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Abstract
Background. Pseudoprogression is a diagnostic challenge in early posttreatment glioblastoma. We therefore 
developed and validated a radiomics model using multiparametric MRI to differentiate pseudoprogression from 
early tumor progression in patients with glioblastoma.
Methods. The model was developed from the enlarging contrast-enhancing portions of 61 glioblastomas within 
3 months after standard treatment with 6472 radiomic features being obtained from contrast-enhanced T1-weighted 
imaging, fluid-attenuated inversion recovery imaging, and apparent diffusion coefficient (ADC) and cerebral blood 
volume (CBV) maps. Imaging features were selected using a LASSO (least absolute shrinkage and selection operator) 
logistic regression model with 10-fold cross-validation. Diagnostic performance for pseudoprogression was com-
pared with that for single parameters (mean and minimum ADC and mean and maximum CBV) and single imaging 
radiomics models using the area under the receiver operating characteristics curve (AUC). The model was validated 
with an external cohort (n = 34) imaged on a different scanner and internal prospective registry data (n = 23).
Results. Twelve significant radiomic features (3 from conventional, 2 from diffusion, and 7 from perfusion MRI) 
were selected for model construction. The multiparametric radiomics model (AUC, 0.90) showed significantly bet-
ter performance than any single ADC or CBV parameter (AUC, 0.57–0.79, P < 0.05), and better than a single radiom-
ics model using conventional MRI (AUC, 0.76, P = 0.012), ADC (AUC, 0.78, P = 0.014), or CBV (AUC, 0.80, P = 0.43). 
The multiparametric radiomics showed higher performance in the external validation (AUC, 0.85) and internal 
validation (AUC, 0.96) than any single approach, thus demonstrating robustness.
Conclusions. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improved diagnostic 
performance for identifying pseudoprogression and showed robustness in a multicenter setting.

Key Points  

A multiparametric radiomics model improved diagnostic performance and had good  
generalizability and could therefore augment the role of diffusion and perfusion MRI in 
the differentiation of pseudoprogression in patients with glioblastoma.

http://orcid.org/0000-0002-4419-4682
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Determining the time point of tumor progression is cru-
cial in the management of patients with glioblastoma who 
are in their early posttreatment stage.1 An incorrect diag-
nosis of tumor progression can lead to erroneous termi-
nation of successful treatment and negatively influence 
survival. Furthermore, an incorrect diagnosis could result 
in the inclusion of inappropriate patients in clinical tri-
als. Pseudoprogression is still a challenging issue in both 
radiology and clinical practice, occurring in about 20% of 
high-grade glioma patients treated with adjuvant radiation 
plus temozolomide (TMZ).2 Pathological confirmation is 
the gold standard for the diagnosis of pseudoprogression 
but it is not commonly applicable, and it may take several 
months before pseudoprogression can be clearly distin-
guished from early tumor progression (ETP) on follow-up 
imaging,3 thus delaying a timely diagnosis.

Advanced MRI protocols involving diffusion-weighted 
imaging (DWI) and dynamic susceptibility contrast (DSC) 
imaging show potential for distinguishing between these 
two conditions. Previous studies reported that recurrent 
tumors exhibit significantly lower apparent diffusion coef-
ficient (ADC) values than radiation necrosis,4,5 and sug-
gest histogram analysis of ADC as a promising parameter.6 
Cerebral blood volume (CBV) has also been found to be par-
ticularly useful for diagnosing pseudoprogression,7,8 with 
sensitivity and specificity levels as high as 81.5% and 77.8%,8 
respectively. However, single parameter approaches are 
limited in their ability to depict the heterogeneous nature of 
posttreatment glioblastomas, where tumor recurrence and 
radiation necrosis frequently coexist.9

Radiomics is an emerging field that converts imaging 
data into a high dimensional feature space using an auto-
mated data mining algorithm.10,11 Radiomics approaches 
can reflect the spatial and temporal heterogeneity of 
brain tumors, using clinically assessable commonly per-
formed T1-weighted, T2-weighted, and fluid-attenuated 
inversion recovery (FLAIR) MRI.10 Radiomics studies in 
neuro-oncology have shown the potential to discover hid-
den information that was inaccessible with single param-
eter approaches in patients with glioblastomas; they can 
improve estimating prognoses12,13 and determination of 
treatment response to anti-angiogenic therapy.12 However, 
few studies have focused on differentiating pseudopro-
gression from ETP in patients with glioblastoma, a task 
that has significant implications in clinical practice.

We hypothesized that a high-throughput feature vector 
obtained from ADC and CBV maps could improve the diag-
nostic performance for pseudoprogression over that of 
conventional MRI data, by reflecting biologic information 
of tumor aggressiveness and vascularity at an early post-
treatment stage of within 3 months. Also, we tried to vali-
date the multiparametric MR radiomics model using fully 

independent validation set to provide robustness across 
heterogeneous imaging acquisition protocols. Thus, the 
purpose of this study was to develop and validate a radi-
omics model using multiparametric MRI to facilitate differ-
entiation between pseudoprogression and ETP in patients 
with glioblastoma.

