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ABSTRACT
The validation of microRNAs (miRNAs) identified by next generation sequencing involves amplification-
free and hybridization-based detection of transcripts as criteria for confirming valid miRNAs. Since
respective validation is frequently not performed, miRNA repositories likely still contain a substantial
fraction of false positive candidates while true miRNAs are not stored in the repositories yet. Especially if
downstream analyses are performed with these candidates (e.g. target or pathway prediction), the
results may be misleading. In the present study, we evaluated 558 mature miRNAs from miRBase and
1,709 miRNA candidates from next generation sequencing experiments by amplification-free hybridiza-
tion and investigated their distributions in patients with various disease conditions. Notably, the most
significant miRNAs in diseases are often not contained in the miRBase. However, these candidates are
evolutionary highly conserved. From the expression patterns, target gene and pathway analyses and
evolutionary conservation analyses, we were able to shed light on the complexity of miRNAs in humans.
Our data also highlight that a more thorough validation of miRNAs identified by next generation
sequencing is required. The results are available in miRCarta (https://mircarta.cs.uni-saarland.de).
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Introduction

MicroRNAs (miRNAs) have been in the focus of thousands of
manuscripts over the past two decades. Experimental as well as
bioinformatics techniques have continuously improved such
that researchers can now choose from a broad spectrum of
wet-lab and in silico tools for the detection and downstream
analysis of miRNAs [1,2]. However, there is still an ongoing
discussion regarding how to determine which of the identified
miRNAs are actually true positives and which ones are artifacts
introduced, for example, by amplification in high-throughput
sequencing studies. In addition to the standard reference data-
base miRBase [3–5], several other repositories for miRNAs have
been recently created. These repositories include databases that
are very specific, such as miRGeneDB [6], which focuses on
miRNAs that are likely true positives, or databases that are
trimmed for sensitivity, such as miRCarta [7]. The latter class
of databases lists all potential miRNA candidates instead of only
the very likely candidates. Consequently, the more sensitive
databases are one to three orders of magnitude larger than the
specific repositories. Given these and other developments (e.g.
bias due to low-quality samples [8]), there is an increasing
demand for higher standards in the validation of miRNAs.

Especially, if further downstream analysis approaches are
applied to false positive miRNA candidates, errors in miRNA
prediction can lead to misleading results. For example, a target
gene set could be inferred from a false positive miRNA candi-
date, and a target pathway could be pursued from the target gene
set that lacks biological relevance.

Among the hallmark studies on miRNAs, in 2003, Ambros
and co-workers defined five criteria to characterize miRNAs
as validated miRNAs [9]. These criteria include two expres-
sion criteria (the detection of a distinct ~22-nt RNA transcript
by hybridization to a size-fractionated RNA sample and the
identification of the ~22-nt sequence in a library of cDNAs
made from size-fractionated RNA) and three additional bio-
genesis criteria. While the latter of the two expression criteria
can be fulfilled in high-throughput studies based on massive
parallel sequencing, the miRNA candidate sets from these
results are often not validated by hybridization-based
approaches. Northern blotting was originally used as a valida-
tion approach; however, this strategy is difficult to perform
for tens of thousands of candidates. Microarray hybridization
and amplification-free detection of the candidates represents
one reasonable alternative. In addition to the sole detection of
candidates, analyses of differential expression of the
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candidates in different tissues [10], cell types [11,12] or
between patients and controls [13] can provide additional
evidence for new miRNAs.

In previous studies, our group as well as others [11,14,15]
presented large sets of potentially new miRNAs from next
generation sequencing (NGS) datasets. However, the miRNA
results from NGS are error-prone and heavily dependent on
the sample quality or RNA integrity [8,14,16]. We previously
used these NGS-based discovery studies to build a microarray
containing 11,877 miRNA candidates and tested this array
with different tissues (e.g. testis, heart, brain, among others)
and body fluids (e.g. plasma) as well as blood cells [17]. From
the resulting profiles, we generated a second array containing
the most reliable miRNAs. This array consists of 558 miRNAs
from miRBase v21 and 1,709 miRNA candidates from other
studies. For the miRNAs showing positive signals, the first
expression criterion by Ambros (the hybridization-based
detection) has already been fulfilled.

