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A B S T R A C T

Background and objectives: Several major risk factors for cancer involve vascular oversupply of energy to

affected tissues. These include obesity, diabetes and chronic inflammation. Here, we propose a poten-

tial mechanistic explanation for the association between energy oversupply and cancer risk, which we

call the metabolic cancer suppression hypothesis: We hypothesize that oncogenesis is normally sup-

pressed by organismal physiology that regulates and strictly limits normal energy supply to somatic

cells, and that this protection is removed by abnormal oversupply of energy.

Methodology: We evaluate this hypothesis using a computational model of somatic cell evolution to

simulate experimental manipulation of the vascular energy supply to a tissue. The model simulates the

evolutionary dynamics of somatic cells during oncogenesis.

Results: In our simulation experiment, we found that under plausible biological assumptions, elevated

energy supply to a tissue led to the evolution of elevated energy uptake by somatic cells, leading to the

rapid evolution of both defining traits of cancer cells: hyperproliferation, and tissue invasion.

Conclusions and implications: Our results support the hypothesis of metabolic cancer suppression,

suggesting that vascular oversupply of energetic resources to somatic cells removes normal energetic

limitations on cell proliferation, and that this accelerates cellular evolution toward cancer. Various

predictions of this hypothesis are amenable to empirical testing, and have promising implications for

translational research toward clinical cancer prevention.
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BACKGROUND AND OBJECTIVES

It is generally accepted that cancer develops through somatic

mutation and clonal selection, but selection is more difficult to

observe. As a result, quantitative measures of selection in cancer

evolution have lagged, and the relative importance of selection

has been debated [1]. Relevant to this debate, it has recently been

shown that the somatic ‘driver’ mutations most strongly

associated with cancers, and most positively selected in cancers,

are also common in normal somatic tissues [2, 3], where they do

not reach such high frequency, suggesting that they are not

strongly selected in these normal tissues, despite being under

strong selection in cancers [4]. This suggests that the difference

between normal cells versus those involved in oncogenesis res-

ides not only in what mutations arise, but also in what mutations

are positively selected. This in turn suggests that a critical influ-

ence on the oncogenesis process lies in the distinctive selective

microenvironment of those tissues that give rise to cancer.

The idea has been suggested previously that oncogenic micro-

environments may somehow select for the malignant properties of

cancer cells, but usually without detailing specific and testable

hypotheses. One specific suggestion is that on all biological scales,

disturbed resource-rich environments select for ‘profiteering pheno-

types’, such as those of cancer cells [5]. This suggestion is plausible

based on the described parallels between cancer evolution and clas-

sical ecology. However, no causal mechanism was suggested for the

effect on cancer risk, and no explicit connection was drawn to cancer

epidemiology. We therefore undertake here to formalize this hypoth-

esis in a computational model to study its dynamics and to evaluate

how well it conforms with the principles of clonal evolution by natural

selection, and with recognized patterns in cancer epidemiology.

Multiple cancer risk factors may share the same underlying

mechanism

Several major risk factors for cancer involve vascular oversupply of

energy to affected tissues (Supplementary Table S1). Although

each of these four factors is strongly associated with cancer risk,

causal mechanisms have generally not been demonstrated.

Here, we propose the metabolic cancer suppression hypothesis

as a potential mechanistic explanation for the association between

cancer risk and vascular oversupply of energy to tissues, which is

present in each of the four conditions listed in Supplementary Table

S1. The hypothesis is that dysregulated oversupply of energetic

resources to somatic cells abrogates the normal metabolic cancer

suppression created through organismal limitation of tissue energy

supply, and thereby accelerates cellular evolution toward cancer.

MICROENVIRONMENTAL ECOLOGY SHAPES THE
SOMATIC EVOLUTION OF CANCER

As principles from ecology and evolutionary biology are increas-

ingly applied to cancer biology, e.g. [5] this perspective

emphasizes the importance of the cell microenvironment, which

provides the selective pressures that drive somatic cell evolution

during oncogenesis. Here, we apply this evolutionary ecology per-

spective to cancer etiology and prevention. Using an in silico evo-

lutionary model of oncogenesis, we formalize and evaluate the

hypothesis that cellular access to excess energy is a direct causal

factor in oncogenesis. We suggest that cancer is normally sup-

pressed by organismal physiology that regulates and strictly limits

normal energy supply to somatic cells, and thereby limits their

proliferation. We call this the metabolic cancer suppression

hypothesis.