Materials and Methods

Study Patients

Our institutional review board approved this retrospective 
study, and the requirement to obtain informed consent 
was waived. We searched the electronic database of the 
Department of Radiology at our tertiary center and retro-
spectively reviewed the records of patients between March 
2011 and March 2017. We identified 238 consecutive patients 
who were pathologically confirmed as having glioblastoma 
and who subsequently received standard concurrent chem-
oradiation therapy (CCRT) from Stupp et al14 after surgery 
at our institution. The inclusion criteria for this study were 
as follows: (i) new histopathological diagnosis of a de novo 
glioblastoma according to the World Health Organization 
(WHO) criteria; (ii) CCRT with TMZ and 6 cycles of adju-
vant TMZ performed after surgical resection or biopsy; (iii) 
baseline multiparametric MRI including contrast-enhanced 
T1-weighted imaging (CE-T1WI), FLAIR, DWI, and DSC 
imaging performed within 6 months (mean, 18.9 wk; range, 
12.1–24.7 wk) after surgery or biopsy; (iv) newly developed 
or enlarging (>25%) and measurable contrast-enhancing 
lesions within 12 weeks of completing CCRT on MRI15; and 
(v) sequential follow-up contrast-enhanced MRI after com-
pletion of adjuvant TMZ to confirm the final diagnosis of 
pseudoprogression or ETP. Measurable contrast-enhancing 
lesions were defined as bidimensionally enhancing lesions 
with 2 perpendicular diameters of at least 10 mm, being vis-
ible on 2 or more axial slices. Patients were excluded if (i) 
the DWI or DSC sequence was not performed during the 
baseline MRI (n = 116), (ii) the residual contrast-enhancing 
lesion was unmeasurable in the baseline MRI (n = 13), (iii) 
there was no evidence of an enlarging contrast-enhancing 
lesion within 12 weeks of completing CCRT, which sug-
gested a stable or favorable response to CCRT (n = 41), (iv) 
the quality of the baseline MRI was inadequate for image 
analysis (n = 1), or (v) patients were lost to follow-up (n = 6).

Therefore, 61 consecutive patients (mean age, 58 y, range 
34–83; 38 [62%] male) were included in the study (Fig. 1). 
This cohort was used as a training set to develop a radiom-
ics model for diagnosing pseudoprogression in patients 
with treated glioblastoma. Identical inclusion criteria were 

Importance of the Study
Pseudoprogression is a diagnostic challenge in  
neuro-radiology, especially within the first 3-month early 
posttreatment stage following Stupp treatment protocols for 
glioblastoma. A multiparametric radiomics model improved 

diagnostic performance and had good generalizability, and 
could therefore augment the role of diffusion and perfusion 
MRI in the differentiation of pseudoprogression from early 
tumor progression in patients with glioblastoma.
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applied to identify 34 novel patients at another tertiary center 
(Seoul National University, Seoul, Korea) for the external 
validation of the model. The clinical and imaging characteris-
tics of all patients were retrospectively assessed. The clinical 
characteristics of the patients included sex, age at diagnosis, 
Karnofsky performance status (KPS) score, isocitrate dehy-
drogenase (IDH) mutation status, O6-methylguanine-DNA 
methyltransferase (MGMT) promoter methylation status, 
and the extent of surgical treatment of the tumor (gross total 
resection, partial resection, or biopsy).

Reference Standard for Final Diagnosis

A final diagnosis of pseudoprogression and ETP was con-
firmed in 26 and 35 patients, respectively, in the training 
set, and in 20 and 14 patients, respectively, in the external 
validation set. In second-look operations, the pathological 
diagnoses included 2 pseudoprogression and 8 ETP cases 
in the training set and 2 pseudoprogression and 6 ETP 
cases in the external validation set. When second-look 
operations could not be performed, consecutive clinico-
radiological diagnoses were made by consensus between 
a neuro-oncologist (J.H.K.  with 26  years of experience 

in neuro-oncology practice) and a neuro-radiologist 
(H.S.K. with 18 years of experience in neuro-oncology im-
aging) according to the Response Assessment in Neuro-
Oncology criteria.15 The clinico-radiological diagnoses 
classified the study population of the training set into 24 
pseudoprogression cases and 27 ETP cases, and that of the 
external validation set into 18 pseudoprogression cases 
and 8 ETP cases. A final diagnosis of pseudoprogression 
was made when there was an increase in contrast-enhanc-
ing lesions that subsequently regressed or became stable 
without any changes in the treatment for at least 6 months 
after surgery and completion of CCRT. Alternatively, a final 
diagnosis of ETP was made if enhancing lesions gradually 
increased on more than 2 subsequent follow-up MRI stud-
ies performed at 2- to 3-month intervals and required a 
prompt change in treatment.

