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Abstract. Multiple sclerosis (MS) is a white matter (WM) disease characterized by the formation of WM lesions,
which can be visualized by magnetic resonance imaging (MRI). The fluid-attenuated inversion recovery (FLAIR)
MRI pulse sequence is used clinically and in research for the detection of WM lesions. However, in clinical
settings, some MRI pulse sequences could be missed because of various constraints. The use of the three-
dimensional fully convolutional neural networks is proposed to predict FLAIR pulse sequences from other
MRI pulse sequences. In addition, the contribution of each input pulse sequence is evaluated with a pulse
sequence-specific saliency map. This approach is tested on a real MS image dataset and evaluated by compar-
ing this approach with other methods and by assessing the lesion contrast in the synthetic FLAIR pulse
sequence. Both the qualitative and quantitative results show that this method is competitive for FLAIR synthesis.
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1 Introduction
Multiple sclerosis (MS) is a demyelinating and inflammatory
disease of the central nervous system and a major cause of dis-
ability in young adults.1 MS has been characterized as a white
matter (WM) disease with the formation of WM lesions, which
can be visualized by magnetic resonance imaging (MRI).2,3

The fluid-attenuated inversion recovery (FLAIR) MRI pulse
sequence is commonly used clinically and in research for the
detection of WM lesions which appear hyperintense compared
to the normal-appearing WM (NAWM) tissue. Moreover,
the suppression of the ventricular signal, characteristic of the
FLAIR images, allows an improved visualization of the periven-
tricular MS lesions4 and can also suppress any artifacts created
by cerebrospinal fluid (CSF). In addition, the decrease of the
dynamic range of the image can make the subtle changes easier
to view. Typical MRI pulse sequences used in a clinical setting
are shown in Fig. 1. WM lesions (red rectangles) characteristic
of MS are clearly best seen on FLAIR pulse sequences.
However, in a clinical setting, some MRI pulse sequences could
be missed because of the limited scanning time or patients’ inter-
ruptions in case of anxiety, confusion, or severe pain. Hence,
there is a need for predicting the missing FLAIR when it has
not been acquired during patients’ visits. FLAIR may also be
absent in some legacy research datasets, which are still of
major interest due to their number of subjects and long follow-
up periods, such as ADNI.5 Furthermore, the automatically
synthesized MR images may also improve the brain tissue clas-
sification and segmentation results as suggested in Refs. 6 and 7,
which are additional motivations for this work.

In Ref. 8, the authors proposed an atlas-based patch-match-
ing method to predict the FLAIR from T1-w and T2-w. In this
approach, given a set of atlas images ðIT1; IT2; IFLAIRÞ and a
subject S with ðST1; ST2Þ, the corresponding FLAIR ŜFLAIR is
formed patch by patch. A pair of patches in ðST1; ST2Þ is
extracted and used to find the most similar one in the set of
patches extracted from the atlas ðIT1; IT2Þ. Then, the correspond-
ing patch in IFLAIR is picked and used to form ŜFLAIR.

In Ref. 9, random forests (RFs) are used to predict the FLAIR
from T1-w, T2-w, and proton density (PD). In this approach, a
patch at position i is extracted from each of these three input
pulse sequences. All these three patches are then rearranged
and concatenated to form a column vector Xi. The vector Xi
and the corresponding intensity yi in FLAIR at the position
of i are used to train the RFs. There are also some other close
research fields doing subject-specific image synthesis of a target
modality from another modality. For example, in Refs. 10
and 11, computed tomography (CT) imaging is predicted from
MRI pulse sequences.

Recently, deep learning has achieved many state-of-the-art
results in several computer vision domains, such as image
classification,12 object detection,13 segmentation,14 and also in
the fields of medical image analysis.15 Various methods of
image enhancement and reconstruction using a deep architecture
have been proposed, for instance, reconstruction of 7T-like
images from 3T MRI,16 reconstruction of CT images from
MRI,17 and prediction of positron emission tomography (PET)
images with MRI.18 The research work most similar to ours is
Ref. 19. In this method, FLAIR is generated from T1-w MRI by
a five-layer two-dimensional (2-D) deep neural network, which
treats the input image slice by slice.
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However, these FLAIR synthesis methods have their own
shortcomings. The method in Ref. 8 breaks the input images
into patches. During inference process, the extracted patch is
then used to find the most similar patch in the atlas. But this
process is often computationally expensive. Moreover, the result
heavily depends on the similarity between the source image and
the images in the atlas. This makes the method fail in the pres-
ence of abnormal tissue anatomy, as the images in the atlas do
not have the same pathology. The learning-based methods in
Refs. 9 and 19 are less computationally intensive, because
they store only the mapping function. However, they do not
take into account the spatial nature of three-dimensional (3-
D) images and can cause discontinuous predictions between
adjacent slices. Moreover, many works used multiple MRI
pulse sequences as the inputs,8,9 but none of them evaluated
how each pulse sequence influences the prediction results.

