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Reduced Order Models
for Transstenotic Pressure
Drop in the Coronary Arteries
The efficacy of reduced order modeling for transstenotic pressure drop in the coronary
arteries is presented. Coronary artery disease is a leading cause of death worldwide and
the computation of pressure drop in the coronary arteries has become a standard for
evaluating the functional significance of a coronary stenosis. Comprehensive models typi-
cally employ three-dimensional (3D) computational fluid dynamics (CFD) to simulate
coronary blood flow in order to compute transstenotic pressure drop at the arterial steno-
sis. In this study, we evaluate the capability of different hydrodynamic models to compute
transstenotic pressure drop. Models range from algebraic formulae to one-dimensional
(1D), two-dimensional (2D), and 3D time-dependent CFD simulations. Although several
algebraic pressure-drop formulae have been proposed in the literature, these models
were found to exhibit wide variation in predictions. Nonetheless, we demonstrate an alge-
braic formula that provides consistent predictions with 3D CFD results for various changes
in stenosis severity, morphology, location, and flow rate. The accounting of viscous dissipa-
tion and flow separation were found to be significant contributions to accurate reduce
order modeling of transstenotic coronary hemodynamics. [DOI: 10.1115/1.4042184]

Keywords: coronary artery stenosis, fractional flow reserve, hemodynamics, image-
based modeling, noninvasive pressure drop

1 Introduction

Coronary artery disease is a leading cause of death worldwide
[1]. Atherosclerotic lesions in the coronary arteries and their rup-
ture can obstruct blood flow and result in angina and myocardial
ischemia, necessitating medical intervention with angioplasty,
stenting, or bypass surgery. Coronary computed tomography angi-
ography (CCTA) enables noninvasive imaging of the coronary
lumens for identification of stenotic lesions. However, the previ-
ous studies have reported unreliable relationship between angio-
graphic measures of stenosis and ischemia, with, for example,
reports of fewer than half of CCTA-identified obstructive lesions
causing ischemia [2,3].

Ischemia is directly related to how much a coronary lesion
reduces hydrodynamic pressure. Congruently, fractional flow
reserve (FFR), which is the ratio of the mean blood pressure distal
to a coronary stenosis to the mean aortic root pressure
(FFR¼Pdist/Pao) upstream during maximal hyperemia,2 is consid-
ered as a gold standard to determine the functional significance of
a coronary stenosis [4]. Due to the invasive nature of FFR mea-
surement, a noninvasive method to estimate FFR could improve
the safety, accessibility, and cost-effectiveness of coronary artery
disease management. Recently, the technique of FFRCT [5] has
emerged as the standard to noninvasively calculate FFR and has
demonstrated high diagnostic performance compared to inva-
sively measured FFR for identification of patients with coronary
lesions causing ischemia [6,7].

Transstenotic pressure drop, and related measures such as
FFRCT, can be computed using image-based computational fluid
dynamics (CFD) modeling to simulate coronary blood flow and
pressure. This can be achieved by constructing a three-
dimensional (3D) computer model of the coronary arteries (cf.
Fig. 1) from CCTA, modeling blood as a fluid, and using CFD to

solve the Navier–Stokes equations (NSEs) subject to appropriate
boundary conditions. These simulations require significant com-
putational effort, which may only be necessary if the flow itself is
highly 3D, or localized flow behavior is sought. In some scenar-
ios, blood flow may be considered approximately one-dimensional
(1D), and the NSEs can be appropriately simplified [8–10]. This
leads to an equation that is easier to numerically solve but incurs
some level of model-form error stemming from the simplifying
assumptions. Notably, the cross-sectional velocity profile must be
assumed in order to estimate convective acceleration and friction
terms in the 1D equations, which may be particularly limiting for
scenarios of estimating pressure drop, especially where flow sepa-
ration is expected. Recently, Ghigo et al. [11] proposed a two-
dimensional (2D) “multiring” method that avoids the need to
assume a cross-sectional velocity profile and provides the ability
to capture flow separation. The 1D and 2D multiring models pro-
vide computationally efficient alternatives for solving global fea-
tures of blood flow in deformable vessels compared to 3D time-
dependent modeling.