Therefore, for the next step, we examined the expression
levels of the miRNA candidates in human pathologies to
identify those that showed varying expression as a strategy
to determine biologically relevant and functional miRNAs.
We thus hybridized samples from 187 individuals on micro-
arrays. We selected diseases affecting two different organs
known to have different tissue and blood miRNA repertoires
[18], namely the lung and the brain. For the lung, we selected
non-small cell lung cancer (NSCLC), small cell lung cancer
(SCLC) and non-tumor lung disease (NTLD) such as chronic
obstructive pulmonary disease (COPD). For brain we selected
Parkinson’s disease (PD) as an example of a neurodegenera-
tive disorder. After evaluation of the 187 individual
miRNomes, we identified candidates for a second stage vali-
dation by Northern blotting. For all miRNA candidates, a
downstream analysis has been performed as already available
for miRNAs in the miRBase. This includes target gene and
target pathway prediction as well as the analysis of evolution-
ary conservation. Finally, we used the results of the present
study, i.e. the disease associations, predicted target genes and
target pathways and the degree of evolutionary conservation,
to improve the quality and the scope of our previously pub-
lished miRNA database miRCarta. The workflow of the
research project is presented in Figure 1.

Results

In this study, we aimed to provide new information on the
validity of miRNAs by hybridization-based detection, disease
associations, evolutionary conservation and target gene and
target pathway information.

Hybridization-based detection of mirna candidates

We established a microarray containing probes for measuring
the expression of 2,267 miRNAs and miRNA candidates that
showed expression in at least one of eight different tissues or
blood/plasma samples in a pre-screening using the same array-
based technology (Fig. 1) [17,19]. This set consists of 558
miRNAs from miRBase (predominantly from the earlier ver-
sions 1–12 of this database) and 1,709 additional miRNA

candidates from previous studies not yet annotated in miRBase
[11,14,19]. Using this microarray, we profiled the expression of
miRNAs and miRNA candidates in 187 samples from patients
with NSCLC, SCLC, NTLD (mostly COPD) or PD as well as
controls. To assess the quality and replicability of the array, we
also hybridized four process controls. The selection of these
cohorts allows addressing clinical questions in an increasing
degree of specificity: using this approach, we can identify
which miRNAs and miRNA candidates show 1) differential
expression between diseases and controls in general; 2) differ-
ential expression between diseases of different organs, i.e. lung
disease vs. neurological disease; and 3) differential expression
between diseases of the same organ, i.e. lung cancers vs. NTLD.

To assess the quality of the sample processing and hybri-
dization, we used four process controls (each on a different
chip). The four samples were technical replicates that were
labeled and hybridized coming from the same miRNA stock
pool. We computed the pairwise correlations of the raw
expression values of these samples, which showed that the
process controls are highly correlated (minimum: 99.7%;
maximum: 99.8%; average: 99.7%) and which demonstrates
that the results are well reproducible.

We next analyzed the total number of expressed miRNAs
andmiRNA candidates in our samples. When the expression of
a miRNA was defined by a significant signal above background
in at least one of the tested samples (least stringent criterion),
the results detected the expression of 524 of 558 (93.9%)
miRNAs from miRBase and 1,594 of 1,709 of miRNA candi-
dates (93.3%). If the analysis was limited to miRNAs that were
present in at least 5% of all tested samples (more stringent
criterion), the results still detected 444 of 558 miRBase
miRNAs (79.6%) and 1,288 of 1,709 of miRNA candidates
(75.4%). On the other extreme, 218 of 558 miRNAs from
miRBase (39.1%) and 536 of 1,709 (31.4%) miRNA candidates
were present in at least 95% of all tested samples. Although the
frequency of detectable miRNAs from miRBase was signifi-
cantly higher (p = 1.8x10−5 in one-tailed Wilcoxon rank sum
test), our results suggest a complex miRNA repertoire in
human pathologies, going far beyond the miRNAs known
from miRBase. The distribution of miRNAs that can be
detected in 0% to 100% of samples (in intervals of 5%) is
presented as a histogram in Fig. 2A. Like the frequency, the
expression of miRBase miRNAs was also significantly higher
compared with the expression of miRNA candidates
(p = 2.1x10−9 in one-tailed Wilcoxon rank sum test).
However, despite the significantly lower expression of new
miRNA candidates in general, still a substantial fraction of
these candidates showed log2 expression intensities in the
higher expression range (Fig. 2B). These results suggest a highly
complex situation with respect to both the quality and the
quantity of the human miRNome. In particular, the extent to
which miRNAs and miRNA candidates are expressed in con-
trol and disease samples was far above what is known to date.

Disease-association of mirna candidates

Our study set-up allows for comparison of miRNA expression
levels between patientswith specific diseases and controls, between
patients with diseases of different organs and between patients
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with diseases of the same organ. Volcano plots that provide an
overview and show the quantification and comparison of the
results from these analyses are presented in Fig. 3A–E.