To overcome the disadvantages mentioned above, we pro-
pose 3-D fully convolutional neural networks (3-D FCNs) to
predict the FLAIR. The proposed method can learn an end-
to-end and voxel-to-voxel mapping between other MRI pulse
sequences and the corresponding FLAIR. Our networks have
three convolutional layers and the performance is evaluated
qualitatively and quantitatively. Moreover, we propose a
pulse sequence-specific saliency map (P3S map) to visually
measure the impact of each input pulse sequence on the predic-
tion result.

2 Method
Standard convolutional neural networks (CNNs) are defined, for
instance, in Refs. 20 and 21. Their architectures basically con-
tain three components: convolutional layers, pooling layers, and
fully connected layers. A convolutional layer is used for feature

learning. A feature at some locations in the image can be calcu-
lated by convolving the learned feature detector and the patches
at those locations. A pooling layer is used to progressively
reduce the spatial size of the feature maps to reduce the com-
putational cost and the number of parameters. However, the use
of a pooling layer can cause the loss of spatial information,
which is important for image prediction, especially the lesion
regions. Moreover, a fully connected layer has all the hidden
units connected to all the previous units, so it contains a majority
of the total parameters and an additional fully connected layer
makes it easy to reach the hardware limits both in memory and
in computation power. Therefore, we propose FCNs composed
of only three convolutional layers.

2.1 Three-Dimensional Fully Convolutional Neural
Networks

Our goal is to predict the FLAIR pulse sequences by finding a
nonlinear function s, which maps the multipulse-sequence
source images Isource ¼ ðIT1; IT2; IPD; IT1SE; IDIRÞ to the corre-
sponding target pulse sequence Itarget. Given a set of source
images Isource, and the corresponding target pulse sequence
Itarget, our method finds the nonlinear function by solving the
following optimization problem:

EQ-TARGET;temp:intralink-;e001;326;490ŝ ¼ arg min
s∈S

P
N
i¼1 kðIitargetÞ; sðIisourceÞk2

N
; (1)

where S denotes a group of potential mapping functions,N is the
number of subjects, and mean squared error (MSE) is used as
our loss function, which calculates a discrepancy between the
predicted images and the ground truth.

To learn the nonlinear function, we propose the architecture
of our 3-D FCNs shown in Fig. 2. The input layer is composed
of the multipulse-sequence source images, Isource, which are
arranged as channels and then sent altogether to the network.
Our network architecture consists of three convolutional
layers (L ¼ 3) followed by rectified linear functions
[reluðxÞ ¼ maxðx; 0Þ]. If we denote the m’th feature map at a
given layer as hm, whose filters are determined by the weights
km and bias bm, then the feature map hm is obtained as follows:

EQ-TARGET;temp:intralink-;e002;326;303hm ¼ maxðkmxþ bm; 0Þ; (2)

where the size of input x is H ×W ×D ×M. Here, H, W, D
indicate the height, width, and depth of each pulse sequence
or feature map, and M is the number of the pulse sequences
or feature maps. To form a richer representation of the
data, each layer is composed of multiple feature maps
fhm∶1; : : : ; Fg, also referred as channels. Note that the kernel
k has a dimension Hk ×Wk ×Dk ×M × F, where Hk, Wk, Dk
are the height, width, and depth of the kernel, respectively. The
kernel k operates on x with M channels, generating h with F
channels. The parameters k, b in our model can be efficiently
learned by minimizing the function 1 using stochastic gradient
descent (SGD).

