; CD29+CD146+- cells (c) and CD44+-Strol+ cells (d). (e) A representative graph shows
that the percentage of “double positive” were comparable with commercial DPSC and MSC cell lines from
Lonza. (n =3 per cell line). Graph error bars are the means =+ standard error of the mean (SEM).

To know the actual percentage of mesenchymal cells present in the cell lines, the candidate DPSC cell lines
along with commercial DPSCs and MSCs (Lonza) were analysed by flow cytometry. The results showed that our
population of DPSCs had high percentage of CD29 and CD146, CD44 and Stro-1 double positive cells; 81.1%,
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Figure 2. Difference in growth kinetics within the candidate cell lines. (a) Number of population doublings

in 24 hours calculated in each consecutive passage indicates that two of the candidate cell lines demonstrated
replicative senescence which is a classical hallmark of in vitro ageing (Cells were passaged to a density of

1:3 in each passage). (b) Quantification of average cell surface area in early and late passages of DPSC 44

and 45. Significance was determined by unpaired Student’s t-test; n =70 cells per cell line were measured;
*¥**p < 0.0001; Graph error bars are the means + SEM (¢) flow cytometric analysis of senescence-associated-3-
gal activity in early and late passages of DPSC 44 and 45.

81.1%, 74.1% and 75.6% of CD29%146™" (Fig. 1c,e) and 77.5%, 68.5%, 59.3%, 58.5% of CD44"Stro-1" (Fig. 1d,e)
cells in DPSC 29, 44, 43 and 45, comparable to 78.8% and 75.6% of double positive cells in commercial DPSC.
The results validate our isolation protocol and infer that our stem cell lines have high percentage of mesenchymal
cells (Fig. 1c-e).

Rapid and slow aging DPSC cell lines.  In order to study the onset of aging in DPSCs we assessed the pro-
liferation capacity of the cell lines through multiple passages. Interestingly we found dramatic differences between
the DPSC lines extracted from different individuals. We found that DPSC 29, 44 and commercial DPSC showed
minimal changes in proliferation capacity whereas DPSC 43 and 45 exhibited a dramatic decrease in proliferation
with progressive cell divisions (Fig. 2a). The difference in the decrease in proliferation capacity was not caused by
the donor age since the analysed cell lines (DPSC 29, 44, 43 and 45) were all isolated from individuals with similar
age (21-23 years old). Based on the rate these cell lines reached replicative senescence they were classified into
slow aging (SA: DPSC 29 and 44) and rapid aging cell lines (RA: DPSC 43 and 45). One of the manifestations of
senesced cells is an increase in cell size”, therefore we measured the surface area of DPSC 45, and noted a signif-
icant (5 fold; p < 0.0001) increase in average cell size between early passage (P6) and late passage (P17), support-
ing DPSC 45 senescence during this time period (Fig. 2b). However, DPSC 44 showed no significant change in
cell size between early passage (P6) and late passage (P16), correlating well with our classification as slow aging
cell line. We further analysed the cell lines by measuring the activity of senescence-associated (3-galactosidase
(SA-3-gal)*® in a flow cytometric based assay (Fig. 2c). Two populations were observed in DPSC 44 early passage
(P7) with SA-3-gal assay. At later passage (P18) in DPSC 44, most of the cells expressed SA-3-gal at high intensity.
In DPSC 45, both early (P8) and late (P18) passage cells showed high intensity of SA-3-gal suggesting that senes-
cence starts early in rapid aging cell lines.