We first compared the levels of miRNAs and miRNA
candidates in the heterogeneous set of all 116 patients with
the 71 controls (Fig. 3A). After adjustment for multiple

Figure 1. Schematic of the study flow [1]. We mined miRNA candidates from next generation sequencing experiments from the literature [2]. We designed a custom
microarray using these candidates [11,877] and hybridized different tissues and blood to assess which candidates are more likely real miRNAs [3]. From the identified
high confidence miRNAs [2,267], we built a second custom microarray, which was used in the current study to measure the differential expression in patients with
different diseases and controls [4]. We performed statistical evaluation and added the results to our miRNA repositories and analysis pipelines [5]. We selected several
candidate precursors to perform validation with Northern blotting. PD = Parkinson’s disease; NSCLC = non-small cell lung cancer; SCLC = small cell lung cancer;
NTLD = non-tumor lung disease.
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testing, 602 miRNAs (185 miRBase, 417 miRNA candidates)
were identified as differentially expressed between patients
with disease and controls (p < 0.05; two-tailed Wilcoxon
rank sum test; FDR adjustment). The miRNA with the lowest
adjusted p-value of 3.3 × 10−10 was a candidate deposited in
miRCarta with the ID of m-4408 that was proposed by Londin
et al. [11]. Most interestingly, four of the 10 most significant
identified miRNAs were miRNA candidates not yet annotated
in miRBase (Table 1).

For the second level of analysis, we compared PD patients
(n = 34) versus controls (n = 34) as well as patients suffering
from lung diseases (n = 82) to controls (n = 37) (Fig. 3B, C).
We observed smaller effect sizes in the evaluation of PD
patients versus controls compared with the analysis of
patients with lung diseases versus controls. After correction
for multiple testing, no miRNAs were identified as

significantly deregulated in this comparison of PD patients
and controls. In contrast, in comparing patients with lung
diseases with controls, we identified 914 miRNAs (277 known;
637 candidate) that were significantly differentially expressed.
As shown in Table 2, the 10 most significant miRNAs are
known from miRBase v21 and predominantly show a down-
regulation in patients with lung disease.

In the third level of the disease analysis, we compared 58
lung cancer patients (NSCLC and SCLC) with 24 patients
with NTLD and identified 301 significantly deregulated
miRNAs and candidates (Fig. 3D). Here, four of the most
significant markers (miRCarta IDs: m-6186, m-3711, m-4507,
m-2646) were not known from miRBase and were discovered
in the study by Londin et al. [11]. We observed that the
significantly deregulated miRNAs showed predominantly
upregulated expression in cancer patients.

Figure 2. Expression density plot a: Histogram showing the distribution of the detection frequency of miRNAs annotated in miRBase (miRBase) and miRNA
candidates not annotated in miRBase (new). The x-axis represents 0% to 100% of samples in intervals of 5%. The y-axis represents the relative fraction of miRNAs and
miRNA candidates with the respective frequency in the 187 samples. b: Histogram showing the abundance level of miRNAs annotated in miRBase (miRBase) and
miRNA candidates not annotated in miRBase (new). The x-axis represents log2 of normalized microarray expression levels. The y-axis represents the relative fraction
of miRNAs and miRNA candidates with the respective expression level in the 187 samples.
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Figure 3. Volcano plots for the series of comparisons. For each comparison, the log2 fold change is shown on the x-axis and the negative decadic logarithm of the raw p-
value (Wilcoxon rank sum; two-tailed) is shown on the y-axis. Nominally significant miRNAs are highlighted in red or green, depending onwhether their expression levels are
downregulated or upregulated, respectively, in the second comparison group compared with the first. P-values that were significant after adjustment are shown in dark
green and red. The volcano plots on top shown broader comparisons, while the scatter plots at the bottom show results for specific comparisons. NTLD = non-tumor lung
disease; LC = lung cancer; PD = Parkinson’s disease; LD = lung disease; SCLC = small cell lung cancer; NSCLC = non-small cell lung cancer.
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Finally, the most specific comparison was carried out in
the last level of the analysis between 30 NSCLC and 28
SCLC patients (Fig. 3E). In this case, the identified
miRNAs showed very significant p-values and again, the
most significant miRNA was not annotated in miRBase
v21 (miRCarta-ID m-16905, adjusted p-value of
1.8 × 10−9) but has been identified by our group [19].
Among the ten most significant miRNAs in this compar-
ison are seven miRNA candidates not annotated in
miRBase v21. The complete results of the comparisons
are shown in Table S1.