2.2 Pulse Sequence-Specific Saliency Map

Multiple MRI pulse sequences are used as inputs to predict the
FLAIR. Given a set of input pulse sequences and a target pulse
sequence, we would like to assess the contribution of each pulse
sequence on the prediction result. One method is class saliency

Fig. 1 MRI pulse sequences usually used in a clinical setting. T1-w
provides an anatomical reference and T2-w is used for WM lesions
visualization. However, on the T2-w, periventricular lesions are
often indistinguishable from the adjacent CSF, which is also of high
signal. WM lesions (red rectangles) characteristic of MS are best
seen on the FLAIR pulse sequence because of the suppression of
the ventricular signal. DIR has direct application in MS for evaluating
cortical pathology. PD and T1SE are also used clinically. (Note: for
interpretation of the references to color in this figure legend, the reader
is referred to the online version of this article.)
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visualization proposed in Ref. 22, which is used for image clas-
sification to see which pixels most influence the class score.
Such pixels can be used to locate the object in the image.
We call the method presented in this paper P3S map to visually
measure the impact of each pulse sequence on the prediction
result. Our P3S map is the absolute partial derivative of the
difference between the predicted image and the ground truth
with respect to the input pulse sequence of subject i. It is calcu-
lated by standard backpropagation:

EQ-TARGET;temp:intralink-;e003;63;423Mi ¼
����
∂kIitarget − Îitargetk2

∂Iisource

����; (3)

where i denotes the subject, and Itarget and Îtarget are the ground
truth and the predicted image, respectively.

2.3 Materials and Implementation Details

Our dataset contains 24 subjects including 20 MS patients [eight
women, mean age 35.1, standard deviation (SD) 7.7] and four
age- and gender-matched healthy volunteers (two women, mean
age 33, SD 5.6). Each subject underwent the following pulse
sequences:

a. T1-w (1 × 1 × 1.1 mm3)
b. T2-w and PD (0.9 × 0.9 × 3 mm3)
c. FLAIR (0.9 × 0.9 × 3 mm3)
d. T1 spin-echo (T1SE, 1 × 1 × 3 mm3)
e. Double inversion recovery (DIR, 1 × 1 × 1 mm3)

A written informed consent form has been signed by all
subjects to participate in a clinical imaging protocol approved
by the local ethics committee. The preprocessing steps
include intensity inhomogeneity correction23 and intrasubject
affine registration24 onto FLAIR space. Finally, each prepro-
cessed image has a size of 208 × 256 × 40 and a resolution
of 0.9 × 0.9 × 3 mm3.

Our networks have three convolutional layers (L ¼ 3). The
filter size is 3 × 3 × 3 and for every layer the number of the
filters is 64, which is designed with empirical knowledge
from the widely used FCN architectures, such as ResNet.12

We used Theano25 and Keras26 libraries for both training
and testing. The whole data are first normalized by using
x ¼ ðx −meanÞ∕std, where mean and std are calculated over
all the voxels of all the images in each sequence. We do not
use any data augmentation. Our networks were then trained
using standard SGD optimizer with 0.0005 as the learning
rate and 1 as the batch size. The stopping criteria used in our
work is early stopping. We stopped the training when the gen-
eralization error increased in p successive q-length strips:

• STOPp: stop after epoch t iff STOPp−1 stops after epoch
t − q and EgeðtÞ > Egeðt − qÞ,

• STOP1: stop after first end-of-strip epoch t and
EgeðtÞ > Egeðt − qÞ. where q ¼ 5, p ¼ 3, and EgeðtÞ
are the generalization error at epoch t. It takes 1.5 days
for training and <2 s for predicting one image on a
NVIDIA GeForce GTX TITA X.

Our method is validated through a fivefold cross validation in
which the dataset is partitioned into fivefolds (fourfolds have
five subjects with one healthy subject in each fold and the
last fold has four subjects). Subsequently, five iterations of train-
ing and validation are performed such that within each iteration
one different fold is held out for validation and remaining four
folds are used for training. The validation error is used as an
estimate of the generalization error. And we then compared it
qualitatively and quantitatively with four state-of-the-art
approaches: modality propagation;27 RFs with 60 trees;9

U-Net;28 and voxel-wise multilayer perceptron (MLP), which
consists of two hidden layers and 100 hidden neurons for each
layer, trained to minimize the MSE. The patch size used in the
modality propagation and the RF is 3 × 3 × 3, as suggested in
their works.9,27 The U-Net architecture is classified into three
parts: downsampling, bottleneck, and upsampling. The down-
sampling path contains two blocks. Each block is composed
of two 3 × 3 × 3 convolution layers and a max-pooling layer.
Note that the number of feature maps doubles at each pooling,
starting with 16 feature maps for the first block. The bottleneck
is built from simply two 64-width convolutional layers. And the
upsampling path also contains two blocks. Each block includes
a deconvolution layer with stride 2, a skip connection from
the downsampling path and two 3 × 3 × 3 convolution layers.