The models described earlier are governed by partial differen-
tial equations (PDEs), which are capable of spatially resolving the
pressure (and velocity) field. Alternatively, algebraic formulas
have been proposed to simplify the calculation of net pressure
drop across a stenosis based on blood flow rate and geometrical
properties. Also from the practical standpoint, while FFR is often
measured in reference to aortic root pressure, transstenotic pres-
sure drop models could be of value to FFR estimation because the
value of FFR can be approximately related to the amount of pres-
sure drop across a stenosis (FFR� 1�DP/Pao), assuming that the
pressure drop in the coronary segments proximal to the stenosis is
negligible. An early transstenotic pressure drop model was devel-
oped by Young and Tsa [12,13], including empirical parameters
determined from a series of steady and unsteady in vitro experi-
ments. Seeley and Young [14] modified this model to better con-
sider geometric factors affecting pressure drop and verified their
model by in vitro experiments. Garcia et al. [15] proposed and
validated a simple theoretical model from an energy loss concept
to describe the instantaneous pressure drop across the aortic valve.
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2Technically, FFR¼ (Pdist�Pv/Pao�Pv), although central venous pressure
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Itu et al. [16] proposed a pressure-drop model for aortic coarctation
by assuming specific formulations of the viscous and the inertial
terms. The models referenced above include empirical parameters,
which may limit the generalizability of the model in flow regimes
not dynamically similar to those the models were derived for. Huo
et al. [17] presented an analytical model derived from the general
Bernoulli equation by considering various energy losses along the
length of a lesion, which does not contain empirical parameters,
and applied this model to coronary artery stenosis. Other reduced
order and regression-based models have been developed to predict
transstenotic pressure drop based on geometry and predicted veloc-
ity profile in mildly stenosed arteries [18,19].

In this study, a comprehensive range of computational hydrody-
namic models is considered, which includes algebraic formulations,
the 1D blood flow equations, a 2D multiring method, and 3D image-
based CFD coronary flow modeling. The objective is to evaluate if
reduced order models can reasonably predict transstenotic pressure
drop and FFR in comparison with 3D CFD simulations. A reason-
ably diverse range of coronary stenoses is considered including sym-
metric, asymmetric, curved, and patient-specific stenosis geometries,
as well as differing stenosis location and transstenotic flow rate.

2 Methods

Here, we discuss the modeling of coronary blood flow and
transstenotic pressure drop using image-based CFD, 2D multiring,
1D, and algebraic (0D) models. Image-based CFD modeling
results were considered as the gold standard to which results from
the reduced order (2D, 1D, and 0D) models were compared. The
image-based CFD models included the aorta and all major

coronary arteries—this, among other reasons described below,
enabled the volumetric flow rate through the stenotic artery to be
computed from basic physiological data. However, to provide
more direct comparison of transstenotic pressure drop prediction,
the reduced order models only modeled the stenotic artery, with
the time-varying volumetric flow rate prescribed from the 3D
CFD results to maintain consistency.

Note that fluid properties (blood density q ¼ 1:06 g=cm3 and
blood viscosity l ¼ 0:04 dyn=ðcm3sÞ) were common among all
models.

2.1 Image-Based Three-Dimensional Coronary Flow Mod-
eling. Image-based CFD modeling of blood flow and pressure in
human coronary arteries was performed using the open source
software package SimVascular [20], following the methods
described in Refs. [21] and [22]. This entailed constructing a 3D
model of the aorta and coronary arteries from CCTA data,
employing and tuning lumped parameter network (LPN) models
to specify boundary conditions representative of cardiac physiol-
ogy, finite element simulation of the 3D time-dependent
Navier–Stokes equations, and postprocessing to compute relevant
indices, including FFR.

A representative image-based model including the aortic root
and coronary arteries coupled with a closed-loop LPN that models
the heart, pulmonary arteries, and systemic and coronary circula-
tion is shown in Fig. 1. The image-based CFD models included
the aorta and major coronary branches for several reasons. First,
this enabled coupling to cardiac and coronary microcirculation
models, which strongly determine coronary hemodynamics.

Fig. 1 Schematic of image-based 3D model of an aorta and coronary arteries coupled to closed-loop lump
parameter (0D) models of the heart, pulmonary arteries, and systemic and coronary circulations
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Second, this enabled transstenotic flow rate to be computed from
basic physiological data, and more natural modeling of hypere-
mia. Third, inclusion of the aorta, major coronary branches, and
lumped parameter models of the heart and coronary microcircula-
tion is similar to the method described in Ref. [5] to compute
FFR, which has gained clinical adoption and has been extensively
compared to invasive measurements [6,7,23–25].

A three-element “RCR” Windkessel model was used to model
the systemic circulation. Distal to each coronary outlet in the
model, separate coronary-specific LPNs were coupled that con-
sider the influence of intramyocardial pressure on coronary flow
[21]. (Note, only one coronary LPN is shown in Fig. 1 to reduce
clutter although this model contains 24 coronary-specific LPNs.)
A time-dependent intramyocardial pressure was prescribed to rep-
resent the influence of myocardial contraction in coronary flow. A
detailed description of the differential equations governing the
heart model and coronary LPNs is given in Sankaran et al. [22].
The LPN parameters were tuned to match target pressure and flow
splits to the aorta and systemic and coronary outlets. In this tuning
process, relationships between vessel size and flow rate according
to a modified Murray’s law were used to estimate resistances and
capacitances at the outlets [22,26]. Blood flow was modeled by
the Navier–Stokes equations

qv;t þ qv:rv ¼ �rpþ div ~sð Þ
div vð Þ ¼ 0

~s ¼ l rvþ ðrvÞT
� � (1)

These equations were used to solve for fluid velocity vðx; tÞ and
pressure pðx; tÞ using the SimVascular CFD flow solver. Note that
vessel walls were assumed rigid as fluid-structure interaction
modeling in SimVascular demonstrated insignificant (<2%)
changes to transstenotic pressure drop and computed FFR values.