Because it is difficult to directly observe the interactions among

mutations, microenvironments, cell fitness, and the resulting evo-

lutionary dynamics, computational models play an important role

in understanding mechanisms of somatic cell evolution in onco-

genesis [6, 7]. A previous in silico evolutionary model showed that

even when the rate and types of mutation were held constant,

somatic cell evolution in the spatially structured environments

of tissues depended on the conditions of cell micro-environ-

ments, as did cancer outcomes [8].

ENERGY DISTRIBUTION AND ALLOCATION ARE
TIGHTLY CONTROLLED IN NORMAL MAMMALIAN
TISSUES

Distribution of energy resources through the mammalian vascu-

lar system is optimized for the whole organism, through a distri-

bution system that equitably meets the energetic needs of all

somatic cells [9, 10]. A previous in silico model showed that greater

cell access to energy can increase selection for mutations sup-

porting hyperproliferation and cell motility [8]. This suggested the

possibility that energy excess might be the common

microenvironmental mechanism underlying multiple cancer risk

factors that apparently involve supply of energy resources to af-

fected tissues (Supplementary Table S1).

MULTIPLE CANCER RISK FACTORS APPARENTLY
INVOLVE CELLULAR ACCESS TO EXCESS ENERGY

Caloric restriction, or ‘energy restriction’ dietary regimens, which

restrict energy intake to minimal survival levels, have strong can-

cer preventive effects in animal models, with experimental results

suggesting the relation between energy supply and cancer risk is

dose-dependent and robust. Indeed, ‘calorie restriction is argu-

ably the most potent, broadly acting dietary regimen for suppress-

ing the carcinogenesis process’ [11].

In most discussions of mechanisms of cancer risk, diet and the

other factors listed in Table 1 have been considered separately

from each other and were often discussed primarily in terms of

distinct signaling or molecular pathways. Many possible molecu-

lar mechanisms have been considered to explain the anticancer

effects of reduced energy supply, including the intervening effects
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of various hormones, growth factors and adipose-derived factors

[12]. We agree that these regulatory pathways are important.

However, no single pathway is clearly dominant, and they all func-

tion to regulate energy allocation and usage in response to

changing energy availability. We suggest that all these regulatory

pathways function to balance the same underlying biophysical

constraints: that energy availability is often biologically limiting,

and that cell proliferation is energetically expensive. This energetic

cost is manifested in the fact that for unicellular organisms in very

energetically restricted conditions, no cell proliferation occurs,

and metabolism is constrained to only the most essential survival

functions [13]. Within multicellular organisms, the same con-

straint on cells is observed, but energy availability in a somatic

cell’s microenvironment is determined by the organism’s vascular

network. When freed from this organismal constraint by growth in

culture, mammalian cells increase their energy consumption by

several orders of magnitude [9]. Under the normal constraint of

limited vascular energy delivery, the rapid cell proliferation char-

acteristic of cancer poses a profound metabolic challenge that

requires substantial reorganization of cell metabolism [14].

Under starvation conditions, normal cells reduce energy expend-

iture and divert it from growth to maintenance. In cancer cells, this

response is blocked by oncogene expression, leaving cancer cells

more prone than normal cells to death under starvation condi-

tions [15].

We propose that the ultimate mechanism by which dietary cal-

oric restriction reduces cancer is that reduced energy availability

to cells suppresses cell proliferation, which, in turn, reduces the

potential for cell evolution toward cancer. Moreover, we propose

that this mechanism is not unique to the risk factor of dietary

intake, but that it also applies to the other risk factors listed in

Table 1. If energetic excess in the diet leads to energetic excess in

the cell microenvironment, that link can only be through increased

energy distribution via the vascular distribution network, suggest-

ing a role for hyperglycemia in this causal chain.

Indeed, the risk of several types of cancer is significantly

associated with diabetes and hyperglycemia [16], and this associ-

ation appears to be causal, with diabetes and hyperglycemia

increasing cancer mortality across multiple cancer types. There

is strong and growing evidence that degree of hyperglycemia in-

fluences cancer risk [17]. Obesity appears to arise from, but not

contribute to, this causal chain, as hyperglycemia is associated

with cancer risk for several organ sites independently of obesity

[18].