Fig. 2 The proposed 3-D FCNs. Our network architecture consists of three convolutional layers. The
input layer is composed of five pulse sequences arranged as channels. The first layer extracts a
64-dimensional feature from input images through convolution process with a 3 × 3 × 3 × 5 × 64 kernel.
The second and third layers apply the same convolution process to find a nonlinear mapping for
image prediction.
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Last, we use our P3S map to visually measure the contribution
of each input pulse sequence.

3 Experiments and Results

3.1 Model Parameters and Performance Trade-offs

3.1.1 Number of filters

Generally, when the network is wider, more features can be
learned so that better performance can be obtained. Based on
this, in addition to our default setting (F1 ¼ F2 ¼ F3 ¼ 64),
we also did two experiments for comparison: (1) a wider archi-
tecture (F1 ¼ F2 ¼ F3 ¼ 96) and (2) a thinner architecture
(F1 ¼ F2 ¼ F3 ¼ 32). The training process is the same as
described in the Sec. 2.3. The results are shown in Table 1.
We can observe that increasing the width of network from
32 to 64 leads to a clear improvement. However, increasing
the filter numbers from 64 to 96 only slightly improved the
performance. However, if less computational cost is needed,
a thinner network which can also achieve a good performance
is more suitable.

3.1.2 Number of layers

It is indicated in Ref. 12 that neural networks could benefit from
increasing the depth of the networks. We, thus, tested two differ-
ent number of layers by adding or removing a 64-width layer
based on our default setting (L ¼ 3), i.e., (1) L ¼ 2 and
(2) L ¼ 4. The comparison result is shown in Fig. 3. It can
be found that when L ¼ 2, the result is worse than our default
setting (L ¼ 3). However, when we increased the number of
layers to L ¼ 4, it converges slower and finally to the same

level as the three-layer network. In addition, we also designed
a much deeper network (L ¼ 6) by adding three more 64-width
layers to our default setting (L ¼ 3). It is shown in Fig. 3 that the
performance even dropped and failed to surpass the three-layer
network. The cause for this drop could be that the complexity
increases while the networks go deeper. During the training
process, it is, thus, more difficult to converge or it falls into
a bad minimum.

3.2 Evaluation of Predicted Images

Image quality is evaluated by MSE and structural similarity
(SSIM). Table 2 shows the result of MSE and SSIM on a five-
fold cross validation. Our method is statistically significantly
better than the rest of the methods (p < 0.05) except for
U-Net, which got the best result on two folds for MSE and
three folds for SSIM. However, the difference with our method
is very small and we outperformed at the average level.
Furthermore, the number of parameters in U-Net is 375.6 K,
which is much more than ours (213.7 K). If less computational
cost is needed, our method is preferred. To further evaluate the
quality of our method, in particular on the MS lesions detection,
we have chosen to evaluate the MS lesion contrast with the
NAWM tissue (Ratio 1) and the surrounding NAWM tissue
(ratio 2), defined by a dilatation of five voxels around the
lesions. Given the mean intensity of each region IiðRÞ of subject
i, ratio 1, and ratio 2 are defined as
EQ-TARGET;temp:intralink-;e004;326;458

Ratio 1 ¼ 1

N

XN

i¼1

IiðLesionsÞ
IiðNAWMÞ ;

Ratio 1 ¼ 1

N

XN

i¼1

IiðLesionsÞ
IiðSNAWMÞ : (4)

As shown from Table 3, our method achieves statistically sig-
nificantly better performances (p < 0.01) than other methods on
both ratio 1 and ratio 2, which reflects a better contrast for MS
lesions. The evaluation results can be visualized in Fig. 4 with
the absolute difference maps on the second and fourth rows.
It can be observed that RFs and U-Net can generate good global
anatomical information but the MS lesion contrast is poor. This
can be truly reflected by a good MSE and SSIM value (see in
Table 2), but a low ratio 1∕2 (see in Table 3). On the contrary,

Table 1 Comparison of different number of filters.