MRI Protocol and Image Preprocessing

In the training set, all MRI studies were performed on a 3T unit 
(Achieve, Philips Medical Systems), using an 8-channel head 
coil. In the external validation set, MRI studies were performed 
on a different 3T unit (Signa Excite, GE Medical Systems).

Index test negative
(No evidence of enlarging
contrast-enhancing lesion)

Training n = 41
Test not available

Index test performed
(Multiparametric MR imaging

Training n = 116
Test n = 34

Index test positive
(New or enlarging contrast-

enhancing lesion)
Training n = 61

Test n = 34

Index test inconclusive
Training n = 14

Test not available
  No visible measurable contrast-
enhancing lesion on baseline MR
  Inadequate quality of dynamic
  susceptibility contrast imaging

Eligible patients
n = 238

Excluded patients
•  No dynamic susceptibility contrast imaging
•  Lost for follow up

n = 122

Reference standard (Training)
Second-look operation n = 10
(Pseudoprogression 2/ ETP 8)

Clinicoradiologic n = 51
(Pseudoprogression 24/ ETP 27)

Reference standard (Test)
Second-look operation n = 8

(Pseudoprogression 2/ ETP 6)
Clinicoradiologic n = 26

(Pseudoprogression 18/ ETP 8)

Final diagnosis (Training)
(Pseudoprogression n = 26

ETP n = 35

Final diagnosis (Test)
(Pseudoprogression n = 20

ETP n = 14

Fig.  1 Flow diagram showing the patient selection protocol and the inclusion and exclusion criteria. CCRT  = concurrent chemoradiation 
therapy; TMZ = temozolomide; DWI = diffusion-weighted imaging; DSC = dynamic susceptibility contrast.
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The brain tumor imaging protocol at our institu-
tion included T2-weighted imaging, FLAIR imaging, 
T1-weighted imaging, DWI, CE-T1WI, and DSC perfusion 
MRI. The detailed acquisition protocols and image preproc-
essing methods for the training and validation cohorts are 
summarized in the Supplementary material.

For the 3D CE-T1WI and FLAIR data, signal intensity nor-
malization was performed to reduce the variance in the 
T1-based signal intensity of the brain. We used the hybrid 
white-stripe method16 for intensity normalization using 
the ANTsR and WhiteStripe packages17,18 in R, which incor-
porates processes of the statistical principles of image 
normalization, preserves ranks among the tissues, and 
matches the intensity of the tissues without upsetting the 
natural balance of the tissue intensities.18 Before we per-
formed the feature extraction, we excluded outliers from 
the image intensities of the ADC and CBV maps by exclud-
ing standard deviations ± 3 inside the region of interest.19

Segmentation was performed semi-automatically on 
the contrast-enhancing tumor region by a neuroradiolo-
gist (with 2 years of experience in neuro-oncology imag-
ing) using segmentation threshold and region-growing 
segmentation algorithms, which were implemented by 
MITK software (www.mitk.org German Cancer Research 
Center).16 Finally, all segmented images were reevaluated 
and validated by an experienced neuroradiologist (with 
18 years of experience in neuro-oncology imaging).

Radiomics Feature Extraction

The overall process of the radiomics pipeline is shown in 
Fig. 2. The radiomic features were composed of 4 groups 
of features: 17 first-order features, 7 volume and shape fea-
tures, 162 texture features, and 1432 wavelet-transformed 
features. The detailed information is in the Supplementary 
material S2. Thus, for each patient, 1618 radiomic fea-
tures were derived from CE-T1WI, FLAIR, ADC, and CBV 
data. Finally, all radiomic features were z transformed for 
group comparisons. The processing time taken to extract 
the 1618 features was approximately 3  min per patient 
and the entire feature extraction algorithm was fully auto-
mated, which yielded identical features regardless of the 
operators.

Statistical Analysis

Student’s t-test and the chi-square test were used to assess 
differences between the training and validation sets 
regarding the demographic data and the prevalence of 
each classification category. For the training and external 
validation sets, Student’s t-test was used to assess differ-
ences in the imaging parameters between the pseudopro-
gression and ETP groups. A P-value of less than 0.05 was 
considered statistically significant. Statistical analyses 
were performed using R version 3.3.3 statistical software.