Despite lack of evidence for a direct causal relationship, obesity

and overweight are associated with increased death rates from

many different cancer types at multiple organ sites [19]. Because

of the strength of this association, it was tempting to assume that

obesity directly causes cancer, e.g. [20]. However, the available

evidence does not support that assumption. Although obesity is

generally associated with cancer risk, this association does not

hold for those people described as the ‘metabolically healthy

obese’ [21]. Our hypothesis predicts that the most direct cancer

risk factor associated with obesity is a history of chronic hypergly-

cemia. Indeed, experimental evidence from an animal model in-

dicates that their association arises because obesity and cancer

both arise from the same upstream causal factors, including a

history of chronic positive energy balance and chronic hypergly-

cemia [22].

In contrast to the clearly energy-related risk factors in Table 1, it

may be less obvious how chronic inflammation fits in with our

hypothesis. Chronic inflammation is associated with many types

of cancer [23], and anti-inflammatory medication has shown

promise in cancer prevention [24]. We suggest that chronic in-

flammation does indeed cause cancer risk by increasing energy

delivery to tissues and cells. Inflammation is a complex condition

involving several physiological processes, but discussions of its

role in oncogenesis often focus solely on immunological aspects

[23]. However, prior to its later immunological manifestations, the

first part of the inflammation response is vascular. The character-

istic redness, heat and swelling of inflammation result from vaso-

dilation—enlargement of blood vessels in the affected tissue.

Even a slight vessel dilation can cause a large increase in resource

delivery (Fluid delivery through a cylindrical vessel is proportional

to the fourth power of vessel diameter, generating a steep increase

with vasodilation, and the effect may be stronger in

microvasculature, where blood cells must deform to squeeze

through microscopic vessels.). Clinical data on humans confirm

that vasodilation increases oxygen delivery to tissues [25]. For the

same physical reasons, vasodilation presumably increases deliv-

ery of oxidizable energy substrates as well, providing more energy

and potentially supporting increased cell proliferation. Some

Table 1. Four major cancer risk factors that may reflect the same underlying energetic mechanisma

Risk factor Local or systemic? Proposed mechanism of risk

Dietary caloric intake Systemic Hyperglycemia

Hyperglycemia Systemic Cell hyperproliferation

Obesity Systemic History of hyperglycemia

Chronic inflammation Both History of energy oversupply

aThe right-most column summarizes the proximal causal mechanisms we propose in this article.
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chemical agents that cause vasodilation do also increase local cell

proliferation in animal models (e.g. [26]).

Normal physiology includes regulated short-term vasodilation

with various functions, including temporary inflammation sup-

porting immune response and healing. In contrast, chronic in-

flammation, with its chronic vasodilation, is a pathologically

dysregulated state [27]. Chronic local inflammation of specific

organs is associated with cancers of those organs [28]. Chronic

systemic low-grade inflammation, also termed ‘metaflammation’,

may reportedly account for as much as 90% of all human cancer

[29] or even as much as 95% [30].

METHODOLOGY

To formalize and evaluate the hypothesis that energetic excess

exacerbates cancer risk, we used an agent- or individual-based

model, which is a computer simulation in which each individual

cell is tracked explicitly, along with its properties [31, 32].

Like any useful model, ours was highly simplified and therefore

unrealistic in many details. Building a fully realistic and complete

representation of the system under study is not the goal of effect-

ive modeling [31, 32]. Rather than trying to represent every aspect

of oncogenesis, our model was designed to represent one specific

question about this complex process: Might normal physiological

constraints on cell energetics plausibly play a role in suppressing

cancer? This question served as a filter to exclude all those elem-

ents of real biology that were not essential to formalizing our

question.

In computer software, we built a stochastic agent-based model

representing a population of somatic cells in a 2D grid space

representing a small monolayer of somatic tissue cells embedded

with a vascular capillary bed. The model architecture followed that

of previous modeling work [8], and rested on similar assumptions.

The model was implemented using the NetLogo 6.0 modeling

platform [33, 34]. The model algorithm is briefly summarized

below, and is described in more detail in a Supplementary

Appendix. The full model source code (for NetLogo 6.0) is also

available on request.