DPSC lines are heterogeneous in their differentiation capacities. The multipotency of an adult
stem cell can only be gauged by its ability to differentiate into multiple lineages. To analyse the multipotency of the
isolated cell lines, the candidate cell lines were pushed towards adipogenic and osteo/odontogenic lineages. The
cells were cultured in differentiation media for a time period of 7 days for adipogenesis and 10 days for osteogene-
sis/odontogenesis (Fig. 3a). The differentiation was then quantified using a cell number normalized assay or gPCR
(Fig. 3b-g; Supplementary Fig. S2). Osteogenesis/odontogenesis was quantified based on the staining of extra-
cellular calcification by alizarin red. We observed comparable osteogenic/odontoblastic differentiation between
the selected candidate DPSC lines (DPSC 29, 44, and 45). However, DPSC 43 did not survive the osteogenic/
odontoblastic differentiation despite many repeated trials (Fig. 3b). An analogous experiment for adipogenesis
was quantified based on the staining of neutral lipid vesicles by oil red O stain. This analysis showed that all of our
candidate DPSC lines (DPSC 29, 44, 43, 45) differentiated into the adipogenic lineage, similarly to the commer-
cial control DPSC line (Fig. 3¢). In an attempt to normalize the heterogeneity in differentiation, we studied the
effect of a short term (4 days) treatment of the cells with a TeSR media supplemented with a metabolite-cocktail
(TeSRmeta) containing kynurenine (KY) and methylnicotinamide (MNA), which was previously shown to be
beneficial to stem cells?’. While this treatment did not show a significant increase in differentiation in most of the
DPSC lines, TeSRmeta treated DPSC 43 did show a dramatic increase in the osteogenic/odontoblastic differentia-
tion (Fig. 3d-g). The molecular mechanism underlying this phenomenon is a topic of further investigation. Since
many of the original lines had variation in the CD146 expression (Fig. 1b), we also differentiated two cell lines
with either no CD146 expression (DPSC 105) or high level of CD146 expression (DPSC 28). We observed that the
cells with the former phenotype showed minimal differentiation capacity. Though the expression levels of CD146
was not coercive to differentiation of a cell type, complete absence of CD146 led to impaired differentiation ability
in both osteogenic/odontogenic and adipogenic differentiation test (Fig. 3f,g). We also examined Runx2 (osteo-
blast/odontoblast marker) and LPL (adipogenic marker) expression levels in differentiated cells (Supplementary
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Figure 3. Osteo/odontogenic and Adipogenic potential of DPSCs. (a) Osteo/odontogenic cells were stained for
extracellular calcifications with Alizarin red stain. Adipogenic cells were stained for neutral lipids with BODIPY
and Oil Red O stain. (a) Spectrometric quantification of Alizarin stain normalized with cell numbers (DAPI
staining) showing all the candidate cell lines were able to differentiate into osteoblasts/odontoblast at different
levels except DPSC 43 which did not survive the osteogenic differentiation. (¢) Spectrometric quantification

of Oil Red O stain normalized with cell numbers (DAPI staining) showing all the cell lines were able to
differentiate into adipocytes at different levels and are highly resembling the differentiation levels of commercial
cell lines. (d-g) Treatment with TeSRmeta for 4 days did not have any impact on the differentiation potential

of the candidate cell lines, except for DPSC 43 in which it enhanced the survivability and differentiation to
osteoblasts/odontoblasts. (n =3 per cell line). Graph error bars are the means + SEM.
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Figure 4. The gene expression of DPSCs compared to MSCs, Fibroblasts and hESCs. (a) Principal component
analysis (PCA) of DPSCs, MSCs and hESCs showed that DPSCs and MSCs grouped together. (b)Principal
component analysis (PCA) of DPSCs with skin fibroblasts and MSCs from literature showed that DPSCs have
distinct expression profiles from foreskin fibroblasts. (¢) Volcano plot of genes differentially expressed in MSCs/
DPSCs vs. hESCs. (d) Volcano plot of genes differentially expressed in MSCs/DPSCs compared to fibroblasts.
(e) Volcano plot of genes differentially expressed in DPSCs vs. MSCs.

Fig. $2)°>%. Taken together, our data showed that the analysed DPSC lines were able to differentiate into adipo-
genic and osteogenic/odontoblastic lineages.

DPSCs exhibit a unique transcriptome profile. Transcriptome analysis was performed to identify
important genes specifically expressed in adult DPSCs. To achieve this goal, we systematically compared the
gene expression signature between embryonic stem cells (hESCs) and adult stem cells derived from bone marrow
and dental pulp (MSCs and DPSCs) (Fig. 4c). Similarly, the adult MSCs and DPSCs were compared with human
skin fibroblasts (Fig. 4d) to identify the genes that may be responsible for the stem cell properties of these cells.
Finally, the DPSCs were compared with bone marrow MSCs (Fig. 4e) to dissect the unique genes expressed in
DPSCs. The genes with false discovery rate <0.1 and fold change >1.5 were considered as differentially expressed.
Principal component analysis (PCA) indicated that the candidate DPSC cell lines clearly segregated from hESCs
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and co-localized with MSCs (Fig. 4a). PCA with skin fibroblasts, MSCs and DPSCs indicated clustering within
cell types (MSCs and DPSCs separated from fibroblasts) with minimal sample to sample variability (Fig. 4b).