CE-T1WI

Segmentation

I. Image acquisition, registration, and
segmentation

II. Feature extraction III. Feature selection

Register on ADC & CBV

ADC map CBV map

Volume and
shape (7)

First-order
statistics (17)

8 times
multiplied by
Wavelet
transformation

Second-order
statistics (162)

0
0 0

01
1 1 1

1

1
1 1 1

1

1 1

0

0
0 0

0 0
0

0
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Fig. 2 Radiomics pipeline of the study. Part I includes image acquisition, registration, and segmentation. Signal intensity normalization is con-
ducted for contrast-enhanced T1-weighted and fluid-attenuated inversion recovery imaging. Part II includes extraction of radiomics features. 
Part III includes feature selection and modeling, with special consideration for high-dimensional data. The diagnostic performance is then 
calculated with the selected radiomics features. CE-T1WI = contrast-enhanced T1-weighted imaging; ADC = apparent diffusion 
coefficient; CBV = cerebral blood volume; ROC = receiver operating characteristic curve.

http://www.mitk.org
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Selection of significant radiomic features and model 
construction with the training set

We applied the least absolute shrinkage and selection 
operator (LASSO) in the training data to select the sig-
nificant features with nonzero coefficients that can differ-
entiate between pseudoprogression and ETP diagnoses. 
LASSO is a penalization method that shrinks all regression 
coefficients and sets the coefficients of many irrelevant 
features that have no discriminatory power between the 
classes exactly to zero.20,21 It was chosen because it has a 
small variance, is known to be suitable for analyzing large 
datasets of radiomics features in small samples, and is 
designed to avoid overfitting.21–23 To provide robust gener-
alized performance of a model that best fits the observed 
data, 10-fold cross-validation with a minimum criterion 
was applied, with these folds b randomly picked. This 
10-fold was chosen as it is the default option in LASSO. 
After the feature selection, the radiomics model was con-
structed using a generalized linear model as a classifier 
and diagnostic performance of the model was compared.

To further evaluate the significance of the non-wavelet 
transformed features, a radiomics model using 186 non-
wavelet features was separately constructed. The feature 
selection and classification method was otherwise the 
same as that described above.

Model performance and validation

The area under the curve (AUC) from a receiver operating 
characteristic curve analysis was calculated to test the diag-
nostic performance of the radiomics models. The optimal 
thresholds of the AUCs were determined by maximizing the 
sum of the sensitivity and specificity values calculated for dif-
ferentiation of pseudoprogression from ETP. The definitions 
of accuracy, sensitivity, and specificity for correctly diagnos-
ing pseudoprogression are as follows (TP: true positive; TN: 
true negative; FP: false positive; FN: false negative): 

Accuracy

Sensitivity

Specificity

=
+

+ + +

=
+

=

TP TN
TP TN FP FN

TP
TP FN

,

,

TTN
TN FP+

To develop an exportable and generalizable radiomics 
model, the model was built using a training cohort and 
then validated with an external validation cohort.

Comparison of diagnostic performance

The diagnostic performance of the multiparametric MR radi-
omics model was compared with those of the single-layered 
radiomics models constructed using only conventional MRI 
(CE-T1WI and FLAIR imaging), ADC map, or CBV map.

Also, the diagnostic performance of the multiparamet-
ric MR radiomics model was compared with that of a non-
radiomics approach using CBV and ADC. The mean and 
maximum CBV values and the mean and minimum ADC 
values were chosen as single parameters for comparisons. 
Bonferroni correction was applied to adjust the P-values for 
multiple comparisons. A  Bonferroni-corrected significance 

level of P < 0.017 was used for comparison between the mul-
tiparametric radiomics model and 3 single radiomics models, 
and a value of P < 0.0125 was used between the multipara-
metric radiomics model and the 4 non-radiomics approaches.

Survival analysis

Survival analysis was performed to determine any associa-
tions between diagnostic group and survival. Overall sur-
vival was measured from the date of surgery to death, and 
a log-rank test was employed to compare the pseudopro-
gression versus the ETP group. Patients who were alive at 
last evaluation (May 30, 2018) were censored. A multivari-
ate Cox proportional hazards regression model was used 
for adjustment of age, sex, and KPS score.

A pilot internal validation from a prospective registry

To further validate our model, we tested it on an additional 
23 patients between July 2017 and March 2018, by retro-
spective enrollment from a prospective brain glioma regis-
try (NCT02619890) of patients for whom full molecular data 
of IDH mutation status and MGMT promoter methylation 
status were available. The imaging protocols were consist-
ent with the training data.

Results

Patient Demographics

The clinical characteristics of the training and validation 
cohorts are summarized in Table 1. Of the 61 study patients 
in the training set, 26 (42.6%) were classified as pseudopro-
gression and 35 (57.4%) as ETP cases. The 34 patients in the 
external validation set consisted of 20 (58.8%) pseudopro-
gression and 14 (41.2%) ETP cases. Among those patients 
for whom MGMT promoter methylation status information 
was available, the pseudoprogression patients showed a 
significantly higher rate of methylated MGMT promoter 
than the ETP patients, in both the training (P = 0.001) and 
external validation sets (P = 0.02). There were no significant 
differences between the patients with pseudoprogression 
and ETP in regard to age, sex, baseline KPS score, IDH 
mutation status, extent of surgery, and mean time inter-
val between the operation and imaging study, in either the 
training or the external validation set.