Brief model description

The model was a stochastic agent-based computational model

with discrete time steps, and discrete 2D space, representing a

tissue layer for in silico experiments.

The central assumptions of the model were the following:

(i) Cancer arises through the evolution of somatic cells due
to cell-heritable somatic changes (genetic or epigenetic
mutations) affecting cell traits that influence Darwinian
cell fitness (rates of survival and proliferation).

(ii) Somatic cell evolution is limited by the rate of cell
division, which provides limiting opportunities for both

mutational change and Darwinian selection among
cells.

(iii) Cell division is energetically expensive and can be
limited by energy scarcity in the cell microenvironment
[9, 13].

(iv) Normal vascular physiology is regulated to provide tis-
sues with sufficient energetic resources for cell survival
and function, but not for cell division, except under
temporary special conditions wherein cell proliferation
is needed by the multicellular organism. Thus, individ-
ual somatic cells do not normally control their own
energy supply.

The agent-based computer model consisted of collections of

three types of software ‘agents’ representing three key elements of

solid tissues. Those three agent types were as follows:

(i) ‘Capillaries’, the terminal delivery units of the vascular
system, delivered energetic resources to tissues at a
rate that was normally regulated by the multicellular
organism for overall organismal benefit.

(ii) ‘Microenvironments’: Each capillary was surrounded
by a tissue microenvironment containing a level of
energetic resources that reflected both the rate of re-
source delivery by the capillary, and the combined rate
of resource uptake by the multiple cells residing within
the microenvironment.

(iii) ‘Cells’ took up energetic resources from their micro-
environment, at a rate determined both by the cell’s
internally determined resource demand, and by re-
source availability in its microenvironment. When
combined cell demand exceeded microenvironmental
availability, cells competed for energetic resources
based on their heritable resource demand. Cells used
energy first for survival and basic functioning; then,
used any excess for biosynthesis and cell division.
Cells that did not meet their energetic requirement
for survival died, while those acquiring sufficient in-
ternal energy reserves divided, with trait inheritance
subject to stochastic mutation.

SIMULATION EXPERIMENT

We used the model described above to perform one core experi-

ment: To test the effect of energy availability on oncogenesis, we

held constant all other parameters (Supplementary Table S1), and

systematically varied the rate of vascular energy delivery. Because

the model was stochastic, for each setting of energy delivery rate,

we performed 1000 simulation runs with different random num-

ber seeds and combined the results for statistical analysis.

Simulation termination and scoring of outcomes

We interpreted as cancer cells, any cells in which accumulated

mutations had increased resource uptake (supporting hyper-pro-

liferation), and had also increased motility, relative to unmutated

cells. We interpreted a simulation run as having a cancer outcome
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when cancer cells became predominant (>50%) in our simulated

piece of tissue, and some cancer cells had also escaped the

bounds of the simulated experimental tissue piece by moving

out into surrounding normal tissue (representing tissue invasion

and malignancy). Each simulation run continued until it reached a

cancer outcome, at which point the run was automatically

terminated and the elapsed time was automatically recorded for

analysis.

RESULTS

Stability of normal tissue

Under default conditions, representing normal tissue, vascular

energetic supply was just enough to meet the combined basal

power requirements (BPRs) [13] of all cells in each capillary micro-

environment. This resulted in a stable tissue, in which somatic

cells were very slow to evolve any changes. Because the potential

resource uptake of normal cells slightly exceeded BPR

(Supplementary Table S1), normal cells occasionally did accumu-

late sufficient energy reserves to divide and proliferate even under

the control condition of normal resource delivery, but this

occurred only when resource availability increased locally, due

to the stochastic death of other cells in the microenvironment.

Through this cell turnover from background mortality, some cell

lineages did eventually acquire mutations, and did slowly evolve

first increased resource demand and consumption (leading to

hyperproliferation), and later, cell motility (leading to malignant

tissue invasion).