2.1.1 Modeling Hyperemia. Since the coronary microvascular
resistance varies based on cardiac demand, it is desirable to satu-
rate vasodilation to properly evaluate the functional significance
of a coronary stenosis. FFR is typically measured invasively under
a hyperemic condition caused by the administration of adenosine.
Wilson et al. [27] showed that the 140mg/kg/min infusion of aden-
osine causing maximal hyperemia reduced total coronary resist-
ance to 0.22–0.24 of the resting values. Furthermore, they
reported 565 (mmHg) reduction in mean blood pressure but
insignificant changes to heart rate. Therefore, to model hyperemia
in our 3D time-dependent simulations, we reduced coronary
resistance to 0.22 of the resting values, while keeping other
parameters fixed. Note, although the coronary bed distal to a ste-
nosis may have compromised vasodilatory response, consistent
with [5], the hyperemic microcirculatory resistance distal to a ste-
nosis was assumed to be the same as that in the case of coronary
arteries without disease (0.22 of resting value).

2.2 Two-Dimensional Multiring Method. The 2D multiring
method [11] decomposes the vessel cross section into concentric
rings and integrates the NSEs assuming that axial velocity is con-
stant over each ring (annulus). This enables a radial distribution of
the axial velocity to be computed, instead of assumed. Further-
more, the velocity profile at each cross section can be different
along the axial coordinate and, in particular, phenomena such as
flow separation can be considered.

After integrating the axisymmetric NSEs simplified using the
long wave assumption for each ring, the equations for the balance
of mass and momentum in ring i are as follows:
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Eqs. (2) and (3) are similar to the 1D NSEs (described below);
however, these equations hold for each ring, and source terms are
added to the right-hand side representing the radial mass and
momentum exchanges between adjacent rings at each cross sec-
tion. To complete the system of equations, the arterial wall is
assumed thin, cylindrical, isotropic, homogeneous, incompressi-
ble, and linearly elastic, and each cross section deforms independ-
ently, yielding the following pressure-area relationship [9]:

P x; tð Þ � Pext ¼ Pd þ
b
Ad

ffiffiffi
A
p
�

ffiffiffiffiffi
Ad

p� �
b ¼ 4

3

ffiffiffi
p
p

Eh (9)

where E is Young’s modulus of the vessel wall, h is the vessel
wall thickness, Pext is the external pressure acting on the vessel
wall (assumed zero), and Pd and Ad are the diastolic pressure and
area, respectively.

We developed an in-house flow solver for multiring modeling
using a finite volume axial discretization with the kinetic scheme
[28] and the hydrostatic reconstruction [29]. Verification of the
2D multiring solver is described in the Appendix. For each ste-
notic artery considered in the 3D CFD modeling, the 2D multiring
method was also used to model pressure drop in that artery. The
time-varying volumetric flow rate from the 3D CFD simulation
was specified at the artery inlet using a parabolic profile since the
Womersley number was close to unity in all cases, and a time-
varying pressure from the 3D CFD simulation was specified at the
outlet. The arterial geometry (radius as a function of axial loca-
tion) was derived from the corresponding 3D arterial model.
Because the 3D simulations assumed rigid walls, we synthetically
increased the value of Young’s modulus (i.e., b ¼ 107) in the
pressure law of Eq. (9) to maintain consistency.

2.3 One-Dimensional Navier–Stokes Model. Derivations of
the 1D equations for flow and pressure in a deformable tube can
be found in numerous publications, e.g., Refs. [8], [30], and [31].
Alternatively, the 1D equations can be interpreted as a particular
case of the 2D multiring equations with only one ring and a partic-
ular velocity profile being assumed. Regardless, the resulting
equations can be expressed as

@A

@t
þ @Q

@x
¼ 0 (10)
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where x is the axial coordinate, t is the time, A is the cross-
sectional area of the vessel, Q is the volumetric flow rate, P is the
blood pressure averaged at each cross section, and Cf determines
the frictional force due to viscosity of the blood and depends on
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the chosen velocity profile. The axisymmetric velocity profile is
assumed to fit the form [10]

u r; x; tð Þ ¼
cþ 2

c
U x; tð Þ 1� r

R

� �c
" #

(12)

from which it can be shown that Cf ¼ �2ðcþ 2Þpl=q [31], where
U is the averaged velocity and R is the vessel radius. To complete
the system of equations for A, P, and Q, the pressure law of Eq.
(9) is employed.

The above conservative system of equations was solved using a
finite volume numerical scheme. The kinetic flux function
approach [28] coupled with a well-balanced hydrostatic recon-
struction technique [29] was used to calculate the required numer-
ical flux and source terms in the finite volume scheme.
Verification of the 1D solver is described in the Appendix. For
each stenotic artery considered using 3D CFD modeling, the 1D
equations were also used to model pressure drop in that artery.
The same boundary conditions as described in Sec. 2.2 were
applied for the 1D modeling, and a parabolic velocity profile
(c ¼ 2) is assumed.