The comparison between hESCs and MSCs/DPSCs identified MSCs/DPSCs enriched genes, including
MSC surface markers CD248 (Endosialin), CD73 (ecto-5'-nucleotidase), CD29 (ITGB1,Integrin beta 1)1,
(Fig. 4c, Supplementary Table S5, Supplementary Dataset Sheet 1). We further compared our data between
MSCs/DPSCs and human skin fibroblasts which revealed differentially expressed genes, such as ALPL(Alkaline
Phosphatase) and GDF5 (Growth Differentiation Factor 5) which promote mineralization and osteogenic
potential®®4, as well as negative regulators of cellular senescence TBX2 and JUND®> (Fig. 4d, Supplementary
Table S6, Supplementary Dataset Sheet 2). Furthermore, the comparison between DPSCs and BM-MSCs
revealed the unique genes expressed in DPSCs (Fig. 4e, Supplementary Table S7, Supplementary Dataset Sheet 3).
Interestingly, both MSX1, a protein responsible for osteogenic differentiation of DPSCs®, and BARX1 (BARX
Homeobox 1), a gene primarily known for its role in patterning of teeth®’-% were differentially up-regulated in
DPSCs compared to either fibroblasts, hESCs or BM-MSCs.

BARX1 as a DPSCs marker. The differentially-expressed gene in DPSCs compared to fibroblasts, BARX1
(Fig. 4d) is a transcription factor, part of the homeobox gene group responsible for early developmental pattern-
ing involving craniofacial development, teeth premordia and stomach specification from gut endoderm’ and
repression of cell migration in the context of cancer’".

To validate the RNA-seq results, we analysed BARX1 transcript and protein expression with RT-qPCR and
immunofluorescence. The Barx1 antibody was validated on HeLa cells transfected with BARX1 overexpression
vector (Supplementary Fig. S3). We next performed BARX1 immunofluorescence staining for DPSCs 29, DPSCs
292 and human skin fibroblasts (HFF-1) cell lines (Fig. 5). Our results showed that Barx1 was localized in the
nuclei of DPSCs as a punctate pattern, suggesting that Barx1 binds to specific chromosomal locations (Fig. 5b,c,e
and f). Importantly, skin fibroblasts showed no nuclear Barx1 protein signal in immunofluorescence (Fig. 5a,d)
and BM-MSCs (Lonza) expressed a low level of Barx1 (Supplementary Fig. S3). The BARX1 transcript qPCR
analysis supported the finding; DPSCs showed BARX1 expression while fibroblasts did not express BARX1 gene
(Fig. 5g). These data suggest that BARX1 is a DPSCs marker that can discriminate against fibroblast population.

Metabolic signature, predictive of the rapid aging. Recent work has revealed that cellular metabo-
lism plays other vital roles beyond simply the production of energy. In some situations, metabolism is shown to
regulate cellular fate””. While pluripotent stem cells can switch their metabolic requirements to facilitate cellular
changes and hematopoietic stem cells are regulated by metabolic changes’>”*, very little is known about adult
DPSCs metabolism, and if they utilize metabolism beyond cellular energy production. To analyse the metabolic
signature of DPSCs, we used the Seahorse platform to study various metabolic aspects of these cells. The mitos-
tress assay done by uncoupling the electron transport chain (ETC) and ATP synthase and treating the mitochon-
dria with FCCP revealed that the maximum mitochondrial oxygen consumption rate (OCR) was higher in adult
DPSCs than hESCs (Fig. 6a,b). The DPSC'’s ability to use lipids as an energy source was measured by an increase
in OCR with the presentation of palmitate as an energy substrate (Fig. 6¢,d, and Supplementary Fig. S4). Their
glycolytic capacity was assessed by measuring the extracellular acidification rate (ECAR) of the DPSCs after
addition of glucose and thereafter treating the cells with a glucose analogue, 2Deoxy-D-glucose (2DG) to block
glycolysis (Fig. 6f). The results showed that DPSCs were capable of utilizing both fatty acids and glucose as fuel for
ATP production (Fig. 6¢-f). However, interestingly, the RA DPSC lines 43 and 45 showed significant reduction
in the utilization of fatty acids and glucose as energy sources compared to SA DPSC lines 29 and 44 (Fig. 6¢c—f).
While the candidate cell lines included in this study showed comparable level of MSC markers CD146, and CD29,
we wanted to address the potential correlation of these markers and the metabolic profile. We selected two more
cell lines at random that showed higher expression than original candidate lines. We found that DPSC 125 that
expresses CD29 at a higher level, and DPSC 120 that expresses both CD29 and CD146 at higher level showed
similar capacity to utilize glucose as commercial DPSC Lonza (Supplementary Fig. S4).

