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Abstract

Cancer evolution is driven by the accumulation of (epi)genomic aberrations. Recurrent sequences 

of genomic changes, between and within patients, reflect repeated evolution that is valuable for 

anticipating cancer progression. Multi-region sequencing allows inference of some temporal 

orderings of genomic changes within a tumour. However, the inherent stochasticity of the 

evolutionary process makes different patients appear very distinct, preventing the robust 

identification of repeated evolution. Here we present a novel machine learning method based on 

Transfer Learning that overcomes the stochastic effects of cancer evolution and noise in the data, 

highlighting hidden evolutionary patterns in cancer cohorts. When applied to multi-region 

sequencing datasets from lung, breast, renal and colorectal cancer (768 samples from 178 

patients), our method detected repeated evolutionary trajectories in subgroups of patients, which 

reproduced in single-sample cohorts (n=2,935). Our method provides novel ways to classify 

patients based on how their tumour evolved, with implications for anticipating cancer evolution.
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Introduction

The biggest clinical challenge in oncology is the fact the tumours change over time, 

progressing from benign to malignant, becoming metastatic, and developing treatment 

resistance1,2. This occurs through a process of clonal evolution involving cancer cells and 

their microenvironment3. Intra-tumour heterogeneity (ITH), or the genetic and phenotypic 

variation of cancer cells within the same tumour, is the natural consequence of this 

evolutionary process. ITH is also a key factor contributing to the lethal outcome of cancer, as 

it provides the substrate of phenotypic variation upon which adaptation can occur4. A 

fundamental question in oncology is therefore: can we predict a cancer’s next evolutionary 

“step”? Our ability to predict cancer evolution has tremendous implications for clinical care 

and therefore the question of predictability of evolutionary processes, first posed by 

evolutionary biologist Stephen Jay Gould for species evolution5, is also central in oncology.

Clonal evolution results from the interplay of random mutations, genetic drift, and non-

random selection6, leading to complex patterns in the data and implying some limits of 

predictability of cancer evolution due to stochastic forces7. However, the prognostic value of 

histopathological staging and molecular markers indicate that, at least in part, tumour 

evolution is predictable. Moreover, several observations suggest that despite its stochastic 

nature, micro-environmental, epistatic, and lineage constraints may allow for the prediction 

of a limited set of subsequent evolutionary moves2. Previous approaches based on single-

sample cross-sectional data have shown that indeed there are recurrent sequences of 

genomic events in cancer cohorts8–11.

More recent seminal studies based on multi-region sequencing of tumours however, have 

shown how the partial order of somatic aberrations in a patient’s tumour can be determined 

using phylogenetic analysis, revealing the spatio-temporal dynamics of single 

malignancies2. However, truncal (clonal) alterations cannot be ordered in most cases and 

phylogenetic trees from different patients often appear very distinct12–18. The underlying 

variability and complexity of the evolutionary process, as well as the high levels of noise and 

uncertainty in the data, is such that with current analysis techniques we are generally unable 

to robustly identify repeated evolutionary trajectories across patients. Characterising 

repeated evolution in cancer would have important implications both for our ability to 

stratify patients in the clinic, as well as for predicting cancer progression.

Here we exploit the fact that tumours in different patients represent multiple instances of the 

same evolutionary process. This is an opportunity that is missing in classical evolutionary 

biology where data come from a unique stream of evolution. To leverage this observation, 

we devised REVOLVER (Repeated EVOLution in cancER), a novel method that for the first 

time jointly analyses multi-region sequencing data from patient cohorts by using a Machine 

Learning approach called Transfer Learning (TL)19. REVOLVER infers n patient 

evolutionary models jointly, with the aim of increasing their structural correlation. Our 

method exploits multiple independent noisy observations (i.e. single patients), and 

“transfers” information between patients to de-noise data and highlight hidden evolutionary 

patterns (Figure 1). The n models still explain the data in each patient, while at the same 

time highlighting subgroups of tumours that evolved similarly.
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Results

Approach and method description

Genomic profiling of multiple regions of the same tumour is the established approach to 

study the evolutionary history of human malignancies4. Multi-region sequencing allows 

assessing ITH in individual patients, with particular focus on recurrent driver alterations. To 

detect repeated evolutionary trajectories across patients (e.g. purple subgroup vs red 

subgroup in Figure 1A), the classical approach exploits methods that reconstruct the 

phylogenetic tree of each tumour (Figure 1B). However, standard tools determine one tree 

per patient at a time, leading to solutions that are uncorrelated (i.e., the model that we fit to a 

patient is independent from the models that we fit to the rest of the cohort). The stochasticity 

and complexity of the evolutionary process, the extensive inter-patient variability, as well as 

the inherent ambiguity and noise in the data, render the statistical signal of repeated 

trajectories very weak (Figure 1C).