2.4 Algebraic Models. We considered four algebraic (“0D”)
models of pressure drop. Although, these models were derived for
different applications—including general vascular stenosis, aortic
stenosis, aortic coarctation, and coronary artery stenosis—as we
will show in the results, these differences were not necessarily
indicative of model accuracy. Thus, it was important to consider a
range of transstenotic pressure drop models despite their origin.
Moreover, all models are similar in that they treat a stenosis as a
simple area reduction of a 1D internal flow, and all models can be
considered to be effectively generalizations of Bernoulli’s equa-
tion, or energy balance equation. For each stenotic artery consid-
ered using 3D CFD modeling, each algebraic 0D model was also
used to model pressure drop across the stenosis based on the flow
rate determined from the 3D CFD. Several of the 0D models con-
tain empirical parameters; however, we did not tune these parame-
ters to match the 3D simulations.

Model 1 [15]

DP ¼ qQ2
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where Q is the (unsteady) flow rate, As is the stenosis minimum
cross-sectional area, A0 is the nominal cross-sectional area of the
native vessel that is the average between the cross-sectional area
of the artery proximal and distal to the stenotic region, and a ¼
6:28 and b ¼ 0:5 are empirically derived [15].

Model 2 [14]

DP¼ lKv
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(14)

where the first term captures the viscous losses by considering the
empirical parameter Kv related to As and A0, which are minimum
and nominal cross-sectional areas of the vascular segment, respec-
tively. The second term represents the empirically corrected
energy dissipation due to flow separation with “turbulence” coeffi-
cient Kt. The third term represents the inertial effect of blood flow
in a stenotic region with an inertial coefficient Ku. Additional
parameters are as follows: Rs and R0 are radius of the stenosis and
native vessels, respectively. Although the cross sections are not
always circular, Rs and R0 are calculated to be the radius of a

circle with areas As and A0, respectively. Ls is the length of the
stenosis that is calculated such that the cross-sectional area in that
region is between As and 1.1 As, and Qj j denotes the absolute
value of flow rate.

Model 3 [16]
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Model 3 is similar to model 2 but the viscous loss is modified by
considering an integral form of viscous resistance based on
Poiseuille’s law. The empirical parameters are modified specially
to relate the viscous dissipation not only to the geometrical prop-
erties of the stenosis but also to the Womersley number, a, which
quantifies the relative importance between pulsatile inertial effects
and viscous effects. The frequency f is related to the patient heart
rate (HR) via f ¼ HRð2p=60Þ. Moreover, the fourth term is a con-
tinuous component to model the phase difference between flow
rate and pressure drop, where �Q is the mean flow rate over one
cardiac cycle.

Model 4 [17]
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where Lv is the vessel length, Ls indicates the stenosis length, Ao

and Ai are the inlet and outlet cross-sectional areas of vascular
lesion, respectively. The first term of Eq. (16) represents the con-
vective pressure drop and the second term represents the diffusive
pressure drop by considering the entrance region of stenosis
through a dimensionless radius of inviscid core (g) in which the
velocity is uniform [32]. The remainder of the equation takes into
account the pressure drop due to expansion of the cross-sectional
area by assuming a parabolic flow. Detailed information about
how to calculate the value of inviscid core for stenotic regions is
available in Huo et al. [17].

3 Results

3.1 Image-Based Computational Fluid Dynamics Model-
ing. Modeling of blood flow and pressure in image-based 3D
models was performed using the methods described in Sec. 2.1.
Baseline resting hemodynamics for all models were simulated by
tuning the LPNs to match target values in Table 1. Coronary resis-
tances were then updated to model hyperemia. Representative
results are shown in Fig. 2 for the model shown in Fig. 1. For
these results, unstructured tetrahedral meshes of 4,629,813 ele-
ments, including boundary layer meshing, and a time-step size of
1 ms were used, which are representative of mesh and time-step
resolution used in the other image-based CFD models presented.
The solutions were run until the pressure fields at the inlet and
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outlets did not change more than 1.0% compared to the solutions
at the same time point in the previous cardiac cycle (typically at
least six cardiac cycles were needed to reach convergence). Figure
2 displays the computed aortic pressure, the pressure-volume
loops of the left and right ventricles, and the flow waveforms in
representative left and right coronaries. These results demonstrate
realistic coronary flow waveform dynamics consistent with Ref.
[24], namely, the left coronary flow peaks during diastole and dips
in early systole, and right coronary flow demonstrates commensu-
rate peaks in systole and diastole [33]. The parameter values of
the closed-loop heart model, aortic outlet, and coronary outlets for
these results are given in Tables 2–4, respectively. In addition to
recovering realistic flow and pressure waveforms, the results
showed consistent agreement with target data as shown in Table
1. The results of simulated of hyperemia, compared against those
from the rest condition, agreed with clinical observations [27].
Namely, simulated hyperemia resulted in approximately 5 mmHg
reduction in blood pressure and insignificant changes in cardiac
output, while the flow split ratio between coronary and systemic
outlets increased from 4.8% to 16.7% (see Table 5).