Since the miRNA expression was highly variable in the
patients and especially between the different lung diseases,
we additionally performed ANOVA for the following four
groups [1]: controls [2], NSCLC patients [3], SCLC
patients and [4] patients with NTLD. The significance
values of the ANOVA were substantially lower compared
with the already highly significant p-values in the respec-
tive pairwise comparisons. Furthermore, 9 of the 10 most
significant miRNAs were already annotated in miRBase
and since miRBase v11 or earlier. The two most significant
miRNAs, hsa-miR-30b-5p (Fig. 4A) and hsa-miR-30c-5p
(adjusted p-value < 10−17), were downregulated in all lung
diseases compared with controls. Hsa-miR-425-5p (Fig.
4B, p = 7.2x10−18) was mostly downregulated in NSCLC
patients, while SCLC patients showed almost the expres-
sion as the controls. The most significant miRNA candi-
date not yet annotated in miRBase was miRCarta-ID m-
3254 (p-value 1.1 × 10−15) that was identified in the
Londin study [11] (Fig. 4C). The results of the ANOVA
analysis are shown in Table S2.

Evolutionary conservation

A further important evidence factor of miRNAs is their evolu-
tionary conservation. To assess the evolutionary conservation of
the miRNAs and candidates included on the chip, we mapped
their sequences without mismatches against the genomes of 148
organisms integrated in miRCarta and counted a hit for an
organism if we found the sequence at least one time in its
genome. On average, we found matches for an individual
sequence in 7.5 organisms for the miRNAs and candidates. We
next investigated whether the evolutionary conservation was
higher for the miRNAs that were significantly differentially
expressed in the comparisons that are described in the previous
section. For all pairwise comparisons described in this manu-
script (see Fig. 3 and Table S1), we extracted the significantly
deregulated miRNAs (two-tailed Wilcoxon rank sum test;
adjusted p-value < 0.05) and the remaining miRNAs on the
chip and counted the number of organism hits per miRNA for
both miRNA sets as above. We assessed the significance with a
one-tailed Wilcoxon rank sum test. For the first comparison of
controls versus diseases, we found on average 8.7 organism hits
for significantly deregulated miRNAs versus 7.1 hits for non-
significant miRNAs (p-value: 0.002). We see similar tendencies
for the comparison of patients with lung disease compared with
controls (9.3 versus 6.3 average hits, p-value = 8.6x10−12) and
patients with NTLD versus lung cancer (9.6 versus 7.2 average
hits, p-value = 0.0004). The comparison of patients with SCLC
versus NSCLC showed an almost equal distribution of hits (7.5
versus 7.6 average hits, p-value not significant). When we com-
bined all significantly deregulated miRNAs of the pairwise com-
parisons, we found that these miRNAs have more organism hits
on average (7.8 versus 6.5), although the difference in the

Table 1. The top 10 significant differentially expressed miRNAs/miRNA candidates in patients with disease (all diseases combined, n = 116) compared with controls
(all controls combined, n = 71).

miRNA
miRCarta

ID
Median
control

Median
disease

Fold change (median
control/median disease)

Wilcoxon rank sum test p-value
(two-tailed, FDR adjusted)

TJU_CMC_MD2-miR-ID02529-5p m-4408 29.44 64.94 0.45 3.33E-10
hsa-miR-4516 m-482 671.33 987.57 0.68 2.59E-09
hsa-miR-93-3p m-250 13.78 8.44 1.63 8.73E-09
hsa-miR-92b-3p m-115 7.04 6.31 1.12 8.73E-09
TJU_CMC_MD2-miR-ID00168-3p m-4357 37.55 20.49 1.83 1.16E-08
TJU_CMC_MD2-miR-ID02570-3p m-4481 25.37 14.03 1.81 1.8E-08
hsa-miR-631 m-1536 4.87 5.15 0.94 1.86E-08
novel-miR-1180-3p m-5609 13.14 8.36 1.57 3.7E-08
hsa-miR-331-3p m-192 630.59 375.18 1.68 3.9E-08
hsa-miR-339-5p m-163 101.08 48.26 2.09 5.01E-08

Table 2. The top 10 significant differentially expressed miRNAs/miRNA candidates in controls (n = 37) versus lung diseases (n = 82).

miRNA miRCarta ID
Median
control

Median
lung

diseases

Fold change (median
control/median lung

diseases)