The problem is exacerbated by the fact that multi-region bulk samples are mixtures of cancer 

cell populations. This requires subclonal decomposition for each sample20, i.e. transforming 

the measured allelic abundance of a mutation into the proportion of cancer cells carrying the 

mutation, the so-called Cancer Cell Fraction (CCF). However, high levels of tumour 

sampling bias (several admixed subpopulations) confound CCF estimates, rendering difficult 

to infer the correct phylogenetic tree via the pigeonhole principle. This commonly adopted 

principle is used to layout an evolutionary tree from CCF estimates, stating that if the sum of 

the CCF of two subpopulations is more than 1, then one subpopulation must be nested in the 

other21 (Supplementary Notes). In many such cases, however, the pigeonhole principle does 

not allow disambiguating the true model (see Supplementary Figure 1, ambiguity between 

linear versus branched evolution). Moreover, CCF estimation requires correcting sequencing 

data for purity, ploidy, absolute copy number status, and mutation multiplicity (number of 

genomic copies carrying a mutation) for each single variant used for phylogenetic 

reconstruction. This process of correction inevitably propagates a significant amount of 

noise into the final CCF estimates and, consequently, in the associated phylogenetic trees.

REVOLVER implements a Maximum Likelihood (ML) method to jointly fit n models from 

n datasets D1, …, Dn of alterations, for which either CCF or simpler binary annotations of 

presence/absence are available (Figure 1D). The method will process any alteration that can 

be annotated in these formats (e.g. mutation, copy number alteration, etc.). Each model is a 

tree that represents a partial ordering of the annotated alterations. To perform the fit, 

REVOLVER analyses a set of trees per patient (solutions) via a two-steps Transfer Learning 

strategy that outputs n correlated evolutionary trees T1, …, Tn, (Supplementary Figure 2 and 

3). Possible solutions can be pre-computed with external phylogenetic tools22–27 and 

passed to REVOLVER, or can be directly computed within REVOLVER, for both CCF and 

binary data. The method requires a score per tree, which can be the model’s likelihood 

against data, e.g., p(D|T) for tree T, or any other suitable scalar that we seek to maximize. 

See Online Methods for full details on the methodology.

REVOLVER uses fits to measure the heterogeneity of the trajectories, and to calculate an 

evolutionary distance to compare patients and identify tumours shaped by similar trajectories 
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(stratification, Figure 1E). The overall confidence in the predictions can be assessed with a 

jackknife approach28 (see Supplementary Notes).

Finally, the genomic features of the evolutionary trajectories identified using a multi-region 

dataset (training set) can be used to classify single-sample cohorts (test set). This allows 

exploiting multi-region datasets to extract information from larger, single-sample cohorts. 

We note that the annotations of the genomic features (e.g. drivers) are left to the user to 

make REVOLVER applicable to different cohorts.

Synthetic test and biological validation of the method

We performed in silico validation of REVOLVER against synthetic data (1,620 cohorts, 

>86,000 patients and 200,000 samples; Supplementary Notes). Our analysis verified the 

internal consistency of the methodology, and demonstrated its superiority to standard 

methods based on uncorrelated phylogenetic inference. In every test, we generated n random 

phylogenetic trees and simulated consistent CCF values from multi-region bulk profiling. In 

every such cohort, the true models were associated to repeated evolutionary trajectories, 

which we sought to retrieve with REVOLVER and standard uncorrelated phylogenetic 

inference. To render this task realistic and account for allele sampling bias that can prevent 

the identification of the true phylogenetic tree via the pigeonhole principle21, we simulated 

a fraction p of the n cases so that multiple solutions are equally likely (ambiguous CCFs, 

Supplementary Figure 1). To model uncertainty in CCF estimates due to technical noise, we 

also added Gaussian noise to simulated data (Figure 2A). Standard phylogenetic approaches 

use CCF data from a single patient to score and rank a set of possible phylogenetic trees, 

eventually returning the one that explains best the data (top-rank). However, due to the 

uncertainty described above, the true solution does not always rank top (Figure 2B). This 

confounds the identification of the true model, and the detection of repeated evolutionary 

trajectories. REVOLVER allows de-noising the data by transferring information across 

phylogenetic trees, thus resolving this ambiguity. Results demonstrate that in the presence of 

sampling bias (e.g. linear and branched evolution are undistinguishable with the pigeonhole 

principle), with and without technical noise, REVOLVER is better than standard approaches 

in identifying the true evolutionary model, even when a large proportion of tumours have 

ambiguous solutions (Figure 2C; Supplementary Figure 4).

