Skip to main content
. 2018 Aug 11;21(3):404–414. doi: 10.1093/neuonc/noy133

Table 2.

List of significant multiparametric MR radiomic features to differentiate between pseudoprogression and early tumor progression using LASSO logistic regression

Order Wavelet-Transformation Imaging Parameter Radiomic Feature Feature Type
1 Original CE-T1WI Covered image intensity range First-order
2 LLL CE-T1WI Correlation (SD) GLCM (2)
3 Original FLAIR SD (standard deviation) First-order
4 LLL ADC Long run low gray-level emphasis (mean) GLRLM
5 LLH ADC Correlation (mean) GLCM (1)
6 HHL CBV Inverse difference moment normalized (mean) GLCM (3)
7 HHL CBV Inverse difference normalized (mean) GLCM (3)
8 Original CBV Sum of intensities First-order
9 LLL CBV Haralick correlation (mean) GLCM (2)
10 LLH CBV Haralick correlation (mean) GLCM (2)
11 LHL CBV Difference average (mean) GLCM (2)
12 LHL CBV Difference average (mean) GLCM (2)

Note: Numbers in parentheses represent 2 or 3 consecutive voxels in the texture analysis.

Abbreviations: H = high-pass filter; L = low-pass filter.