Feature Extraction

A total of 6472 features were extracted from the multipara-
metric MRI data (1618 features each from CE-T1WI, FLAIR, 
ADC, and CBV). Table 2 lists the 12 significant radiomics fea-
tures for differentiating between pseudoprogression and 
ETP, as identified using the LASSO penalization in the train-
ing cohort (S3 Supplementary Fig. 1). Three features were 
obtained from conventional MR imaging (2 from CE-T1WI 
and 1 from FLAIR), 2 features from diffusion MR imaging, 
and 6 features from perfusion MR imaging. Of the features 
obtained from conventional MRI, 2 were first-order features 
(covered image intensity range and standard deviation) 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy133#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy133#supplementary-data
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and 1 was a Gray-Level Co-occurrence Matrix (GLCM) fea-
ture (standard deviation of correlation). From the ADC, 1 
feature was a Gray-Level Run-Length Matrix (GLRLM) fea-
ture (mean of long run low gray-level emphasis) and the 
other was a GLCM feature (mean of correlation). From the 
perfusion MR imaging, 6 selected features were GLCM 
based (1 mean of inverse difference moment normalized, 1 
inverse difference normalized, 2 Haralick correlations, and 2 
difference averages), while 1 was a first-order feature (sum 
of intensities). In particular, the Haralick correlations (LLH, 
GLCM) obtained from the CBV images were ranked as the 

most superior features for differentiating between pseudo-
progression and ETP. Fig. 3 demonstrates the heatmap of 
pseudoprogression and ETP in the training and external 
validation sets using the selected features.

Constructing a Multiparametric MR Radiomics 
Model from the Training Set

Table 3 summarizes the diagnostic performance of the radi-
omics features in the training and external validation sets. 

Table 2 List of significant multiparametric MR radiomic features to differentiate between pseudoprogression and early tumor progression using 
LASSO logistic regression

Order Wavelet-Transformation Imaging Parameter Radiomic Feature Feature Type

1 Original CE-T1WI Covered image intensity range First-order

2 LLL CE-T1WI Correlation (SD) GLCM (2)

3 Original FLAIR SD (standard deviation) First-order

4 LLL ADC Long run low gray-level emphasis (mean) GLRLM

5 LLH ADC Correlation (mean) GLCM (1)

6 HHL CBV Inverse difference moment normalized (mean) GLCM (3)

7 HHL CBV Inverse difference normalized (mean) GLCM (3)

8 Original CBV Sum of intensities First-order

9 LLL CBV Haralick correlation (mean) GLCM (2)

10 LLH CBV Haralick correlation (mean) GLCM (2)

11 LHL CBV Difference average (mean) GLCM (2)

12 LHL CBV Difference average (mean) GLCM (2)

Note: Numbers in parentheses represent 2 or 3 consecutive voxels in the texture analysis.
Abbreviations: H = high-pass filter; L = low-pass filter.

Table 1 Clinical characteristics of the patients

Variables Training Set External Validation Set

PP (n = 26) ETP (n = 35) P PP (n = 20) ETP (n = 14) P

Age, y* 57.1 ± 10.6 58.6 ± 10.6 0.89 61.3 ± 11.6 63.9 ± 12.1 0.60

No. of female patients 10 (38.5%) 13 (37.1%) 0.84 5 (15.0%) 4 (28.6%) 0.07

KPS ≥70 21 (80.8%) 28 (80.0%) 0.88 17 (85.0%) 11 (78.6%) 0.36

IDH-wild type 23 (88.5%) 34 (97.1%) 0.21 20 (100%) 14 (100%) 1

MGMT promoter status (methylated/ 
unmethylated/NA)

5/5/16 2/12/21 0.001 12/7/1 5/5/5 0.02

Surgical extent 0.09 0.81

Biopsy 0 0 4 (20.0%) 3 (21.4%)

Partial resection 7 (26.9%) 13 (37.1%) 8 (40.0%) 5 (35.7%)

Gross total resection 19 (73.1%) 22 (62.9%) 8 (40.0%) 6 (42.9%)

Mean time interval between the  
operation and imaging, days

103.8 ± 14.4 100.0 ± 26.0 0.10 96.5 ± 26.0 107.2 ± 28.9 0.78

Adjuvant treatment for ETP

 TMZ + avastin - 13 - - 1 -

 TMZ/avastin monotherapy - 6/8 - - 8/4 -

 Others - 8 - - 1 -

Note: Data are expressed as the mean ± standard deviation. Numbers in parentheses are percentage. 
Abbreviations: PP = pseudoprogression, NA = not available. Others include irinotecan monotherapy, vincristine monotherapy, or their combination 
with avastin.
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The multiparametric MR radiomics approach showed the 
highest performance, with AUC of 0.90 (95% CI: 0.82–0.98).