We then sought to validate REVOLVER against established biological knowledge of 

evolutionary trajectories describing pre-malignant to malignant transition. Arguably, the best 

studied evolutionary transition in solid tumours is the adenoma-to-carcinoma sequence in 

colorectal cancer29. In this scenario, carcinogenesis is a step-wise process of accumulation 

of genomic aberrations transforming a benign colon adenoma into carcinoma. Although not 

all colorectal cancers necessary develop from an adenoma, a significant proportion do, as 

demonstrated by the successes of bowel cancer screening and polypectomy procedures 

worldwide30,31. We leveraged on a recent multi-region sequencing colorectal cancer dataset 

involving mutations in 9 adenomas and 10 carcinomas32 (95 total samples, median 5 per 

patient; Supplementary Table 1, Supplementary Figure 5). The stage of disease (adenoma or 

carcinoma) was hidden to REVOLVER. The dataset recapitulated the evolutionary transition 

from adenoma to carcinoma, which involves known colorectal cancer driver genes such as 
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APC, KRAS, TP53 and PIK3CA. Figure 2D shows the heatmap of alterations in these driver 

genes (rows) for every patient (columns). Shade of blue represents the proportion of samples 

bearing the alteration (driver alterations are annotated as present/absent in a sample; truncal 

alterations are highlighted with orange squares). Our method identified multiple 

evolutionary transitions between pairs of events that characterise key evolutionary 

trajectories (Figure 2D). For instance, REVOLVER leveraged on information transferred 

from adenomas to detect trajectories that were hidden in carcinomas (truncal mutations, red 

arrows). For instance, the complete trajectory APC→KRAS→PIK3CA was never explicitly 

observed in a single patient but became detectable when patients were jointly analysed with 

TL. These known evolutionary trajectories demonstrate the ability of REVOLVER to 

systematically identify and compare repeated evolution from multi-region datasets, even in 

cases where noise and partial observations obscure the true trajectory in most patients.

Recurrent evolutionary trajectories in non-small cell lung cancer

We applied REVOLVER to the TRACERx dataset, the largest multi-region profiling effort to 

date, currently comprising n = 100 non-small cell lung cancers18 (Supplementary Table 2, 

Supplementary Notes). In this cohort, each tumour underwent whole-exome sequencing 

(500x depth) of multiple spatially separated regions, and a set of putative driver mutations 

and focal copy number alterations were annotated (302 total samples, median 3 per patient; 

65421 total alterations, 450 drivers). We analysed the CCF values for all available patients (n 
= 99) and used the putative driver mutations and copy number alterations annotated in the 

original study. We considered recurrent drivers those appearing in at least 2 patients. We 

note that in our study we focus on a gene level analysis (i.e. we do not consider where the 

mutation occurs within a gene) to maximise the number of recurrent alterations. Although 

hotspot-level analysis could be performed, larger cohorts are required to achieve a suitable 

level of recurrence and transfer information across patients.

REVOLVER outputs n = 99 correlated models, and several measures of confidence and 

heterogeneity of the cohort. REVOLVER identified several repeated evolutionary transitions 

that characterised 10 clusters C1-C10 (Figure 3A; Supplementary Figures 6, 7). A jackknife 

approach28 (Supplementary Notes) confirmed cluster robustness, with 80% median cluster 

stability and strongest signal for C2, C3, C4, C6 and C8 (Supplementary Figure 8). Clusters 

C4 and C6 have slightly weaker separation across resamples, and lower support is observed 

for small clusters like C10, or for C1 which has no clear signature. Importantly however, the 

individual evolutionary trajectories (e.g. CDKNA→TP53) were highly robust 

(Supplementary Notes). Cluster C5 describes the trajectory CDKNA→TP53→TERT 

(overall support >90%), suggesting progressive cell-cycle deregulation, anti-senescence, 

genomic instability and cell-death bypassing (Figure 3B). Two other clusters, C4 and C6, are 

associated with early EGFR alterations, with C4 also acquiring late TP53 loss. It is 

important to note that clustering the occurrences of driver alterations alone does not identify 

clear subgroups, even if one accounts for clonality status (Supplementary Figure 9). 

Furthermore, a comparative analysis against approaches based on single-sample cross-

sectional cohorts11, akin to refs8–10,33,34, demonstrates the additional power in the 

predictions of REVOLVER, which combines multi-region data, phylogenetic theory and 

Transfer Learning (Supplementary Figure 10). By transferring information across patients, 
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REVOLVER can also retrieve the temporal ordering of events within the same node of a tree 

(that could not be timed otherwise). This feature is called expansion, and it is illustrated for 

patient CRUK0016 (cluster C5) where we could identify the ordering in the trunk of the tree 

(Figure 3C). We also note that the phylogenetic tree fit for CRUK0016 ranked 5th out 56 

possible alternatives with a standard approach, and thus would not have been inferred 

without TL.

Finally, repeated evolutionary trajectories extracted from multi-region sequencing data with 

REVOLVER can be used to derive a decision tree that classifies large single-sample cohorts. 

In this case, stratification of n = 883 single-sample tumours35–37 demonstrate that many of 

the REVOLVER subgroups show significant differences in disease-free survival 

(Supplementary Figure 11). Notably, previous large-scale single sample studies did not find 

clinically relevant subgroups using standard approaches38.