3.2 Comparison of Model Results for Synthetic Symmetric
Stenoses. In this section, we calculate the amount of pressure
drop across various synthetic stenoses in order to quantify the

reliability of transstenotic pressure drop prediction from each
model for varying the degree of stenosis in a systematic manner;
patient-specific stenoses will be considered below. We created
50%, 75%, and 90% area reduction stenosis in one branch of the
left anterior descending coronary artery of an image-based model
that did not otherwise contain any major stenoses (see Figs. 3(a),
3(d), and 3(g)), and simulated the blood flow and pressure under
hyperemia using the image-based 3D CFD methods described

Table 1 Comparison of “clinical targets” with computed values from the 3D patient-specific coronary flow and pressure simula-
tion for the healthy case shown in Fig. 2(a)

Clinical targets Computed values

Aortic flow rate (cc/s) 83.33 82.89
Maximum aortic pressure (mmHg) 120 119.2
Minimum aortic pressure (mmHg) 80 81.1
Mean aortic pressure (mmHg) 100 99.92
Mean pulmonary artery pressure (mmHg) 18 17.6
Ejection fraction 50–60% 55%
Flow split ratio between coronary and systemic outlets 4–6% 4.8%
Flow split ratio between left and right coronaries 70–80% 79%

Fig. 2 Simulation results for image-based 3D CFD coronary modeling: (a) image-based geometry with 24 coro-
nary outlets, (b) computed aortic pressure waveform, (c) computed pressure-volume loops of the left and right
ventricles, (d) typical computed left coronary artery flow waveform with minimum flow in systole and maximum
flow in diastole, and (e) typical computed right coronary artery flow waveform with commensurate peaks in sys-
tole and diastole

Table 2 Parameters of the heart model (in c.g.s. units) shown
in Fig. 1 for the healthy patient-specific geometry of Fig. 2(a)

Parameter Value

Lra 0.50
Rra 10
Lrv 0.25
Rrv 20
Rpa 120
Cpa 0.003
Lla 0.10
Rla 5
Llv 0.65
Rlv 10
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earlier. Computed flow rate and measured geometrical properties
of the respective stenosis (see Table 6) were used to parameterize
the algebraic, 1D and 2D multiring models. Note, the synthetic
increase in Young’s modulus for the 1D and 2D multiring models
(used to maintain consistency with the 3D model) results in an
increased pressure drop across the stenotic region, and leads to
more favorable comparison as the 1D and 2D models systemically
underpredicted pressure drop as shown below. The 1D solutions
were obtained using 300 cells, and the multiring vessels were dis-
cretized with 30 rings and 800 cells.

Figures 3(a), 3(d), and 3(g) display the spatially resolved distri-
bution of computed FFR throughout the coronary tree and demon-
strate potential for ischemia for 75% and 90% area stenosis, but
no potential ischemia for the 50% stenosis. Figures 3(b), 3(e), and
3(h) compare the results of the four algebraic models described in
Sec. 2.4. The pressure drop results of Model 3 for all degrees
of stenosis are consistent with those from the 3D simulations.
Figures 3(c), 3(f), and 3(i) provide comparison between the
amount of pressure drop calculated by model 3 (abbreviated
henceforth in the figures as 0D), 1D, multiring (abbreviated as

Table 3 Parameters of the systemic outlet (in c.g.s. units) for
the healthy patient-specific geometry of Fig. 2(a)

Parameter Value

Rp 142.47
Rd 1440.51
C 0.0015

Table 4 Parameters of the coronary outlets (in c.g.s. units) for
the healthy patient-specific geometry of Fig. 2(a)

Outlet number Ra� 103 Ram� 103 Rv� 103 Ca� 10�6 Cim� 10�6

1 208.77 339.25 44.74 0.011 1.780
2 159.56 259.28 34.19 0.014 2.189
3 142.10 230.91 30.45 0.015 2.393
4 147.27 239.31 31.56 0.014 2.328
5 262.65 426.81 56.28 0.009 1.492
6 206.83 336.09 44.32 0.011 1.793
7 309.52 502.98 66.33 0.008 1.315
8 428.21 695.85 91.76 0.006 1.024
9 258.56 420.16 55.41 0.009 1.510
10 229.76 373.36 49.23 0.010 1.654
11 284.16 461.77 60.89 0.009 1.404
12 292.69 475.63 62.72 0.008 1.373
13 361.95 588.18 77.56 0.007 1.166
14 164.24 266.89 35.19 0.013 2.141
15 272.67 443.10 58.43 0.009 1.449
16 249.07 404.74 53.37 0.010 1.554
17 222.16 361.01 47.61 0.010 1.697
18 293.61 477.10 146.82 0.33 11.12
19 148.78 241.65 74.32 0.56 18.78
20 486.92 791.33 243.52 0.22 7.54
21 218.54 355.01 109.12 0.41 13.97
22 363.24 590.22 181.67 0.28 9.45
23 719.31 1168.85 359.60 0.17 5.58
24 449.6 730.6 224.83 0.24 8.02