Wilcoxon rank sum test p-
value (two-tailed, FDR

adjusted)

hsa-miR-30b-5p m-76 12,131.08 2267.55 5.35 3.93E-11
hsa-miR-192-5p m-59 828.5 196.46 4.22 3.93E-11
hsa-miR-628-3p m-445 40.02 20.17 1.98 3.93E-11
hsa-miR-1273g-3p m-1013 1385.5 4377.83 0.32 4.89E-11
hsa-miR-30c-5p m-56;m-57 1165.87 208.14 5.6 7.4E-11
hsa-miR-215-5p m-265 1016.12 296.74 3.42 7.4E-11
hsa-miR-550a-3p m-408 296.69 64.92 4.57 1.08E-10
hsa-miR-18a-3p m-389 21.78 6.02 3.62 1.64E-10
hsa-miR-19b-3p m-121; m-122 2465.73 620 3.98 1.72E-10
hsa-miR-500a-5p m-345 933.28 504.22 1.85 1.78E-10
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distributions was not statistically significant (p-value = 0.078).
For cases in which we observed significant p-values, the average
numbers of organism hits were well above the average number of
hits for the chip, suggesting thatmiRNAs that showed significant
differential expression in our comparisons were more conserved
compared with the other miRNAs on the chip.

Target genes and target pathways

To examine whether the disease-specific miRNAs target similar
biological pathways as the non-significant miRNAs identified in
our comparisons, we next performed target predictions for the
2,267 total miRNAs using TargetScan 7.1 [20]. The prediction
resulted in 16,773,110 miRNA-target interactions, which trans-
lates to roughly 7,400 targets permiRNA.To reduce the number of
potential false positive targets, we set a threshold at −0.625 for the
context++ score of TargetScan (corresponding to the first quartile
of scores for the prediction) and only considered predicted targets
with a lower (better) context++ score. This reduced the number of
predicted targets to 4,190,506 and to approximately 1,800 targets
per miRNA on average. A closer examination revealed that the
known miRNAs from miRBase had more predicted targets sites
than the novel candidates (one tailed Wilcoxon rank sum test, p-
value = 4.7x10−11).

To obtain a general overview as to which KEGG pathways
are enriched for this target set, we performed Gene Set
Enrichment Analysis (GSEA) with GeneTrail2 [21] using the

target list sorted by the context++ score. We found that the
ECM-receptor interaction, Focal adhesion, ABC transporters,
and Axon guidance enriched pathways were enriched, among
others. We then performed the same analysis for the targets of
the candidate miRNAs and the miRBase miRNAs on the chip
in separate analyses. For the candidate miRNAs, we also
found that the four above-mentioned pathways were enriched
in this set. For the miRBase miRNAs, we found that ECM-
receptor interaction, Focal adhesion and ABC transporter
pathways were enriched, but not Axon guidance. These results
suggest that the target sets with the best prediction scores
were very similar for the known and candidate miRNAs.

We next examined if the significant miRNAs of the pair-
wise comparisons were enriched for specific pathways by
performing an over-representation analysis (ORA) against
the targets of all miRNAs on the chip as reference. Since the
translation of miRNAs into their predicted targets was very
unspecific, we did not find any enriched pathways for the
significant miRNAs of any comparison. To obtain more spe-
cific results, we also performed ORA with the top 10 signifi-
cant miRNAs from the controls versus disease comparison.
This analysis yielded two significantly enriched pathways:
miRNAs in cancer and ErbB signaling pathway. In general,
we observed similarities between the target sets of miRNAs
and candidates. However, a more detailed analysis of the
targets of significantly deregulated miRNAs would require
target predictions that are more specific and yield less false

Figure 4. Boxplots resulting from an ANOVA. a: Boxplots for miRNA-30c-5p in four groups of patients. This miRNA was significantly downregulated in patients of all
diseases compared with unaffected controls. b: Boxplots for miRNA-425-5p in four groups of patients. This miRNA showed the most significant downregulation in
NSCLC patients. c: Boxplots for m-3254 in four groups of patients. This miRNA, which is not annotated in the miRBase, was most significantly upregulated in SCLC
patients. L-HC = matched controls for the lung cancer samples; NTLD = non-tumor lung disease; SCLC = small cell lung cancer; NSCLC = non-small cell lung cancer.
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positive annotations. To visualize the results of target predic-
tions for single candidate miRNAs, we updated our databases
miRCarta and miRPathDB accordingly. The miRNA candi-
dates of the chip are linked in miRCarta to the corresponding
results in miRPathDB, which lists the predicted targets, sig-
nificant categories if available and similarities in sequence,
target genes and pathways to other miRNA candidates.