Rapid aging DPSC cell lines showed increase in TGF-3 pathway activity and upregulation of
cytoskeletal regulators. To better understand the differences between the slow aging (SA: DPSC 29 and
44) and rapid aging cell lines (RA: DPSC 43 and 45) we analysed the proteomes of young/early passage (p3) and
old/late passage (p17) cells of each class (Fig. 7a). We examined the data for two markers that had been previously
suggested to mark levels of replicative senescence®’, CDNK2A (Cyclin Dependent Kinase Inhibitor 2A, and also
known as P16) and CDKN1A (Cyclin Dependent Kinase Inhibitor 1A, and also known as p21). CDNK2A is
reported to increase with senescence. Our proteomic data confirmed an increase of CDKN2A in both groups but
more significantly with the rapid aging group (p < 0.0001) (Fig. 7b). CDKN1A is reported to reach its maximum
at the onset of growth arrest and subsequently decrease with senescence™, and we noted a similar trend of down-
regulation in both senesced groups, but significantly more in rapid aging cell lines (p =0.0006) (Fig. 7b). These
markers support the different kinetics for senescence observed for DPSC 43/45 and DPSC 29/44.

Unbiased GO-term analysis of the proteomic data showed significant enrichment of muscle contraction
proteins, such as ACTN2 (Actinin Alpha 2), MYH11 (Myosin Heavy Chain 11, Smooth Muscle Isoform) and
CNNI1 (Calponin 1, Basic, Smooth Muscle) (Fig. 7¢,d) in rapid aging cell lines (DPSC 43,45) when comparing the
changes between late passage and early passage. Further analysis of the enriched muscle contraction proteins in
String-analysis algorithm revealed the following functional clusters: cell junction regulators, actomyosin structure
organization, focal adhesion, skeletal muscle contraction, smooth muscle contraction and calcium ion transport,
all of which involved in controlling the cytoskeleton of the cells (Fig. 7e, Supplementary Dataset Sheet 5 and 6).

We hypothesized that the enrichment in muscle contraction proteins in rapid aging cells (RA-DPSC 43, 45) in
late passages (p17), particularly the increase of the smooth muscle specific markers, CNN1 and MYH11, was an
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Figure 5. BARX1 gene as a new specific marker for DPSCs. (a—c) Immunofluorescent staining of Barx1 in
skin fibroblasts, adult DPSCs (DPSC 29), and deciduous DPSCs (DPSC 292) at low power magnification. (d-f)
Showing the nuclear localization of Barx1 transcription factor at high power magnification. Exposure settings
and laser intensity of the confocal microscope were adjusted and normalized for fibroblasts, and same settings
were used for the DPSCs. (g) Quantitative PCR reveals absence of BARX1 gene in BM-MSCs and in skin
fibroblasts. Fold change normalized to DPSC Lonza. Significance was determined by unpaired Student’s t-test;
n=23-6 per cell line; **p < 0.01; ****p < 0.0001; Graph error bars are the means & SEM.

indication of differentiation towards myofibroblast-like cells’*”>. It has been shown previously that fibroblasts’>””

or mesenchymal stem cells’®”° can differentiate into myofibroblast lineage when subjected to TGF-3 pathway.
Therefore, we examined our proteomics data further for TGF-{3 pathway related genes and found that some of the
TGEF-( pathway related proteins are enriched in rapid aging cells compared to slow aging cells in early passages
(Fig. 7f, Supplementary Dataset Sheet 7). These proteins were clustered by String software into two functional
categories: TGF-f3 receptor signalling, and Integrin-mediated cell-substrate adhesion. Of particular interest is
ITGBS5 (Integrin, Beta 5), a receptor for fibronectin, that has been found to mediate actin stress fiber formation®
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Figure 6. Metabolic assays showing the metabolic differences between the candidate DPSCs lines. (a,b)
Mitostress Assay shows that DPSCs have higher mitochondrial activity than human embryonic stem cells
(*p=0.002). (c,d) From the selected candidate cell lines, DPSC 29 and 44 use palmitate inferring their ability to
use fatty acid as an energy source. DPSC 43 and 45 have lower ability to use fatty acid as an energy source. (e,f)
Glycolysis stress assay conducted on the selected candidates shows that DPSC 43 and 45 have significantly lower
glycolytic capacity compared to DPSC 29, 44 and commercial DPSCs. Significance was determined by unpaired
Student’s t-test; n =3-12 per cell line; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; Graph error bars are
the means & SEM.