This multiparametric radiomics model was compared 
with the single radiomics and single parameter approaches. 
The multiparametric MR radiomics model showed a sig-
nificant increase in performance over the single radiom-
ics models based on conventional (AUC, 0.76; P  =  0.012) 
or diffusion-weighted (AUC, 0.78; P = 0.014) imaging. The 
multiparametric MR radiomics model also showed better 
performance than the perfusion-weighted MR-based model 
(AUC, 0.88), but the difference was not significant.

When compared with the single parameter approach, 
the multiparametric radiomics model outperformed all of 
the single parameters of mean ADC (AUC, 0.57; P < 0.001), 
minimum ADC (AUC, 0.61; P  <  0.001), mean CBV (AUC, 
0.77; P < 0.001), or maximum CBV (AUC, 0.79; P < 0.001).

Model Performance with the External 
Validation Set

In the external validation, the multiparametric MR radiom-
ics model remained the highest performer, with AUC of 
0.85 (95% CI: 0.71–0.99), sensitivity of 68.3%, specificity of 
74.1%, and accuracy of 72.3% (Table 3).

Meanwhile, the conventional MR radiomics model dem-
onstrated an AUC of 0.74 (95% CI: 0.67–0.97), with sensitiv-
ity of 65.9%, specificity of 78.1%, and accuracy of 73.4%. 
The diffusion MR radiomics model showed an AUC of 0.53 
(95% CI: 0.33–0.73), with sensitivity of 100%, specificity of 
20%, and accuracy of 47.0%. The perfusion MR radiomics 
had an AUC of 0.71 (95% CI: 0.52–0.89), with sensitivity of 
51.3%, specificity of 53.9%, and accuracy of 57.5%. Though 
the performance of all radiomics models dropped with the 
external validation data in comparison with the training 

data, the trend of improved diagnostic performance with 
multiparametric MRI was maintained in the external 
validation.

When compared with the single parameter approaches, 
the multiparametric MR radiomics model outperformed 
any of the single parameters of mean ADC (AUC, 0.57; 
P  <  0.001), minimum ADC (AUC, 0.50; P  <  0.001), mean 
CBV (AUC, 0.57; P < 0.001), or maximum CBV (AUC, 0.61; 
P < 0.001).

Model Performance Using the Non-Wavelet 
Features

A total of 744 non-wavelet features were analyzed, 186 
features for each imaging sequence. The significant non-
wavelet radiomics features for differentiating between 
pseudoprogression and ETP included 3 from conventional 
imaging (1 from CE-T1WI and 2 from FLAIR), 2 from DWI, 
and 1 from perfusion MRI (S4. Supplementary Table 2). The 
multiparametric non-wavelet MR radiomics model showed 
higher diagnostic performance (AUC, 0.84; 95% CI, 0.73–
0.95) than the single imaging technique radiomics models 
based on conventional MRI (AUC, 0.72; 95% CI: 0.58–0.85), 
DWI (AUC, 0.82; 95% CI: 0.70–0.93), or perfusion-weighted 
MRI (AUC, 0.78; 95% CI: 0.67–0.90) (S5. Supplementary 
Table 3). The performances on the external validation set 
showed the same trends, with the highest diagnostic per-
formance with the multiparametric MR radiomics model 
with AUC of 0.83 (95% CI: 0.69–0.97).

Survival Analysis on the Training Set

The median follow-up time was 474  days (interquar-
tile range, 344–693  days), and the median survival was 
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Fig. 3 Heatmap of the significant radiomics features. Each column corresponds to one patient, and each row corresponds to the z-scores of 
the normalized radiomics features. Twelve radiomics features were selected, 3 from conventional MRI (C), 2 from diffusion MRI (D), and 6 from 
perfusion MRI (P). The heatmap is grouped for the training and external validation sets, and the pseudoprogression (dark blue) versus early 
tumor progression (red) groups via radiomics analysis. Note: C = conventional MR radiomics feature; D = diffusion weighted MR 
radiomics features; P = perfusion-weighted MR radiomics features

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy133#supplementary-data
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536  days in the pseudoprogression group and 383  days 
in the ETP group. There was a significant difference in 
survival between the 2 groups (log-rank test, P  =  0.01). 
A multivariate Cox regression was performed on the clini-
cal predictors, including age, KPS score, surgical extent, 
and diagnostic group of pseudoprogression or ETP, and 
showed that only ETP (P = 0.0004) was a significant clinical 
predictor of shorter survival (S6. Supplementary Table 4).

A Pilot Result from the Prospective Glioma 
Registry

There were 16 patients with ETP and 7 patients with pseu-
doprogression. The reference standard was a second-
look operation in 6 cases in the ETP group, while it was 
clinical-radiologic follow-up in the others. IDH-wildtype 
was observed in all patients, and methylated MGMT was 
observed in 29.4% (5 of 17 cases) of the ETP group and 
66.6% (4 of 6 cases) of the pseudoprogression group (S7. 
Supplementary Table 5).