Validation of mirnas in cell culture

In addition to the two expression criteria proposed by Ambros
et al. [9], three additional criteria involved the biogenesis of
miRNAs. Validation evidence can be obtained by several
experimental approaches, such as the knockout of genes that
are required for the processing of miRNAs, e.g. Drosha, Dicer,
or Exportin-5, or detection of the mature form using Northern
blotting. We decided to use Northern blots. Since the endogen-
ous expression levels of miRNA candidates may be too low, we
cloned the predicted precursors and flanking genomic regions
into pSG5 expression vectors and transfected these vectors into
HEK293T cells. RNA isolated from these cells was used for
Northern blotting and mature miRNA candidates were
detected using specific, radiolabeled hybridization probes. We
selected five miRNA candidates that were significantly deregu-
lated in the comparison of NSCLC versus SCLC. We selected
candidates with the highest significance values as well as can-
didates with adjusted p-values closer to 0.05. The most signifi-
cant miRNA that was stably expressed above the background
was m-3350 (p = 5.04x10−7), for which we detected a stronger
signal at about 40 nt and a weak signal at about 22 nt (Fig. 5A).
Similarly, as observed with three other miRNAs (m-3022,
p = 5.0x10−6; m-4537, p = 0.014; m-3558, p = 0.003), weak
signals at different heights were detected (Fig. 5B–D). The only
miRNA candidate that did not yield any signal in the validation
experiments was m-4731 (p = 0.007) (Fig. 5E). In sum, the
careful pre-selection of candidates resulted in a high validation
success rate.

Discussion

Parallel sequencing allows the identification of many potential
miRNAs, even if no reference genomes are available [22]. The
miRNAs discovered by high-throughput sequencing require
validation as several steps may lead to false positive miRNA
candidates, including library preparation, amplification and
sequencing steps. Northern blot analysis was originally used
to validate miRNAs; however, when obtaining very large sets
of miRNAs, array-based and amplification-free validation
strategies represent a reasonable first alternative to narrow
down candidates for low-throughput testing using conven-
tional Northern blot. In this study, we collected a set of
2,267 miRNAs and miRNA candidates from different reposi-
tories and the literature and measured their expression in 187
clinical samples. One strategy in defining the cohort of
patients would be to focus on one specific analytical compar-
ison, such as low stage non-small cell lung tumors against
tumor-free COPD patients. This strategy would make sense
especially for diagnostic studies. We aimed to determine the
heterogeneity and specificity of miRNA abundance, and thus

we examined patients affected by diseases of different organs.
We found that the miRNome, affected target genes and target
pathways in patients and controls was far more complex as
suggested by the miRBase miRNAs alone.

Generally, the variability of miRNA expression was higher in
lung cancer patients. This, in additionwith the comparably small
number of PD cases and controls (n = 34) as well as the large
number of features resulted in nominally significant miRNAs
not being significant after adjustment for multiple testing. Thus,
larger cohorts are required to confirm the results in PD.
Focusing on lung diseases, we observed a strong upregulation
of significant miRNAs in lung cancer compared with NTLD.
While the comparison of SCLC to NSCLC revealed that many
markers not annotated in miRBase were highly significant,
ANOVA of the overall lung cohort (controls, NSCLC, SCLC
and non-tumor lung diseases) highlighted many well-known
lung cancer miRNAs. Zhong et al. also observed a downregula-
tion of miR-30b and miR-30c, the two most significant miRNAs
that were downregulated in peripheral blood from NSCLC
patients in our study, in NSCLC tissue specimens compared
with adjacent non-tumor tissues [23]. Furthermore, both
miRNAs target and down-regulate Rab18 expression such that
increased levels of miR-30b/c finally inhibit NSCLC cells prolif-
eration [23]. In addition, the promotion of invasion in NSCLC
by inducing epithelial mesenchymal transition is promoted by
low abundance of miR-30c [24]. Moreover, miR-425-5p might
be a driver for tumor formation, growth and progression to
higher staging [25]. These examples are only representatives,
and a more complete picture of the role of miRNAs in lung
cancer is available in several reviews [26,27].

Other important factors of miRNAs are genomic clustering
and evolutionary conservation [28]. Both factors were investi-
gated in the original miRCarta publication [7] and our examina-
tion of the human non-coding transcriptome [17], in which the
expected patterns for new miRNAs were observed. Here, we
specifically asked if significant miRNAs show a higher rate of
evolutionary conservation compared with nonsignificant
miRNAs. Indeed, we were able to determine higher rates of
evolutionary conservation in most comparisons of miRNAs;
the most significant conservation rate was observed in the com-
parison of lung diseases against controls.