Recurrent evolutionary trajectories in breast cancer

We applied REVOLVER to a cohort of n = 50 primary breast cancers where multi-region 

whole-genome and targeted deep sequencing was available15 (292 total samples, median 6 

per patient; 403 total alterations, 296 drivers; Supplementary Table 3, Supplementary 

Notes). In each sample, a panel of mutations and CNAs (cytoband-level and whole-arm) in 

breast cancer putative driver genes were annotated15. For this study, we processed all 

annotated mutations and CNAs as presence/absence in a sample, and considered recurrent 

those in at least 2 patients. REVOLVER identified several repeated evolutionary transitions 

(Figure 4A) that characterised 6 evolutionary groups (Supplementary Figures 12, 13). Again, 

the results were robust, but with slightly lower scores than the one observed in the lung 

cohort possibly due to the lower resolution of binary data compared to CCF, which renders it 

more difficult to retrieve temporal orderings. However, the inferred trajectories were well 

supported by the data (Supplementary Figure 14). For example, subgroup C2 described the 

repeated evolutionary trajectory TP53→PIK3CA→-8p→+8q (Figure 4B), identified with 

>90% support (Supplementary Notes). Figure 4C shows the fit for patient PD14753, from 

subgroup C2. Again, standard clustering based on the patterns of occurrences of driver 

alterations does not identify similar groups (Supplementary Figure 15).

We used repeated trajectories to create a decision tree (Figure 5A) and stratify n = 1,752 

single-sample breast cancer cases from the METABRIC39,40 (n = 1,318) and BRCA 

TCGA41 (n = 434) studies. We found that our evolutionary subgroups replicated in these 

cohorts (Figure 5B), and survival analysis highlighted significant differences between 

clusters (Figure 5C). Our evolutionary subgroups are enriched for specific breast cancer 

subtypes from the IntClust (based on both transcriptomic and copy number alterations) and 

PAM50 (transcriptomics alone) classifications (Figure 5D, 5E). Interestingly, REVOLVER 

group C3, which shows significantly poorer survival and is characterised by the evolutionary 

trajectory TP53→+8, was enriched for IntClust 10 and basal subtypes. This analysis 

demonstrates how evolutionary groups identified with REVOLVER can be combined with 

cancer subtypes to inform on how these tumours evolved.
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Recurrent evolutionary trajectories in renal cancer

We used REVOLVER to analyse somatic mutations in a cohort of n = 10 clear cell renal cell 

carcinomas (79 samples, median 8 per patient; 843 alterations, 75 drivers)12. We could 

identify repeated evolution involving mutations in PBRM1 and BAP1, well-known 

predictors of the evolution of this malignancy12, further validating the approach. The 

identified trajectories reproduced in single-sample cohorts and have prognostic significance, 

in line with previous literature42 (Supplementary Table 4, Supplementary Notes).

Discussion

Detecting repeated evolution in cancer is critical for the implementation of evolutionary 

approaches to disease management. Stratifying patients based on their recurrent evolutionary 

patterns facilitates the prediction of the future steps of malignant progression, thus 

potentially allowing taking optimal and personalised clinical decisions.

Although the application of ‘artificial intelligence’ algorithms based on machine learning 

methods to biomedical datasets is becoming popular43, the use of these methods as ‘black 

boxes’ to mine cancer genomic data is unlikely to be successful unless combined with 

clinical and biological knowledge of human malignancies to annotate input data and 

interpret results. Moreover, analysing the results in light of the cancer evolution paradigm is 

essential.

Here we presented a novel Transfer Learning approach that combines high-quality multi-

region sequencing data of driver alterations and phylogenetic theory to detect the hidden 

signal of repeated evolution within multiple tumour types. We have demonstrated how 

apparently hidden evolutionary trajectories can be identified using this method. Approaches 

that do not exploit the observation of repeated evolution in multiple patients, and that 

attempt either a comparison of uncorrelated evolutionary models, or a clustering of 

alterations’ patterns, fail to identify signs of repeated evolution between patients. Our 

approach also helps to reconcile multi-region sequencing data with large single-sample 

cohorts by combining different data types and extracting more information on the 

evolutionary process from both strategies concurrently.

As our method is flexible in terms of input data, it can be used with both binary and CCF 

values and can be employed in conjunction with any phylogenetic method providing 

multiple scored phylogenetic tree solutions per patient. Importantly, our method is adaptable 

to a wide range of input data, and as higher resolution datasets will become available, our 

tool would be readily usable to detect evolutionary patterns in those. Moreover, the 

stratification power could be further increased with larger datasets, and it is readily 

applicable to single-cell sequencing data. The repeated evolutionary trajectories we 

identified were associated with subsets of patients with distinct prognosis, demonstrating the 

likely clinical value of stratifying patients based on how their tumours evolved.
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Online Methods

The number of cancer evolution studies involving multi-region sequencing are rapidly 

growing (see, e.g., the case studies in12–15,17,18,44), and intra-tumour heterogeneity 

profiling allows reconstructing the spatio-temporal evolutionary history of a patient 

tumour2.