The performance of the multiparametric MR radiomics 
model remained the highest, with AUC of 0.96 (95% CI: 
0.88–1.00; accuracy: 95.6%), compared with conventional 
(AUC, 0.82), diffusion MR (AUC, 0.61), or perfusion MR 
(AUC, 0.91) radiomics models (S8. Supplementary Table 6).

Discussion

In this study, we demonstrated that incorporating diffusion- 
and perfusion-weighted MRI into a radiomics model improves 
the diagnostic performance for distinguishing between 

pseudoprogression and ETP in glioblastoma patients with 
contrast-enhancing lesions during the early posttreatment 
stage. The multiparametric MR radiomics model showed 
higher performance than any single imaging technique 
radiomics model or any single ADC or CBV parameter. This 
radiomics model was validated externally and showed ro-
bustness. Thus, adding diffusion- and perfusion-weighted MRI 
into a radiomics model, especially perfusion-weighted MRI, 
may become a better approach in the challenging situation of 
diagnosing pseudoprogression than utilizing single ADC and 
CBV values, or conventional MR radiomics models.

Several studies have shown the potential use of ADC and 
CBV as a diagnostic parameter to differentiate between pseu-
doprogression and ETP in glioblastomas.4–8,24,25 However, sin-
gle parameter is only capable of providing a probability in one 
direction,26 limiting the comprehensive characterization of post-
treatment glioblastoma. Multiparametric tissue characterization 
has been attempted with pattern analysis27,28 and voxel-based 
clustering,26 but such unsupervised learning approaches do not 
directly lead to discriminatory analysis or a specific diagnosis. 
The radiomics approach, on the other hand, can offer improved 
discriminatory power by demonstrating voxel-based heteroge-
neity and utilizing supervised learning with binary classification.

The previous MRI radiomics approaches have been con-
fined to conventional MRI of CE-T1WI or FLAIR,12,29–32 and 
few studies have introduced a radiomics model utilizing dif-
fusion- or perfusion-weighted MRI to differentiate between 
pseudoprogression and ETP. Advanced MRI may contain 
biological information of the tumor by DWI reflecting hyper-
cellularity4,5 and perfusion-weighted imaging reflecting 
hypervascularity.7,24 In posttreatment glioblastomas, a wide 
spectrum of histological features range from necrosis to 
hypercellular recurrent tumor components, which can result 
in heterogeneity at ADC.6 DSC MRI has been suggested to be 

Table 3 Comparison of diagnostic performance between multiparametric MR radiomics models and other approaches in the training and validation sets

Training Set External Validation Set

Comparison AUC P* Sensitivity Specificity AUC Sensitivity Specificity

Combined  
radiomics model

Multiparametric MR
(conventional + 
 diffusion + perfusion MR)

0.90
(0.82, 0.98)

91.4% 76.9% 0.85
(0.71, 0.99)

71.4% 90.0%

Single radiomics 
model

Conventional MR 0.76
(0.63, 0.88)

0.012 51.4% 88.5% 0.74
(0.67, 0.97)

78.6% 75.0%

Diffusion MR 0.78
(0.66, 0.90)

0.014 77.1% 76.9% 0.53
(0.33, 0.73)

100% 20%

Perfusion MR 0.88
(0.80, 0.97)

0.427 65.7% 96.2% 0.71
(0.52, 0.89)

85.7% 60.0%

Single parameter Mean ADC 0.57
(0.42, 0.73)

<0.001 77.1% 46.2% 0.57
(0.38, 0.77)

78.6% 45.0%

Minimum ADC 0.61
(0.46, 0.76)

<0.001 71.4% 57.7% 0.50
(0.30, 0.70)

50.0% 65.0%

Mean CBV 0.77
(0.64, 0.87)

<0.001 65.7% 84.6% 0.58
(0.40, 0.75)

100.0% 30.0%

Maximum CBV 0.79
(0.66, 0.88)

<0.001 62.9% 92.3% 0.58
(0.40, 0.75)

78.6% 45.0%

Note: Numbers in parentheses are 95% confidence intervals. 
*P-value refers to the significance among the differences of the AUCs between the multiparametric MR radiomics model and the other model. 
The Bonferroni-corrected significance level of P < 0.017 was used when comparing between a multiparametric MR radiomics model and 3 single 
radiomics models, and P < 0.0125 between a multiparametric radiomics model and 4 single parameter approaches.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy133#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy133#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy133#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy133#supplementary-data
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useful in diagnosing ETP as quantifiable differences occur 
in the tissue vasculature after treatment, with higher levels 
in ETP due to angiogenesis of the tumor.7,24,25 Moreover, 
the perfusion MR radiomics alone showed sufficient diag-
nostic performance comparable to the multiparametric MR 
approach in the training set, which further emphasizes the 
role of perfusion MRI in diagnosing ETP.