by activating the latent form of TGF-3 complex®#2. We also found that TGFB2 (an isoform of the TGF-{ ligand)
and the myofibroblast marker ACTA2% (also known as a-smooth muscle actin, a-SMA) were expressed at a
higher level in the rapid aging cell lines compared to slow aging cell lines in early passages (Fig. 7f) indicating a
possible autocrine activation of TGF-{ at early passages. These data further support our hypothesis that in rapid
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Figure 7. Proteomic analysis within the candidate cell lines. (a) Proteomic workflow used to identify
differentially regulated protein expression in young (early passage) versus old (late passage) DPSC in rapid aging
(lines 43, 45) or slow aging (lines 29, 44) cells. (b) Fold changes of replicative senescence markers, COKN2A
(known as P16) and CDKN1A (known as P21) in late passages of rapid aging cell lines (43 & 45) and slow aging
cell lines (29 & 44). (¢,d) Proteomics GO terms enrichment for slow aging (29 & 44) and rapid dividing (43

& 45) cell lines. (e) String analysis of enriched muscle contraction proteins expressed in late passages of rapid
aging cell lines. (f) Fold change of TGF-B pathway related proteins higher in rapid aging compared to slow

aging at early passages (P value < 0.05) (left), and String analysis of TGF-3 pathway proteins expressed in early
passages (P3) rapid aging cells at higher level than slow aging early passages (right).

aging RA-DPSCs, TGF-$ pathway and its muscle contraction gene targets were upregulated leading to spontane-
ous terminal differentiation towards myofibroblast-like cells in later passages.

TGF-3 pathway activation induces stress fiber formation and correlates with rapid DPSCs
aging. To examine the possibility of an autocrine effect underlining the rapid aging phenotype, we analysed
the predicted secretome of the young/early passage DPSCs, since secreted molecules can have an autocrine effect
in long-term cultures®!. We used VerSeDa online tool* to predict the secretome of young DPSCs based on the
transcriptomic data. We first used all expressed genes across different DPSC lines (Fig. 8a). The result contained a
set of four thousand genes of secreted or transmembrane proteins. We performed gene ontology (GO) enrichment
analysis to have an overview of the biological processes involved in DPSCs secretome (Supplementary Fig. S5).
Some of the top GO terms were “extracellular matrix organization’, “cell adhesion’, and “positive regulation of cell
migration” marking proteins which are expected to be in any MSCs secretome®. More interestingly, the GO term
“response to hypoxia” including genes such as VEGFA (vascular endothelial growth factor A), and VEGFB, might
explain the DPSCs sensitivity to hypoxia, as previously reported®. The GO term “semaphorin-plexin signalling
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Figure 8. Activation of TGF-( pathway leads to formation of more actin stress fibers. (a) A simplified flowchart
that shows the process of utilising VerSeDa secretome prediction utilities to analyse the predicted secretome
in DPSC. (b) Signaling pathway impact analysis (SPIA) showing relatively activated or inhibited signaling
pathways in rapid aging cell lines’ predicted secretome compared to slow aging cell lines. (False discovery
rate <0.1). (c,d) Activation of TGF-(3 pathway by adding Activin to the DPSCs growth media for 2-days
increases actin stress fiber formation (d), compared to control (c). (e-h) Representative confocal images of
DPSC 44 and DPSC 45 comparing the size and intensity of the actin fibers at passage 4, and passagel6. (i)
Quantification of stress fibers in early passage (P3) DPSC Lonza in control, and after treating with Activin for
2-days. Significance was determined by unpaired Student’s t-test; n =100 cells were counted per condition;
*p=0.03; Graph error bars are the means £ SEM. (j) Quantification of cells with senescence phenotype at
passage 16 in DPSC 44 and DPSC 45. Significance was determined by unpaired Student’s t-test; n =100 cells
were counted per condition; *p =0.0005; Graph error bars are the means + SEM. (k) Hypothetical model:
DPSCs transcriptome and metabolic analysis suggest that low glycolysis and fatty acid oxidation (FAO) and
upregulation of TGF-$ activity at early passages are predictive for rapid aging phenotype in later passages.
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pathway” which includes different families of semaphorin ligands & plexin receptors®” suggests that this pathway
maybe used in DPSCs migration process towards the injury site!!. DPSCs are also expressing NGF (Nerve Growth
Factor) as previously reported®.