Of course, the validation of miRNAs does not stop by
providing information on the expression using hybridiza-
tion-based approaches. Knowledge on the biological function
of miRNAs as regulators of gene expression can support the
validity. For example, functional cross-linking followed by
Argonaute immunoprecipitation and sequencing [11] can be
performed. To determine whether miRNAs are processed
according to the canonical biogenesis, important proteins
such as Drosha, Dicer, or Exportin 5 can be knocked out.
However, some canonical miRNAs can still be produced with-
out Dicer or Exportin 5 [29]. Here we used a different strat-
egy: we cloned the precursor and flanking regions and
overexpressed the miRNA in in HEK293T cells. We then
provided evidence for the expression of the radioactively
labeled mature miRNA by Northern blot analysis. Low-
throughput experiments are only feasible for validation of a
small set of new miRNAs. In our experiments, we obtained
signals for 4 of the 5 tested miRNA candidates. While in some
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cases, we obtained clear signals matching the expected size of
miRNAs, in other cases the signals were less strong and did
not completely match the expected size of mature miRNAs.

In conclusion, here we provide evidence for a significantly
more complex human miRNome that is affected by and affects
human pathological processes. Our results also contribute to the
evidence that a thorough validation of newmiRNA candidates is
essential to foster the translation of miRNAs to clinical care.

Materials and methods

Design of the microarray

We previously described the set-up of a microarray containing
11,877 probes of humanmiRNAs, as sketched in the upper part of
Fig. 1 [17]. In brief, the 11,877 miRNAs and miRNA candidates
were evenly distributed across fivemicroarrays since a single array
did not contain enough spots to measure the miRNAs in the
recommended number of 20 replicates. This high number of
replicates is essential for a stable overall signal intensity estimation.
The custom microarrays were manufactured by Agilent (Santa
Clara, CA, USA). We next hybridized the custom microarrays

with RNA samples from brain, kidney, liver, testis and heart tissue
samples as well as PAXgene blood and plasma. From the results of
our initial experiments, we selected the miRNAs that can be
measured in blood and plasma without amplification using hybri-
dization and created a new array tailored for the measurement of
such miRNA profiles. This second array (manufactured by
Agilent) is commercially available from Hummingbird
Diagnostics GmbH (Heidelberg, Germany) for biomarker studies
and contains a total of 2,267 miRNAs, including 558 miRNAs
from miRBase and 1,709 miRNA candidates from other studies.
For each miRNA andmiRNA candidate, the number of replicates
as increased to 40 replicates per miRNA.

Study participants

We selected a study set-up that allows quantifying the varia-
bility of the potential new miRNAs in increasing levels of
specificity and includes diseases affecting two organs: the
lung and the brain. For the lung specimens, we collected
whole blood samples of patients with NSCLC, SCLC and
NTLD as well as controls in PAXgene tubes (PreAnalytiX)

Figure 5. Northern blot detection of miRNA candidates m-3350 (a), m-3022 (b), m-4537 (c), m-3558 (d) and m-4731 (e) using radiolabeled probes in HEK293T cells
transfected with the respective overexpression constructs. Ctrl indicates transfection of pSG5 vector alone. SYBR Gold (SyGo) or ethidium bromide (EtBr) was used to
confirm equal loading. Markers were used to confirm RNA ladders sizes (shown on the left of each gel). Arrows indicate specific signals.
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from the Saarland University Hospital (Homburg, Germany).
The regional ethics board approved the study and all patients
consented to participate in the study. We also selected PD as a
neurodegenerative disorder; the National Centre of Excellence
in Research on PD in Luxemburg provided the PAXgene
samples on PD patients and controls from their biobank.
The local ethics committee approved the study and the
patients consented to participate in the study. The total cohort
of 187 participants consisted of the following: 30 NSCLC
patients, 28 SCLC patients, 24 NTLD patients (mostly
COPD) and 37 controls; and 34 PD patients and 34 controls.
In addition, we hybridized four times a process control, which
consists of a pool of extracted RNAs (PAXgene miRNA Kit
Qiagen, Hilden, Germany) from seven whole blood samples.
The four technical replicates were processed independently
and distributed on four different chips to assess the replic-
ability and quality of the sample preparation step.

Sample preparation and microarray measurement

RNA was extracted from all samples using the PAXgene
miRNA Kit (Qiagen) according to the manufacturer’s instruc-
tions. RNA quality and quantity were evaluated using a
Bioanalyzer 2100 Instrument (Agilent Technologies) and
NanoDrop ND-1000. Microarray screening of high-quality
RNA samples was performed on Agilent’s SureScan DX
Microarray Scanner following the manufacturer’s instructions
and as described previously [10,30,31].