A finding of note is that the radiomics model showed robust-
ness even when wavelet features were excluded. The perfor-
mance of the model did, however, decrease, indicating that 
wavelet-transformed features improve the radiomics diagno-
sis of pseudoprogression. The most relevant imaging feature 
among the selected descriptors was GLCM in the perfusion 
MRI. GLCM is a texture-analysis method that calculates how 
often pairs of pixels with specific values and in a specified spa-
tial relationship occur in an image, and it is known to reflect the 
heterogeneity of the tumor.33 Also, texture analysis of CBV has 
been shown to correlate with the prognoses and recurrences 
of glioblastomas.34,35 Our results are in line with those of previ-
ous studies that texture analysis of hemodynamic parameters 
of the CBV may reflect hypervascularity and neoangiogenesis 
of ETP, distinguishing it from pseudoprogression.

Lack of standardization of the acquisition protocols might be 
an obstacle that prevents its use as a biomarker in multicenter 
practices as well as in the radiomics approach. Our model has 
strength in that it was validated by the external cohort under 
heterogeneous acquisition protocols. Though the diagnos-
tic performance of each imaging procedure slightly differed 
between the 2 centers, the multiparametric MR radiomics 
showed the highest performance concordantly. Interestingly, 
the diagnostic performance dropped with the ADC and CBV, 
but remained relatively robust with conventional MR radiom-
ics. This may come from different ratios of pseudoprogression 
and ETP between the 2 cohorts, which may affect AUC value.36 
Also, we assume that this was attributed to signal normaliza-
tion that was performed for conventional MR radiomics during 
preprocessing (WhiteStripe), which was not done for diffu-
sion- or perfusion-weighted MRI. Though we utilized quantita-
tive maps of ADC and CBV, radiomics features may become 
affected from different imaging acquisition protocols.37–39 
Further studies on the effect of signal normalization of ADC 
and CBV across different centers are warranted.

This study had several limitations in addition to those due 
to its retrospective nature. First, the accuracy of the mul-
tiparametric MR radiomics model was moderate (72%) in the 
external validation, which may not be sufficient to yield a reli-
able clinical performance. This may be due to the small size of 
the cohort, especially that of the external validation dataset, 
which limits statistical power of our data. Also, the stability 
of the radiomics model needs to be further improved with a 
larger training set with multicenter enrollment using different 
MR protocols. Second, there was a relatively high fraction of 
pseudoprogression. Previous studies reported an incidence of 
pseudoprogression in patients with glioblastoma of around 
11.4% up until the 12-month post-radiation scan, and 13.3% (6 
of 45 patients) after 4 weeks.40  The relatively high fraction of 
patients with pseudoprogression in the present study can be 
explained by the fact that the denominator was not all glio-
blastoma patients in the follow-up, but the sum of the patients 
in the 2 groups, which were defined in the inclusion criteria 
as those showing newly developed or enlarging (>25%) and 

measurable contrast-enhancing lesions within 12 weeks of 
completing CCRT on MRI. When all follow-up patients were 
considered in the flowchart, the incidence dropped to 22.4% 
(26 of 116 patients). This incidence rate would be lower still 
if patients who did not undergo multiparametric MRI were 
included. Third, although we performed the radiomics analy-
sis using different 3T scanning parameters, validation with a 
1.5T scanner is required to incorporate the radiomics model 
as a multicenter imaging biomarker. Fourth, the preprocess-
ing methods in this study have room for improvement. Spline 
interpolation generally yields better registration quality than 
trilinear interpolation, and could positively affect the results. 
Furthermore, the normalization method for CBV could poten-
tially be more robust and user independent if an automatic 
segmentation method were used, such as FAST (FMRIB’s 
automated segmentation tool). Such updates to the meth-
ods need to be evaluated in future work. Fifth, because the 
radiomics approach is a data-driven analysis, it is difficult 
to fully understand the biological meaning of the numeri-
cal data derived from the analysis. Also, radiomics analysis 
requires labor-intensive image processing and data analysis 
procedures. Although it took an average of about 8 minutes 
to extract the data features of each patient in our study, further 
advances to reduce the time cost and simplify the analytical 
process might be beneficial to clinical practice. Finally, the 
model should be independently and prospectively verified, 
preferably in a multicenter setting. If properly verified, the 
model could become a useful tool to help in the early discrimi-
nation of pseudoprogression and tumor progression, which 
would prevent early discontinuation of successful therapy or 
unnecessary prolongation of unsuccessful therapy.

In conclusion, incorporating diffusion- and perfusion-
weighted MRI into a radiomics model improved diagnos-
tic performance for identifying pseudoprogression and 
showed robustness in a multicenter setting.
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