We further performed GO term enrichment analysis between secretome genes up-regulated in SA and RA
cell lines at early passages. Terms such as “axon guidance” and “cell migration” were upregulated in slow aging
cells, which include genes for multiple semaphorin family proteins, as well as BMP4 (bone morphogenetic pro-
tein 4) (Supplementary Fig. S5). Semaphorin 3E (SEMA3E), Semaphorin 4D (SEMA4D) and Semaphorin 5 A
(SEMAS5A) have been reported to inhibit focal adhesion by promoting the disassembly of integrin and actin stress
fibers on multiple different cell types including glia, platelets, different types of immune cells, and a number of
cancer cell lines, as well as promoting proliferation and cell migration of endothelial cells®*-*2. BMP4 has been
suggested to attenuate the effect of TGF-32 on the accumulation of extracellular matrix adhesion proteins and
therefore aid in cell migration®***. In contrast, terms such as “cell adhesion” and “chondrocyte development” were
upregulated in rapid aging cells which include aggrecan(ACAN), fibronectin, integrin & osteonectin (SPARC),
all of which are reported to be up-regulated under TGF-{3 pathway activation’®5-1%2 (Supplementary Fig. S5).

To further analyse the differences in the secretome between rapid aging cells and slow aging cells, we used
Signalling Pathway Impact Analysis (SPIA) method*, since signalling pathways in particular are closely related
to secretome of MSCs'%. SPIA analyses the differentially expressed genes and their log fold changes while taking
into consideration the signalling pathway network topology from KEGG database (Kyoto Encyclopedia of Genes
and Genomes), in order to identify pathways relatively activated or inhibited in a given set of genes. The results
from SPIA confirm that TGF-{3 pathway, focal adhesion and regulation of actin cytoskeleton are activated at the
transcriptomic level in rapid aging cells compared to slow aging (Fig. 8b, Supplementary Dataset Sheet 8), which
is what we found at the proteomic level as well.

To test the function of TGF-3 pathway for activating actin stress fibers in DPSCs, we treated the SA DPSCs
with Activin, and found a significant increase in actin stress fibers in SA DPSCs (Fig. 8¢,d,i). Similar stress fibers
were previously observed in fibroblasts (Fig. 5a). These data show that TGF-3 pathway activation is sufficient for
actin stress fiber formation in SA DPSCs and suggest that TGF-{3 pathway activation in RA DPSC results in stress
fiber formation and premature senescence. We tested this by quantifying the cells with stress fibers in RA late pas-
sage DPSCs. Importantly, we observed a significant increase in stress fiber formation in RA cells, later passages (P
value=0.0001) (Fig. 8e-h,j-k). One of the inhibited pathways in RA cells is the Hippo pathway (Fig. 8b), which
has been suggested to control cell proliferation of DPSCs!'%. Therefore, low Hippo pathway activity and TGF-3
induced stress fiber formation may explain the slow division rate in RA cells compared to SA cells.

To further dissect the genes that contributed to the slow cell division, a transcriptome level analysis was
performed comparing early passage slow vs. rapid aging cells. The genes which might be responsible for their
aging and metabolic profile were identified (Supplementary Fig. S6, and Supplementary Table S8, Supplementary
Dataset Sheet 4). Some of the key genes enriched in early passages of rapidly aging (RA) cell lines were cell
cycle regulators. One of these genes, G0S2 is a GO/G1 switch protein also found to be associated with replicative
senescence of human dermal fibroblasts!® and is known to maintain quiescence in hematopoietic cells!%. Other
enriched genes, GATA2 (GATA Binding Protein 2) and DDIT4 (DNA Damage Inducible Transcript 4) are also
known to regulate quiescence in hematopoietic stem and progenitor cells (GATA2)'%, or regulates mesenchymal
stem cell fate through mTOR pathway (DDIT4)!%. Interestingly GOS2 blocks lipolysis through direct interaction
and inhibition of triglyceride hydrolase activity of Adipose triglyceride lipase!®, and together with GATA2 are
both regulated by PPAR-~, connecting them to metabolic regulation. In the rapidly aging cell lines (RA-DPSC
43 and 45) the utilization of glucose or fatty acids as fuels for ATP production is significantly reduced compared
to the SA cell lines, DPSC lines 29 and 44 (Fig. 6¢-f). Importantly, this dramatic reduction in glycolytic capacity
or fatty acid beta-oxidation was observed in DPSC 45 and 43 already at the early passages (P3). Therefore, the
genes connected to metabolic regulation may be responsible for challenged lipid metabolism in rapidly aging cells
and might promote terminal differentiation and thereby favour cellular senescence. These findings highlight the
predictive metabolic signature for DPSCs aging in vitro. It will be important to investigate if metabolic signature
is also predictive for DPSC aging in vivo. The identified predictive signals in vitro could aid in the selection of an
optimal population of DPSCs to be used for in vitro expansion and further development of cell based therapy in
the future.