Table 5 Comparison between major hemodynamic indices at rest and hyperemia for the case shown in Fig. 2(a)

Rest condition Hyperemic condition

Cardiac output (cc/s) 82.89 82.97
Mean blood pressure (mmHg) 99.92 95.23
Flow split ratio between coronary and systemic outlets 4.8% 16.7%
Flow split ratio between left and right coronaries 79% 81%

Fig. 3 Comparison of results for models with 50%, 75%, and 90% idealized stenosis: (a), (d),
(g) computed FFR distribution throughout the coronary trees from 3D CFD, (b), (e), (h) compari-
son of pressure drop across the respective coronary stenosis for four different algebraic mod-
els and the full 3D CFD simulation, and (c), (f), (i) comparison of pressure drop across the
respective coronary stenosis obtained from algebraic model 3 (0D), 1D, multiring (2D), and the
full 3D CFD simulation
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“2D”), and 3D simulations. The multiring method is able to better
predict pressure drop than the 1D model for all degrees of stenosis
considered, however, the estimated pressure drop from both the
1D and multiring methods deviate significantly from the 3D CFD
results, particularly when the stenosis becomes clinically signifi-
cant. The algebraic model 3 maintains consistent predictions for
varying degrees of stenosis. A comparison of the computed FFR
values calculated distal to the coronary stenoses for different mod-
els is presented in the inset legends of Figs. 3(c), 3(f), and 3(i),
and similarly demonstrate the reliability of model 3 for different
degrees of stenosis and the unreliability of the 1D and multiring
methods as the stenosis becomes clinically significant. It was
found that algebraic models 1, 2, and 4 produced consistently
inaccurate results compared to 3D simulations, and thus, were not
included in the subsequent comparisons presented below for
asymmetric and patient-specific stenoses; algebraic model 3 was
hence used as the de facto 0D model.

3.3 Comparison of Model Results for Synthetic Nonsymmetric
Stenoses. The idealized stenosis considered in Fig. 3 was locally
symmetric. However, most patient-specific coronary stenoses
have irregular and nonsymmetric geometries. To study robustness
to asymmetry, we created nonsymmetric stenoses in different
arteries with different degrees of area reduction. A nonsymmetric

73% stenosis with curvature was created in a different coronary
artery, which had a mean flow that was five times greater com-
pared to the symmetric 75% stenosis case presented earlier. Thus,
this model considers large perturbations to stenosis shape, loca-
tion, and flow rate. The model 3 prediction of pressure drop for
this scenario remained consistent to the 3D CFD simulation
results as shown in Figs. 4(a) and 4(b). As another test, a 90%
highly asymmetric stenosis was considered, in the same arterial
segment of the idealized 90% symmetric stenosis. Figures 4(c)
and 4(d) demonstrate that model 3 maintained consistent predic-
tion of transstenotic pressure drop even for this high degree of
asymmetry and high severity of area reduction.

3.4 Comparisons for Patient-Specific Stenosis. CCTA
images of three patients with different degrees of stenosis were
used to evaluate if the algebraic model 3 maintained reasonably
consistent predictions for patient-specific stenosis geometries.
Figures 5(a), 5(c), and 5(e) display the computed FFR distribution
throughout the coronary trees of three patients with approximately
70%, 88%, and 84% area reduction stenosis, respectively, which
spans FFR values from clinically acceptable (not likely to cause
ischemia) to significant (likely to cause ischemia). These stenoses
were located in different left and right coronary arteries with dif-
ferent flow rates of 1.06, 1.61, and 0.48 (cc/s), respectively.

Fig. 4 Comparison of results for models with asymmetric stenoses: (a) computed FFR distri-
bution from 3D CFD for a 73% asymmetric stenosis, (b) pressure drop across stenosis for
model 3 (0D) and full 3D CFD simulation for the 73% asymmetric stenosis, (c) computed FFR
distribution from 3D CFD for a 90% asymmetric stenosis, and (d) pressure drop across steno-
sis between model 3 (0D) and full 3D CFD simulation for the 90% asymmetric stenosis

Table 6 Physical and geometrical properties (in c.g.s. units) of all respective stenosis models

A0 As Lv Ls Womersley number (a) Mean flow rate

50% Idealized stenosis 0.013 0.0063 0.52 0.18 0.82 0.44
75% Idealized stenosis 0.013 0.0028 0.51 0.17 0.82 0.40
90% Idealized stenosis 0.013 0.0011 0.52 0.19 0.82 0.34
73% Nonsymmetric stenosis 0.050 0.0125 1.47 0.71 1.20 1.93
90% Nonsymmetric stenosis 0.013 0.0012 0.48 0.10 0.83 0.35
70% Patient-specific stenosis 0.041 0.0108 3.27 1.04 0.91 1.06
88% Patient-specific stenosis 0.061 0.0073 2.10 1.34 1.10 1.61
84% Patient-specific stenosis 0.017 0.0027 0.56 0.21 0.86 0.48
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Moreover, it should be noted that the first patient (70% case) had
two consecutive stenoses, which is not uncommon of lesion com-
plexity encountered clinically. In the patient with consecutive ste-
nosis, the amount of pressure drop due to the first stenosis was
first calculated, then resulting values were used to calculate the
pressure drop over the second stenosis, and finally, the results
were combined. It was observed that the transstenotic pressure
drop predicted by model 3 maintained reliable agreement with 3D
simulation results in all cases. While the peak pressure drop
showed moderate deviation, the computed FFR values varied by
less than 4% between the 0D and 3D simulations.