MSE (SD)
Number of
parameters

Inference
time (s)

F 1 ¼ F 2 ¼ F 3 ¼ 32 1094.52 (49.46) 60.6 K 0.72

F 1 ¼ F 2 ¼ F 3 ¼ 64 918.07 (41.70) 213.7 K 1.34

F 1 ¼ F 2 ¼ F 3 ¼ 96 909.84 (38.68) 513.5 K 2.58

Fig. 3 Comparison of different number of layers. Shown are learning curves for different number of layers
(L ¼ 2;3;4;6). As the network goes deeper, the result can be increased. However, deeper structure
cannot always lead to better results, sometimes even worse. (Note: for interpretation of the references
to color in this figure legend, the reader is referred to the online version of this article.)
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our method can well keep the anatomical information and also
yield the best contrast for WM lesions.

Moreover, we input the synthetic FLAIR and the ground
truth to a brain segmentation pipeline29 to generate automatic
segmentations of WM lesions. A similar segmentation should
be obtained if the FLAIR synthesis is good enough and the
DICE score is used to compare the overlap of the segmentations
previously obtained from both the synthetic FLAIR and the
ground truth. We got a very good WM lesion segmentation
agreement with a mean (SD) DICE of 0.73(0.12). Some exam-
ples are shown in Fig. 5.

3.3 Pulse Sequence-Specific Saliency Map

It can often happen that not all the subjects have the five com-
plete protocols (T1-w, T2-w, T1SE, PD, and DIR). Therefore,
it might be useful to measure the impact of each input pulse
sequence. Our proposed P3S map is to visually measure the con-
tribution of each input pulse sequence. It can be observed in
Fig. 6 that T1-w, DIR, and T2-w contribute more for FLAIR
MRI prediction than PD or T1SE. In the P3S map, the intensity
reflects the contribution of each input pulse sequence. In particu-
lar, from the P3S map we can easily find which sequence affects

more the generation of which specific regions of interest. For
example, as shown in the first row of Fig. 6, even though
generally DIR is the most important sequence [see Table 4(a)],
T1-w contributes more for the synthesis of the ventricle, which
can be proved by the high degree of resemblance of ventricle
between T1-w and FLAIR (see second row of Fig. 6).

To test our P3S map, five experiments were designed.
In each one, we removed one of the five pulse sequences
(T1-w, T2-w, T1SE, PD, and DIR) from the input images.
Table 4(a) shows the testing result on the fivefold cross valida-
tion by using MSE as the error metric. As shown in the table,
these results are consistent with the observation revealed by our
P3S map. The DIR, T1-w, and T2-w contribute more than T1SE
and PD. In particular, DIR is the most relevant pulse sequences
for the FLAIR prediction. However, DIR is not commonly used
in clinical settings. We, thus, show a performance comparison
among other methods in Table 4(b). It can be observed that
when DIR is missing, the performance decreases in all the
methods, thereby suggesting a high similarity between DIR and
FLAIR. In addition, even though DIR is not much common,
we still got an acceptable result for FLAIR prediction without
DIR.

Table 2 Quantitative comparison between our method and other methods.

Random forest 60 Modality propagation Multilayer perceptron U-Net Our method

(a) MSE (SD)

Fold 1 993.68 (67.21) 2194.79 (118.73) 1532.89 (135.82) 921.69 (38.51) 905.05 (26.06)

Fold 2 1056.76 (125.51) 2037.69 (151.23) 1236.53 (100.95) 912.03 (38.58) 913.34 (39.95)

Fold 3 945.38 (59.42) 1987.32 (156.11) 1169.78 (142.43) 916.16 (38.97) 898.76 (46.90)

Fold 4 932.67 (74.48) 2273.58 (217.85) 1023.35 (97.93) 938.34 (52.54) 945.33 (63.80)

Fold 5 987.63 (78.34) 1934.25 (140.06) 1403.57 (146.35) 908.11 (36.13) 927.88 (31.80)