REVOLVER takes as input n multi-region sequencing datasets from n patients D1, … , Dn. 

Each sample from a patient contains information on what genomic alterations are present in 

that specific sample. Our method is agnostic to the type of alteration annotated, which could 

be a nucleotide substitution (SNV), a copy number alteration (CNA) or any other 

(epi)genomic event. For each event, two data formats can be processed:

• Cancer Cell Fractions (CCF), or the proportion of cancer cells in the sample that 

bear the alteration.

• If CCF values are unavailable, a simpler binary format with presence/absence of 

the alteration in a sample.

The method also requires to specify for every patient when sets of alterations occur together 

in the same clone:

• For CCF data, clones are estimated via subclonal reconstruction (i.e., CCF-based 

clustering);

• For binary data, alterations are assumed to be in the same clone if found in the 

same set of samples.

For each genomic alteration, the input should also clarify if it is a putative driver, and/or 

truncal (i.e., present in 100% of cancer cells, or in the case of binary format, present in all 

samples; see Supplementary Notes for details on the input format).

In REVOLVER, we call alterations that are detected in multiple patients recurrent. We will 

use a parameter to determine a minimum recurrence threshold.

Evolutionary trajectories using a standard approach

For each patient, we can construct an evolutionary model (e.g. a phylogenetic tree) that 

explains the data via a standard approach such as those presented in refs12–15,17,18,44. In 

what follows, we will seek to compare our method to the principles underpinning those 

approaches.

For a cohort of n patients, we would identify n evolutionary models T1, … , Tn where:

• Each Ti is a tree describing the evolutionary history of a patient’s tumour. Its 

nodes are the groups of input alterations. In the case of CCF data this is a clone 

tree and each node is a clone, whereas in the case of binary data this is a 

mutation tree45. The tree encodes the (partial) temporal ordering of the 

alterations in the tumour.
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• An evolutionary trajectory is defined as a path x1 → x2 → ⋯ that connects 

alterations xi, and describes their order of accumulation: x1 is earlier than x2, x3, 

etc, while x2 is earlier than x3, x4 etc. It can be computed from the ordering of 

the nodes in a tree.

Ideally, in order to interpret the data from a whole cohort of patients in light of tumour 

evolution, one would like to identify recurrent evolutionary trajectories describing repeated 

evolution across patients. Repeated evolution in cancer describes recurrent sequences of 

events that fundamentally underpin tumorigenesis and progression in a given subgroup of 

patients. Repeated evolutionary trajectories pinpoint evolutionary “steps” of a tumour, and 

could underlie advantageous phenotypic changes to the cancer clone.

Therefore, one needs a method that identifies trajectories that 1) are repeated across the 

cohort, and (hence) 2) involve recurrent alterations (drivers). Specifically, we need a method 

that correlates a trajectory involving recurrent drivers x and y, present within a sequence that 

may include passengers pi:

… x p1 … pw y …

See Supplementary Figure 2.

Using a standard approach based on phylogenetic theory, such as Maximum Parsimony46 or 

Maximum Likelihood27, one would infer each phylogenetic model Ti independently for 

each patient. A Bayesian approach would compute independently n posteriors p(Ti|Di) for 

i=1,.., n, and use them to sample models with high likelihood.

With n independent models, we could evaluate post hoc structural similarities between 

patients. However, visual inspection of a set of phylogenetic trees is impractical with 

complex models or large n. Automatic approaches that use structural distances, or that 

measure similarities among the distributions induced by these probabilistic models, can help. 

Nevertheless, this approach to the detection of repeated evolutionary trajectories remains 

impractical because cancer multi-region cohorts exhibit a high degree of heterogeneity both 

between and within patients (see ref1,2 for a review), as well as inherent noise in the data.

Evolutionary trajectories using Transfer Learning

We propose a new approach to detect repeated evolutionary trajectories from noisy multi-

region sequencing data of cancer patients. We assume that the recurrent trajectories can be 

modelled as a tree, which is hidden in the data. To capture heterogeneity across patients, we 

consider each input tumour as a noisy realisation from such tree (a realisation being the 

evolutionary trajectories for a patient, and its associated dataset).

In probabilistic terms, the individual patient trees are coupled through a shared prior, so that 

the (marginal) posterior distribution of patient trees no longer factorises across patients. 

Consider a joint posterior over T1,…, Tn; we expect the solutions to differ in the following 

statistical sense
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p T1, …, Tn D1, …, Dn ≠ ∏
i = 1

n
p Ti Di .