4 Discussion

We compared the ability of various algebraic and PDE models
to predict transstenotic pressure drop and noninvasive FFR esti-
mation in the coronary arteries for a range of stenosis severity,
morphology, location, and flow rate. The reduced order PDE mod-
els (1D and 2D multiring methods) consistently underestimated
pressure drop and overestimated FFR. The algebraic pressure-
drop models varied widely; however, one model (model 3)
provided consistent prediction with 3D time-dependent CFD sim-
ulations. These results support the notion that an algebraic
pressure-drop model may provide useful diagnostic value com-
pared to more complex and computationally expensive methods.

Although the transstenotic pressure drop models considered
here were developed for differing vascular applications, it was
important to consider a range of models because model origin was
generally not predictive of accuracy. For example, transstenotic
pressure drop models developed for general vascular stenosis or
coronary artery stenosis (e.g., Models 2 and 4) were found to per-
form poorly when compared to 3D simulations, whereas model 3
showed strong agreement over a range of scenarios. This may be
considered surprising since model 3 was developed in the context
of aortic coarctation where Reynolds number Re� 2000,
Womersley number a� 15, and area reduction 1�As/

A0� 40–60%. These key nondimensional parameters are on the
order of Re� 100, a� 1, and 1�As/A0� 50–90% for coronary
applications herein. Thus, the application here was not dynami-
cally or kinematically similar to that considered in Ref. [16].
Despite the relative agreement of model 3 with the 3D results, the
model does appear to systematically underpredict pressure drop
slightly, which indicates that more favorable agreement may be
achieved by appropriate tuning of model parameters for coronary
applications.

To provide more general insight into reduced order modeling,
we note that in most algebraic models the pressure drop is predicted
based on energy losses due to viscosity, sudden expansion, convec-
tive and unsteadiness effects of the flow. Model 1 largely underesti-
mates the value of pressure drop even for mild (50%) stenosis. The
reason for this could be that viscous dissipation is neglected. Model
2 takes into account viscous dissipation, but the empirical parame-
ters used in this model appear to result in significant overestimation
of pressure drop as compared to model 3, which is of mostly similar
functional form. Namely, the modifications introduced in model 3
appear to improve the accuracy, and robustness to changes in the
shape, location, and degree of stenosis. Model 4 has the advantage
of no empirical parameters, however, the results from this model
appear sensitive to how the length of the stenosis is chosen. Know-
ing how to choose the length of the stenosis is generally difficult in
practical applications.

The results of model 3 indicate that dissipation due to viscosity
and flow separation downstream of the stenosis has the highest
contributions to the total pressure drop. Pressure drop due to vis-
cous dissipation is sensitive to the flow profile, which must be
assumed in the 1D model, and it is difficult to anticipate a suitable
flow profile a priori, if one even exists. Pressure drop due to flow
separation is neglected in the 1D model since the velocity profile
is assumed fixed at all cross sections. For this reason, one might
not expect the 1D model to perform well; however, it is useful to
quantify the amount of error incurred by 1D modeling since 1D
modeling is employed for coronary flow simulations [34]. Flow

Fig. 5 Comparison of models for patient-specific coronary stenoses: (a) computed FFR distribution
for a patient with two consecutive stenosis in the left anterior descending (LAD) coronary artery with
maximum value of 70%, (b) pressure drop across the consecutive stenoses from the algebraic model
3 (0D) and full 3D simulation, (c) computed FFR distribution for a patient-specific 88% stenosis in the
left anterior descending (LAD) coronary artery, (d) pressure drop across the patient-specific 88% ste-
nosis for algebraic model 3 (0D) and full 3D simulation, (e) computed FFR distribution for a patient-
specific 84% stenosis in the right coronary artery (RCA), and (f) pressure drop across the patient-
specific 84% stenosis for algebraic model 3 (0D) and full 3D simulation
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separation and viscous effects are more accurately captured in the
multiring method since the time- and space-varying velocity pro-
files are computed rather than assumed, which results in better
prediction of pressure drop, as shown in Figs. 3(c), 3(f), and 3(i).
However, the multiring method is relatively computationally
expensive, and despite its improved accuracy, its results differed
noticeably from the 3D simulations as the stenosis becomes clini-
cally significant. A main assumption in the multiring method is
axisymmetric velocity. However, even for a locally symmetric
stenosis, the overall curvature of the artery in 3D leads to nonsym-
metric and intricate stenotic flow patterns. This distortion of the
velocity profile due to vessel curvature causes extra viscous dissi-
pation as compared to a straight vessel with similar length and
radius. Consequently, the axisymmetric assumption of the multir-
ing model, and 1D model, could be a significant source of error in
predicting pressure drop in realistically arterial geometries. Con-
sidering additional terms in 1D and multiring models to capture
energy dissipation due to vessel curvature is likely to improve the
accuracy of these models for predicting pressure drop [35].