Normal tissue was not easily destabilized by mutations. From

the earliest time steps of a model run, mutations arose that

increased cells’ demand for energy resources, and thus increased

their growth and proliferation relative to normal cells, but the re-

sulting neoplastic clones were self-limiting without motility,

which evolved later. A high-consumption clone could undergo

only a few rounds of cell division before the resource demand of

the growing clone exceeded the delivery rate of its local capillary,

so that resource limitation prevented further proliferation. Non-

invasive neoplasms were therefore self-limiting to the micro-

scopic scale, except through slow growth limited by resource dif-

fusion between microenvironments, which allowed few mitotic

opportunities for further mutation and evolution. This situation

persisted until cell motility evolved within the neoplastic clone,

followed by malignant invasion of surrounding capillary neighbor-

hoods and ultimately a cancer outcome.

Experimental simulation results

Tissue stability was maximized, and cancer was maximally

delayed, under the normal minimal energy supply, providing cells

with only their BPR (Fig. 1). Any lower supply of energy caused cell

loss and tissue wasting. In contrast, under conditions of energy

oversupply, mutated cell clones rapidly evolved first increased

energy demand, allowing hyperproliferation, then increased mo-

tility. Under conditions of resource oversupply, this process

culminated in cancer through the same evolutionary route as

under normal energy supply, but much more rapidly. Any increase

in energy delivery above the basal maintenance level resulted in

significantly reduced waiting time to cancer (Fig. 1); (t-test of the

smallest delivery increase vs normal rate, P < 0.01). Further in-

creases caused diminishing, but still significant, reductions of

waiting time (Jonckheere-Terpstra trend test: P < 0.0002).

SENSITIVITY ANALYSIS

Some parameters in our computational model were set to default

values that we could not rigorously justify on biological grounds,

because the relevant measurements have not been published.

Therefore, we carried out a sensitivity analysis on all nine default

parameter values (Supplementary Table S1), to determine

whether our key result was robust. Our only goal was to evaluate

how deviations from the default value of each parameter affected

the relationship between resource delivery rate and waiting time

to cancer. Hence, we focused on two-way interactions between

fixed parameter values and the (variable) resource delivery rate in

their effect on cancer outcome. Using the one-factor-at-a-time

approach [35, 36], we varied each of the default parameter values

(Supplementary Table S2) separately, using both a 2-fold increase

and a two-fold decrease for each. In each such variant, our key

result held: each experimental value of increased energy delivery

above the normal (BPR) level significantly reduced waiting time to

cancer (t-tests, P < 0.05 for each parameter setting).

CONCLUSIONS

Based on our simulation results, we conclude that the metabolic

cancer suppression hypothesis reflects sound reasoning about

somatic cell evolution toward cancer and is a plausible candidate

mechanism for the cancer risk factors listed in Table 1.

Limitations and caveats

Because our model was intentionally simplified to represent a

focused question, rather than all aspects of oncogenesis, its omis-

sion of many factors known to be important in oncogenesis is not

meant to imply that they are unimportant.

Simulation studies alone cannot establish causality in the real

world. Their main contribution is to formalize hypotheses that

may then become plausible enough and important enough, to

merit empirical testing. Toward that goal, we attempted to evalu-

ate whether the metabolic cancer suppression hypothesis is logic-

ally coherent internally, and is consistent with important empirical

patterns in cancer epidemiology. The scientific method is most

effective when it exploits multiple competing hypotheses [37]. But
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here, we propose and evaluate just one hypothesis. The publica-

tion bias for such studies is probably large, as negative evalu-

ations are unlikely to be published. Therefore, we suggest that a

critical reader should focus on whether our assumptions are valid,

and whether their logical implications were correctly formalized in

the computational model.

Cancer risk in the framework of somatic evolution

Some early ideas about mechanisms of cancer risk came from

observations that chemical exposures can act either as cancer

initiators, by inducing somatic mutation, or as promoters, by

inducing cell proliferation [38]. Our current results help to inte-

grate those classical ideas into the modern framework of somatic

cell evolution, building on, e.g. [39–41]. In our simulated experi-

ment, excess energy availability acted as a cancer promoter,

accelerating oncogenesis by increasing cell proliferation.

Increased cell proliferation was oncogenic because it modified

selective pressures, creating positive selection for oncogenic cell

traits that in normal tissue were weakly, or even negatively,

selected.

Our simulation results are consistent with empirical observa-

tions of cancer risk that is normally low but increasing with age,

and also with the metabolic risk exposures we modeled. Our ob-

servation that positive selection for cell motility only occurred in

cell lineages that had already evolved abnormally high resource de-

mand and cell proliferation replicated earlier simulation

results [8].