In practice, a joint inference correlates explicitly n models of evolutionary processes: the 

solutions will be statistically dependent, and hence correlated across patients.

We argue that the detection of statistically significant regularities from correlated models is a 

better approach to exploit data of n (independent) evolutionary processes that describe the 

same tumour. Synthetic tests show that this method improves over standard uncorrelated 

methods, particularly in the presence of sampling bias and technical noise in CCF 

(Supplementary Notes).

The REVOLVER algorithm

In REVOLVER -- Repeated evolution in cancer -- we adopt an Expectation Maximisation 
(EM) strategy for Maximum Likelihood (ML) estimation of the n trees (Supplementary 

Notes). The structural correlation among each model is measured via a parameter w, which 

we maximise. From w, we estimate repeated evolution of the n input tumours, and induce a 

distance metric for cohort stratification.

First, REVOLVER processes input data and group (clone) assignments to pre-compute a set 

of scored trees for every patient. This is done differently depending on whether CCF or 

binary data is available and can be modified to accommodate custom tree learning 

methodologies (see below).

Then, a two-steps Transfer Learning (TL) strategy computes the joint ML estimates of T1, 

…, Tn. Very broadly, TL is a Machine Learning paradigm to exploit knowledge gained while 

solving multiple related tasks. Here, the inference of the model for a patient (one task) 

becomes informative for the inference of other models (other tasks)19. The features shared 

among correlated tasks are recurrent drivers and their evolutionary trajectories (i.e., 

orderings). We remark that TL is sometimes used to indicate a broader class of problems; in 

the Machine Learning literature, our approach could be more specifically called multi-task 
learning.

Precisely, REVOLVER does the following steps (Supplementary Figures 2, 3):

• computes n correlated models T1, …, Tn, from the ones available for each 

patient;

• computes the evolutionary trajectories within each group of alterations annotated 

in every patient and refines fit estimates accordingly. These trajectories cannot be 

detected unless we analyse data from multiple patients, and we “transfer” 

trajectories across inference tasks.

REVOLVER is a model-selection strategy. We first discuss how it computes correlated 

models, and then how its input models can be computed from CCF or binary data.
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Correlating evolutionary trajectories across patients

A dataset Di of a single patient is a matrix with alterations as columns, and samples 

sequenced from the i-th patient as rows. With input CCF, each entry of Di is a real value in 

[0,1]; with binary data 1s report where the alteration is detected. We assume that Di has no 0 

columns and denote as {Di|i = 1,.., n} the data from the whole cohort. V = ∪i = 1
n V i is the 

whole set of alterations in the cohort; Vi the ones that occur in the i-th patient.

Evolutionary trajectories from groups (Supplementary Figure 2)—Consider a 

driver x, and denote with kx the number of patients where it occurs; define

Γ = {x ∈ V kx ≥ θ} ∪ { ⋆ }

the set of recurrent alterations that occur in at least θ > 1 patients, plus a special symbol ⋆ 
that stands for “germline” ancestor. REVOLVER processes the whole dataset and induces 

correlation among drivers in Γ.

We write x → y ∈ T for an edge appearing in a tree T and introduce a special definition of 

the transitive closure of →, usually denoted as →* (Supplementary Figure 2,3). In general, 

the transitive closure of a path x → y → z is the set of edges →*= {x → y, y → z, x → 
z}; x → z follows by →’s closure. In this work, we have a special interest for evolutionary 

trajectories among recurrent drivers. Consider for the i-th patient the trajectory

p′1 ⋯ p′z x p1 ⋯ pw y ⋯ where pi, p′i ∉ Γ and x, y ∈ Γ

We write πy
i = x to denote the recurrent driver upstream of y in this patient; these trajectories 

are correlated in REVOLVER. We indicate them by the notation πy
i = x * y, or when it is 

clear by x →* y.

Because input alterations are grouped into clones, we need to account for groups when we 

create trajectories. If g1 → g2 are two groups in a model’s path, and xj and yj are the driver 

alterations in those groups, we account for all combinations of orderings in the two groups 

with the trajectories

g1 = {x1, …, xw} g2 = {y1, …, yl} =

x1 y1
⋯

xw yl

This creates a combinatorial number of trajectories according to the number of drivers 

annotated in each group of a patient’s alterations. Clearly, the trajectory within a patient’s 

group is a linear ordering of its alterations that, however, cannot be estimated from a single 

patient. This is a confounding factor that renders the inference harder. However, by 

leveraging cross-sectional data from multiple patients diagnosed at different evolutionary 

times, one can recovery such trajectories and average out the confounders.
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Multinomial counts of trajectories—To measure the structural correlation among the 

models, we count how often they contain a path that connects x and y in Γ; the minimum 

among kx and ky is an upper bound to this count.