Average 983.22 (80.99) 2085.53 (156.80) 1273.22 (124.70) 919.26 (40.95) 918.07 (41.70)

(b) SSIM (SD)

Fold 1 0.814 (0.044) 0.727 (0.044) 0.770 (0.052) 0.847 (0.038) 0.868 (0.036)

Fold 2 0.822 (0.038) 0.718 (0.045) 0.773 (0.045) 0.856 (0.025) 0.854 (0.028)

Fold 3 0.832 (0.040) 0.713 (0.047) 0.790 (0.044) 0.854 (0.036) 0.880 (0.031)

Fold 4 0.850 (0.032) 0.708 (0.049) 0.786 (0.044) 0.853 (0.031) 0.846 (0.035)

Fold 5 0.830 (0.041) 0.723 (0.039) 0.781 (0.047) 0.861 (0.034) 0.850 (0.027)

Average 0.830 (0.039) 0.718 (0.045) 0.780 (0.046) 0.854 (0.033) 0.860 (0.031)

The best results are indicated in boldface.

Table 3 Evaluation of MS lesion contrast (SD).

Random forest 60 Modality propagation Multilayer perceptron U-Net Our method Ground truth

Ratio 1 1.33 (0.07) 1.31 (0.06) 1.39 (0.11) 1.34 (0.09) 1.47 (0.13) 1.66 (0.12)

Ratio 2 1.15 (0.04) 1.13 (0.04) 1.20 (0.05) 1.17 (0.04) 1.22 (0.07) 1.33 (0.09)

The best results are indicated in boldface.
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In addition to, some legacy research datasets do not have
T1SE or PD, and we, thus, predicted the FLAIR from different
combinations of T1, T2, DIR, and PD [see in Table 4(c) and
Fig. 7]. It indicates that our method can be used to get an
acceptable predicted FLAIR from the datasets that contain only
some sequences. From Table 4(c) we can also infer that adding
a pulse sequence improves the prediction result.

4 Discussion and Conclusion
We introduced 3-D FCNs for the FLAIR prediction from multi-
ple MRI pulse sequences and a sequence-specific saliency map
for investigating each pulse sequence contribution. Even though
the architecture of our method is simple, the nonlinear relation-
ship between the source images and the FLAIR can be well
captured by our network. Both the qualitative and quantitative
results have shown its competitive performance for the FLAIR
prediction. Compared to previous methods, representative
patches selection is not required so that this speeds up the train-
ing process. In addition, 2-D CNNs have become popular in
computer vision; however, they are not suitable to directly
use for volumetric medical image data. Unlike Refs. 9 and 19,
our method can better keep the spatial information between
slices. Moreover, the generated FLAIR has a good contrast
for MS lesions. In practice, in some datasets, not all the subjects
have all the pulse sequences. Our proposed P3S map can be

Fig. 4 Qualitative comparison of the methods to predict the FLAIR sequence. Shown are synthetic
FLAIR obtained by RFs with 60 trees, MLP, U-Net, and our method followed by the true FLAIR. The
second and fourth rows show the absolute difference maps between each synthetic FLAIR and
the ground truth. (Note: for interpretation of the references to color in this figure legend, the reader is
referred to the online version of this article.)

Fig. 5 Examples of WM lesion segmentation for a high and a low
DICE. The WM lesions are very small and diffuse, so even a slight
difference in the overlap can cause a big decrease in the DICE
score; (a) and (c) true FLAIR; (e) and (g) predicted FLAIR; (b) and
(d) segmentation of WM lesions (red) using true FLAIR; and (f)
and (h) segmentation of WM lesions using predicted FLAIR. (Note: for
interpretation of the references to color in this figure legend, the
reader is referred to the online version of this article.)
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Fig. 6 The P3S maps for input pulse sequences. The first row is the saliency maps for T1, T1SE, T2, PD,
and DIR, respectively. And the second row is the corresponding multisequence MRIs. It can be found that
T1-w, DIR, and T2-w contributemore to the FLAIRMRI prediction than PDor T1SE. (Note: for interpretation
of the references to color in this figure legend, the reader is referred to the online version of this article.)

Table 4 FLAIR prediction results by using different input pulse sequences.