We note that although FFR is based on mean differences in
pressure, the comparisons of transstenotic pressure drop that we
presented are temporally resolved. Thus, transient differences
between the models can be evaluated. It is observed that model 3
maintained relative agreement with the 3D computations through-
out the cardiac cycle. The comparison over time can also be
loosely interpreted as comparison overflow rate since flow rate
through the artery changes dramatically over the cardiac cycle.
This is noteworthy for at least two reasons. First, uncertainty in
cardiac output (upstream) or microvascular resistance, vascular
reactivity or collateralization (downstream) would manifest in dif-
ference in flow rate through a stenotic artery. Second, the location
(artery) of the stenosis mainly affects flow rate through the steno-
sis. Therefore, demonstrating that a model maintains consistent
agreement over a range of flow rate is important.

All reduced order models used flow rates obtained from the 3D
CFD simulation. This is reasonable from a comparison standpoint
to reduce extraneous differences that might bias the comparisons.
However, from a practical standpoint, one would want to avoid
3D CFD in order to estimate the flow rate in the stenotic artery for
reduced order modeling to be worthwhile. However, this can be
handled by either obtaining noninvasive estimation of flowrate in
the effected coronary artery [36] or using a reduced order model
of the coronary arterial tree in order to obtain flow rate through

the stenotic artery. Another limitation is that we mostly consid-
ered isolated stenosis, however, atherosclerotic arteries can have
highly diffuse lesions and/or lesions in proximity to bifurcations.
Algebraic models are generally not designed to account for such
geometric complexity, and such cases should likely be excluded
from consideration in practical applications. Indeed, for transla-
tional efforts, a far greater number and variety of patient-specific
stenosis should be considered. However, the results herein indi-
cate that reduced order modeling may be sufficiently accurate to
be of clinical value for a relatively broad range of cases.

5 Conclusion

Fast and accurate noninvasive identification of coronary trans-
stenotic pressure loss can have important clinical significance for
management of coronary artery disease. Here, we compared
pressure-drop estimations from models diversely ranging from
algebraic relations to 3D time-dependent CFD simulations in cor-
onary stenoses that ranged in severity, shape, and location. We
observed the capability of a simple algebraic model to maintain
reasonable agreement with fully 3D patient-specific CFD simula-
tions, providing evidence that an algebraic pressure-drop model
may provide high diagnostic value for evaluating the functional
significance of a coronary stenosis.
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Appendix

Verification of One-Dimensional Solver. To verify our 1D
solver, we considered the benchmark study in Boileau et al. [37].
The vessel had uniform geometry and wall properties, with nomi-
nal radius of 0.3 cm and length of 12.6 cm. A pulsatile periodic
flow waveform with a period of T¼ 1.1(s) (see Fig. 6(a)) was
imposed as an inlet boundary condition and a three-element
Windkessel model was employed at the outlet boundary. All the
mechanical and geometrical parameters for this model are given

Fig. 6 Results of 1D simulations of flow and pressure in an idealized common carotid artery
from our in-house solver and benchmark [37]: (a) imposed inlet flow rate, (b) computed inlet
pressure, (c) computed flow rate at the vessel midpoint, and (d) computed pressure differ-
ence between the inlet and outlet
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in Table 7. Figure 6 displays the numerical predictions of inlet
pressure (Fig. 6(b)), flow rate at the midpoint (Fig. 6(c)), and pres-
sure gradient between inlet and outlet of the model (Fig. 6(d)).
These waveforms are in excellent agreement with the correspond-
ing waveforms calculated in Boileau et al. [37].

Verification of Multiring Solver. The analytical linear
Womersley solution for flow in a deformable tube was used to
verify our numerical implementation of the multiring method.

Details of the analytical derivation of the Womersley solution can
be found in the previous works [11]. Since the multiring method
can produce the velocity profile at each cross section over differ-
ing axial locations, it is expected that the longitudinal and radial
variation of the axial velocity component from the Womersley
solution can be reproduced by the multiring method. All model
parameters used in the comparison are listed in Table 8.

For the multiring model, a periodic pressure p ¼ p̂sin 2pt=Tcð Þ
with Tc¼ 0.5 was imposed at the inlet of the tube and a nonreflect-
ing boundary condition was imposed at the outlet. The multiring
vessel was discretized with 120 rings and 1600 cells. Figure 7
shows the velocity profile at x¼ 25 (cm) at different time points
for both the multiring and Womersley solutions, with Womersley
numbers of 5 and 20. For both Womersley numbers, the multiring
method demonstrates very close agreement with the Womersley
solution for both flow and pressure.
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