Definition (Multinomial consensus) Given n trees T1, …, Tn, we define the |Γ| × |Γ| discrete-
valued consensus matrix w with entries

wx, y = |{Ti | x * y ∈ Ti; x, y ∈ Γ}|

where x →* y is a trajectory defined as explained above (Supplementary Figure 3).

Clearly, wx,y/ky is an empirical probability for the observation of x upstream y in the n 
models. By construction, we are detecting a statistical signal among x and y, recurrent driver 

alterations that intertwine with passengers. The role of ⋆ is to capture which x ∈ Γ is earliest 

in the trunk of a model (the associated trajectory is ⋆→* x); so w⋆,x counts how many 

tumours are predicted to initiate via x. It must follow by tree construction that no alteration 

is upstream ⋆, and hence wx,⋆ = 0.

Model-selection via Transfer Learning—REVOLVER requires a pre-computed set of 

trees per patient, and their scores (that must be sortable values); the algorithm uses those sets 

of models and w as estimator of their structural correlation and selects each patient’s most 

correlated tree. Procedures to create trees are implemented in the framework, according to 

the input data; see Supplementary Notes, for the algorithms’ pseudocode.

REVOLVER’s score of a model Ti is a rescaling of its pre-computed score by a factor that 

measures its structural deviation from the models of the other patients. The pre-computed 

score acts as a log-likelihood of the data under the model: p(Ti |Di).

Definition (Model's score) Let Γi = Vi∩Γ be the recurrent drivers in patient i. A model Ti for 
this patient has score

f Ti
= log p(Ti |Di) + log p(Ti|w)α

for α ≥ 1. The latter term is a regularization term

p(Ti|w) = ∏
x ∈ Γi

1 −

∑ywy, x − w
πx

i , x

kx
.

If the pre-computed scores factorize over models' edges, we can decompose the score as

log p(Ti |Di) ∝ log ∏
x y ∈ Ti

p(y | x; Di)
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where p(y|x; Di) are the edge terms obtained by fitting the tree’s parameters to Di. This 

factorization is common but is not a requirement. Technically, fTi is a penalised log-

likelihood; we refer to 1– p(Ti |w) as the penalty that re-scales Ti ’s likelihood at polynomial 

rate with degree α. This overall quantity is the “information transfer” (Supplementary Figure 

2); α is a scaling factor that “shrinks” the penalty effect; in practice we always set it to 1 but 

it could be easily used to induce a stronger effect of the information transfer in shaping the 

gradient. In Supplementary Notes, we show power calculations for the minimum 

information transfer to induce an ordering's swap.

We observe the following properties of the above definition:

I. the information transfer considers only penalties by predictions that disagree 

with Ti. In fact, for any πx
i * x x in Ti, term w

πx
i , x

 is subtracted from the 

penalty;

II. we penalise independently each recurrent driver x ∈ Гi, proportionally to the 

consensus of its evolutionary trajectories ∑y wy,x across the cohort;

III. ⋆ does not have incoming edges; only its outgoing edges contribute to p(Ti|w).

Definition (Model selection) To select n models T* = [T1, …, Tn], we solve a problem of 
discrete optimisation

T* = arg maxT = [T1, …, Tn][ f T1
, …, f Tn

]

This problem is approached with an EM procedure. Because the trees are pre-computed for 

each model, a global solution for each initial EM condition is guaranteed. Given an initial 

estimate of the trees, T(0) we compute w(0) to select the T(1) that maximise REVOLVER’s 

score under w(0). We then iterate by estimating w(1) from T(1), etc.; we stop when we reach a 

fix-point T(i+1) = T(i) for some i, which is the ML estimate of T*.

Precisely, the E and M steps are (Supplementary Figure 3):

• [E-step] from the current estimates of [T1, … , Tn], compute w;

• [M-step] use w to compute the penalty; for every patient update the scores of its 

pre-computed models, and determine the highest scoring (ML estimate).

The ML estimates push to minimise the penalties in the sense that the optimisation gradient 

pushes p(Ti |W) to 1. In fact, with penalty 1 all the models predict the same trajectories for 

the variables in Γ, and we reach the objective of maximising the number of models, out of 

kx, that predict the same driver upstream x. To start this EM, one can sample multiple 

random initial conditions, and select the solution with lowest penalty; this can be done in 

parallel. Equivalence classes of solutions with the same score and penalty might exist; this 

depends on the distribution of the input pre-computed scores. The method, however, is more 

powerful than its un-correlated counterpart in estimating the true model, as we measured via 

synthetic tests.
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Computing trajectories within groups (expansion)

We know that, in every model Ti, we cannot compute trajectories for the alterations x1,… , 

xw that map to the same group g (e.g., those in the same clone). However, their trajectories 

might be detectable in those patients Tj ≠ Ti whose alterations overlap with g, if they are 

sampled at an earlier time. Because the hidden model is assumed to be the same tree for all 

patients, Tj’s trajectories are representative of the ones hidden in Ti.