(a) MSE (SD)

Removed pulse sequence

T1 T1SE T2 PD DIR

Fold 1 959.75 (60.58) 926.89 (73.25) 981.15 (83.45) 945.79 (67.23) 1097.99 (93.27)

Fold 2 987.13 (91.47) 940.00 (86.34) 994.47 (78.47) 919.09 (69.82) 1097.00 (98.57)

Fold 3 942.76 (59.22) 938.98 (64.27) 940.92 (69.44) 924.59 (61.39) 1065.08 (101.95)

Fold 4 999.64 (100.57) 940.56 (72.98) 939.60 (76.22) 932.46 (59.49) 1151.93 (113.21)

Fold 5 986.55 (71.25) 936.89 (63.23) 953.35 (70.12) 933.12 (65.23) 1068.72 (98.56)

Average 975.16 (76.62) 936.67 (72.00) 961.90 (75.54) 931.01 (64.63) 1096.14 (101.11)

(b) Performance comparison by removing DIR (SD)

Random forest 60 Multilayer perceptron U-Net Our method

Fold 1 1035.17 (102.37) 1589.62 (131.32) 1068.59 (100.28) 1097.99 (93.27)

Fold 2 1167.52 (127.67) 1375.28 (121.12) 998.66 (106.79) 1097.00 (98.57)

Fold 3 1170.36 (105.37) 1316.53 (128.46) 1135.24 (128.15) 1065.08 (101.95)

Fold 4 1218.38 (129.01) 1235.26 (117.26) 1175.68 (107.33) 1151.93 (113.21)

Fold 5 1189.64 (108.28) 1537.61 (135.78) 1003.54 (95.18) 1068.72 (98.56)

Average 1156.21 (114.54) 1410.86 (126.79) 1076.34 (107.55) 1096.14 (101.11)

(c) MSE (SD)

Input pulse sequences

T1 + DIR T2 + DIR T1 + T2 T1 + T2 + DIR T1 + T2 + PD

Fold 1 966.67 (70.12) 993.25 (99.35) 1375.83 (123.68) 926.88 (83.68) 1281.06 (112.57)

Fold 2 953.87 (68.57) 974.88 (86.32) 1562.46 (132.68) 944.39 (79.23) 1324.17 (121.37)

Fold 3 998.71 (84.90) 1007.69 (103.87) 1158.65 (112.29) 961.19 (71.68) 1261.68 (128.91)

Fold 4 973.24 (77.79) 998.56 (98.23) 1078.67 (103.89) 931.47 (69.31) 1143.58 (98.95)

Fold 5 968.55 (71.59) 986.57 (91.33) 1212.59 (126.79) 958.28 (73.45) 1156.79 (102.67)

Average 972.21 (74.60) 992.19 (95.82) 1277.64 (119.87) 944.44 (75.47) 1233.46 (112.89)

The best results are indicated in boldface.
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used to reflect the impact of each input pulse sequence on the
prediction result so that the pulse sequences that contribute very
little can be removed. Furthermore, DIR is often used for the
detection of MS cortical gray matter lesions, and if we have
DIR, we can use it to generate the FLAIR so that the acquisition
time for FLAIR can be saved. Also, our P3S map can be gen-
erated by any kinds of neural networks trained by standard
backpropagation.

Our 3-D FCNs have some limitations. The synthetic images
appear slightly more blurred and smoother than the ground truth.
This may be because we use a more traditional loss L2 distance
as our objective function. As mentioned in Ref. 30, the use of L1
distance can encourage less blurring and generate sharper
image. In addition, the proposed P3S map is generated after
the data normalization which may affect the gradient. However,
the network changes as the normalization strategy changes. And
the saliency map is based on the network. Moreover, the dataset
should be ideally partitioned into training–validation–test sets.
However, our dataset has only 24 subjects, which is quite small
to split into training–validation–test set. Instead, we divided it
into training–testing set and the testing error is used as an esti-
mate of the generalization error.

In future it would be interesting to also assess the utility of
the method in the context of other WM lesions (e.g., age-related
WM hyperintensities). Specifically, FLAIR is the pulse
sequence of choice for studying different types of WM lesions,31

including leukoaraiosis (due to small vessel disease), which is
commonly found in elderly subjects, and which is associated
with cognitive decline and is a common co-pathology in neuro-
degenerative dementias.
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