Discussion

Here we studied the aging of dental pulp stem cells (DPSCs), a population of adult stem cells that is known to
participate in the repair of an injured tooth. Using high throughput transcriptomic and proteomic analysis we
identified markers for DPSC populations with accelerated replicative senescence. In particular, we show that the
transforming growth factor-beta (TGF-(3) pathway and the cytoskeletal proteins are upregulated in rapid aging
DPSCs, indicating a loss of stem cell characteristics and spontaneous initiation of terminal differentiation. Using
metabolic flux analysis, we identified a metabolic signature for the rapid aging DPSCs, prior to onset of the senes-
cence phenotypes. This metabolic signature is therefore predictive for rapid DPSCs aging.

It has been shown that mesenchymal stem cells age during in vitro expansion and exhibit characteristic hall-
marks of aging such as replicative senescence and decrease in telomerase length!'’. We studied the effects of
in vitro aging in DPSCs and observed that DPSCs showed differences in the rate of replicative senescence. A
proteomic analysis of rapid and slow aging cells revealed that genes responsible for muscle contraction were
upregulated in rapid aging DPSC (late passage cells vs early passage cells). We hypothesized that the rapid aging
cells were differentiating into myofibroblasts-like cells in later passages. It has been shown previously that fibro-
blasts’®”” or mesenchymal stem cells”® can differentiate into myofibroblast lineage when subjected to TGF-{ path-
way activity. We confirmed the upregulation of TGF-3 pathway related proteins in rapid aging cells compared
to slow aging cells at early passages and validated that activation of TGF-{ pathway significantly increased actin
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stress fibers in DPSCs. TGF-31 induces mobilization and rapid polymerization of actin cytoskeleton and leads to
the formation of stress fibers, a known morphological hallmark of cellular differentiation and aging'''-''*. More
recently, treatment of DPSC with Notch ligand Jagged1 has shown to lead to reduced proliferation, upregulation
of TGF-(3 and differentiation markers!'®, which could be correlated to our findings in rapid aging DPSCs. We now
propose that upregulated TGF-(3 pathway genes may be considered as a hallmark of early onset of spontaneous
differentiation in primary DPSCs in long-term cultures (Fig. 8).

Cellular metabolism has been implicated in cell fate determination and stem cell activity in a variety of dif-
ferent contexts''*~''?. Highly proliferative stem cells have unique metabolic requirements'?’, and they have the
ability to switch between different metabolic pathways depending on changes in substrate availability’>. Switching
between different metabolic pathways can also regulate quiescent stem cell populations and the onset of differ-
entiation'?'~2°. We now show that adult stem cells, DPSCs, are metabolically highly active cells that can utilize
multiple fuel sources for ATP production. Mitochondrial theory of aging posits that mitochondrial aging is a
fundamental cause of cellular aging!'?’. Accordingly, we find that the metabolic profile of DPSCs with early onset
of cellular aging differ from the DPSCs with slow aging. In particular, DPSCs showing early onset of cellular
aging exhibited lower glycolytic capacity and had highly reduced capacity to utilize lipids as an energy source.
Importantly, these defects in preferred fuel usage were observed prior to the onset of other phenotypes, such as
slow division rates. We therefore argue that metabolism serves as an early, predictive indicator of DPSCs tendency
to lose stem cell self-renewal capacity. This raises the possibility that regulation of replicative senescence is con-
trolled by similar switch in metabolism as seen previously with regulation of quiescence.
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