Bioinformatics

Features representing single miRNA measurements were
extracted according to the manufacturer’s instructions and
using the software provided by Agilent. All downstream analyses
were performed using R. To make the microarray data sets
comparable to each other, quantile normalization was first car-
ried out. AllmiRNA identifiersweremapped to themiRCarta-ID
(information on the miRCarta-ID and the database have been
published by Backes et al. [7]). For pairwise comparisons, we
used the non-parametric Wilcoxon rank sum test as not all
miRNA measurements were normally distributed according to
Shapiro-Wilk test. For comparisons including more than two
groups, analysis of variance (ANOVA) was performed. If not
mentioned explicitly, p-values in the manuscript have been
adjusted for multiple testing using the Benjamini-Hochberg
[32] method and p values of 0.05 were used to indicate the
significance level. To assess the evolutionary conservation of
miRNAs, we mapped all sequences of miRNAs spotted on the
chip without mismatches to 148 reference genomes of organisms
available in miRCarta. We computed targets of the miRNAs and
candidates on the chipwith TargetScan 7.1 [20].We acquired the
official source code comprising three Perl scripts, all untranslated
region sequences as 84-way alignments and ORF sequences as
84-way alignments from the corresponding project website
(http://www.targetscan.org/vert_71/). We then filtered both
files to keep only the sequences from Homo sapiens. Similar to
the approach described in the TargetScan publication, we orga-
nized the miRNAs into seed families by their seed identity,
excised from position 2 to 8 (7-mer) starting at the 5′ end of

each miRNA [20]. To predict targets, we applied the three Perl
scripts in the order recommended by the authors using standard
parameters, in addition to the required preprocessing as
described in the README files. Finally, we used the context++
score to sort the predicted targets in decreasing order, since the
more negative the context++ score is, the higher is the evidence
of capturing a true target.

Validation by northern blot analysis

HEK293T cells were purchased from Leibniz Institute DSMZ
(German Collection of Microorganisms and Cell Cultures,
Braunschweig, Germany). Candidate miRNA precursor
sequences including flanking regions were synthesized by
Eurofins Genomics (Ebersberg, Germany) and subcloned into
the pSG5 vector (Stratagene, now Agilent Technologies).
HEK293T cells (2.4 x 106) were seeded and transiently trans-
fected using PolyFect Transfection Reagent (Qiagen) according
to the manufacturer’s instructions. After 48 h, total RNA
(including miRNAs) was purified from transfected HEK 293T
cells using the miRNeasy Mini Kit (Qiagen) according to the
manufacturer’s instructions. Quantity and quality of isolated
total RNA including miRNA was determined using the
NanoDrop 2000 UV-Vis Spectrophotometer (ThermoFisher
Scientific, Waltham, MA, USA) with A260/280 ≥ 2 and A260/
230 ≥ 1.8 and Bioanalyzer 2100 (Agilent) with RIN > 8. For
Northern blot analysis, 20 µg total RNA including miRNA was
separated in 12% denaturing urea-polyacrylamide gels using the
SequaGel UreaGel System (National Diagnostics, Nottingham,
UK) and 1x TBE running buffer. A small RNA marker was used
to estimate the sizes of RNA bands (RiboReadyTM Color Micro
RNA ladder, VWR, Radnor, PA, USA; or low range ssRNA
Ladder and microRNA Marker, New England Biolabs,
Frankfurt am Main, Germany). The gel was stained with ethi-
dium bromide (10 mg/ml in 1x TBE) or 1x SYBRTM Gold
(Invitrogen/ThermoFisher Scientific) and processed with a
ChemiDoc Touch Imaging System (Bio-Rad, Munich,
Germany). For semi-dry electroblotting, the RNA was trans-
ferred to a Hybond-N nylon membrane (GE Healthcare Life
Sciences, Freiburg, Germany) for 30 min at 15 V and chemically
crosslinked using N-(3-dimethylaminopropyl)-N′-ethylcarbo-
diimide hydrochloride (Sigma-Aldrich, Munich, Germany) for
2 h at 55ºC. The radiolabeled RNA probes were generated using
the miRVana miRNA Probe Construction Kit (Ambion/
ThermoFisher Scientific) following the manufacturer’s instruc-
tions. The DNA template was in vitro transcribed using T7 RNA
polymerase and radiolabeled uracil or guanine if the probe only
contained two or fewer uracils (Hartmann Analytic,
Braunschweig, Germany). The template DNA was removed by
DNase I digestion. Hybridization of radiolabeled probes was
performed at 55°C with overnight rotating. The next day, the
blots were washed twice for 15 min in 5x SSC, 1% SDS and twice
for 15 min in 1x SSC, 1% SDS at 55°C and exposed to a storage
phosphor screen overnight. The screens were processed using a
typhoon scanner (GE Healthcare Life Sciences, Freiburg,
Germany); contrast and brightness were automatically adjusted
according to the darkest spot on the scanned area. Northern blot
images in this manuscript were further manually optimized in
terms of contrast and brightness.
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