A possible common mechanism behind superficially

distinct cancer risk factors

Throughout biology, Darwinian evolution is typically shaped by

resource ecology [42], so it is unsurprising to find the same rela-

tionship in the somatic Darwinian evolution that underlies onco-

genesis. The unique feature of somatic cell evolution is that the

resource ecology of somatic cells is controlled by the multicellular

organism, including its systems for internal resource allocation.

Indeed, the comparative study of multicellular organisms has

shown that equitable internal resource allocation is one of the

universal foundations of multicellularity, and that, throughout

all multicellular life, ‘disruption of, or manipulation of, resource

transport systems are central characteristics of cancer’ [43]. Our

results support and explain that observation.

To seek mechanistic understanding of diverse cancer risk fac-

tors, it is customary to investigate the unique molecular pathways

involved in each. In parallel, however, this field can gain other

useful insights by searching for commonalities and general prin-

ciples suggested by relevant evolutionary and ecological theory. If

our current hypothesis is substantiated by empirical tests, this

Figure 1. Effect of increased vascular delivery of energetic resource. Circle markers show average over 1000 simulation runs, and error bars show 95% CIs
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mechanistic insight may help in designing effective health inter-

ventions by targeting general physiological processes rather than

specific molecular aberrations, which are more sporadic and het-

erogeneous, and are also common outside of oncogenesis.

Testable predictions and translational opportunities

One key empirical prediction from our hypothesis and results is

that any pathological condition that abnormally increases delivery

of energetic resources to tissues is expected to increase cancer

risk in the affected tissues. The translational corollary for cancer

prevention is that such risk factors can be ameliorated by main-

taining or restoring the normally restricted vascular energy deliv-

ery. Although we have highlighted four important causes of

oversupply of energetic resources, other causes likely exist, and

each constitutes opportunities for empirical tests of the hypoth-

esis, and for translational application. For example, our hypoth-

esis predicts that chronic exposure to any agent with a

vasodilating effect may increase cancer risk. Alcohol drinking

may be the most important such candidate. It is an established

risk factor for several malignancies, based on statistical associ-

ation [44, 45], but no clear mechanism has yet been established. It

is known, however, that alcohol drinking is a powerful vasodilator,

and is reported to be, ‘even more effective in this respect than the

normal vasodilator drugs’ [46].

Our hypothesis suggests likely mechanisms of several other

cancer risk factors beyond those in Table 1. Just as our mechan-

istic hypothesis can explain the generalization that obesity is

often, but not always, a cancer risk factor, it can also explain the

generalization that chronic inflammation is often, but not always,

carcinogenic. Our more mechanistically specific formulation is

that inflammation is oncogenic particularly when it involves vaso-

dilation. This would exclude as risk factors some forms of chronic

inflammation such as psoriasis, which suppresses vasodilation

[47]. One translational corollary would be a prediction that those

anti-inflammatory agents most effective in cancer prevention will

be those that are most effective at ameliorating chronic

vasodilation.

Our hypothesis can also address open mechanistic questions

about how physical activity protects against cancer risk. Higher

physical activity is associated with reduced risk of many cancer

types. Several physiologic and biochemical mechanisms have

been hypothesized to link physical activity to cancer risk, but the

mechanistic connection remains unclear [48]. Our hypothesis pre-

dicts that the effect of physical activity most relevant to cancer

prevention may be reduction of chronic hyperglycemia. Some em-

pirical evidence is consistent with this prediction. In a study

tracking how various clinical biomarkers respond to levels of phys-

ical activity, one of the largest effects was seen for blood glucose

[49]. If our prediction is met, blood glucose monitoring may be-

come useful for tracking the anti-cancer effectiveness of exercise

regimens through this surrogate endpoint that can provide faster

response and higher sensitivity than long-term monitoring of can-

cer outcomes. This is a readily testable prediction.

More generally, future progress in preventing cancer through

lifestyle management may depend on providing better support

and motivation to follow existing guidelines that have proven ef-

fective [50]. According to the present hypothesis, tracking chronic

hyperglycemia and chronic vasodilation may hold promise for

rapid quantitative feedback to reduce risk through guided lifestyle

management.

supplementary data

Supplementary data is available at EMPH online.
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