In a TL approach, we transfer this information to Ti and split g accordingly; we can do that 

once the first EM strategy has converged. We call this procedure “expansion” of a group 

(Supplementary Figure 3). This heuristic first subsets the entries of x1,… , xw from w, and 

then selects, for each xi, the most frequent parent driver. This is the multinomial ML 

estimate in w; if this does not exist because there is no evidence of any of the drivers in g to 

be upstream xi, then xi cannot be ordered and will be associated to the node upstream g. 

Ideally, if the input tumours were homogenous and we add observations from patients at 

different steps of progression, we could retrieve the unknown linear ordering (i.e., a 

topological sort) of x1,… , xw. In realistic cases, because of the uncertainty in the estimation 

of these trajectories and drivers’ annotation, we expect the expansion to be a graph that, of 

course, does not represent branched evolution.

Notice that the expansion does not change Ti ’s original likelihood (since its data was 

uninformative of g's trajectories), but it still changes the tree structure, and hence w and the 

penalty. We expect expansion to reduce the variance of w; if the cohort were truly 

homogenous, the penalty should decrease as well since we are selecting one particular 

ordering of x1,…, xw from a homogenous cohort.

Building input models from CCFs

Consider a patient with c groups – in what follows called clones for consistency with CCF-

based studies – from r sequencing samples, its CCF data is stored in a c × r real-valued a 

matrix M. Each entry is a value in [0, 1], estimated from read counts, the input clone 

assignments of each alteration, copy number segments and tumour purity. REVOLVER’s 

implementation provides a method to compute phylogenetic trees to use as input for the tool. 

The tool allows one to input also a custom set of trees and scores. See also Supplementary 

Notes.

Generating trees—The method implemented exploits a modified version of ClonEvol, a 

tool for phylogenetic inference from CCF clusters47. This tool first enumerates, 

independently for each sample, all trees compatible with M and rooted in z, the truncal 

clone. Then, it tries to build a “consensus” tree model that fits all the r regions at once. To 

build a tree, ClonEvol uses the standard pigeonhole principle21: for a node x to branch 

towards y1, … , yk, the parent's CCF must be greater than the sum of yi’s CCF, that is

ccf(x) > ∑i = 1
k ccf(yi) .

Clearly, certain combinations of CCF values are ambiguous, and support alternative trees. 

For instance, if x has CCF 1 and y and z 0.3 and 0.1, then both the linear path x → y → z, 
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and the branched model (x towards y and z) are plausible under the pigeonhole principle. 

Because of noise in CCF estimation and tumour sampling bias, a consensus model might 

only be available if we allow for violations of such principle.

Ranking phylogenetic trees—We are not interested in a perfect consensus model, but 

rather we want to generate several alternative trees to input to REVOLVER. We modified 

ClonEvol to skip its last step and return the trees computed per region. With that, we could 

create a distribution of trees plausible under the input CCF, with a probability mass 

proportional to the extent to which a tree violates the pigeonhole principle under M, and the 

empirical evidence of each edge (obtained from ClonEvol estimates). This ensures that, even 

without perfect CCF, we can still compute a model for the data, and quantify its goodness of 

fit, without sub-setting input.

We proceeded as follows. Consider C, the set of clones annotated in M, and merge all trees 

into a weighted direct acyclic graph D whose nodes are C, and the weights are the average 

frequency of detection of the edges in each region, as estimated in ClonEvol. For each edge 

x → y, this is the empirical probability λx,y of clone x to be a direct parent of y in the 

phylogenetic trees, according to the trees estimated by ClonEvol. Thus, D is a generator of 

the distribution of phylogenetic trees for data M, assuming all edges to be independent.

The support of this distribution is the set of all minimum-spanning trees rooted in the truncal 

clone, which is known. This can be generated exhaustively only for small number of clone c 
= |C|, i.e., for a few thousand trees. If this is not the case, we can Monte Carlo sample a 

desired number of distinct trees for this patient; for each node y, its parents are sampled 

from the discrete marginal distribution λy = {λx,y}. This exploits a factorization of the 

distribution over the tree’s nodes and leads to sample trees that maximize the observed 

frequencies of edges, as we might desire.

Definition (Phylogenetic score) For a set of phylogenetic trees 𝒯, each T ∈ 𝒯 can be scored 

as

η(T) = ∏
x ∈ T

ϵ(x) ∏
x y ∈ T

λx, y ϵ(x) = 1
r ∑

i = 1

r
1ccf(x, i)

where 1ccf is an indicator function that evaluates to 1 if x satisfies the pigeonhole principle in 
the i-th region,and 0 otherwise.

This score has the following desirable properties:

• η(T) and ϵ(x) span in [0,1], and allow for equivalent-scoring models;

• ϵ(x) is a goodness-of-fit measure: lower values indicate increasing violations of 

the principle, for x in T, under data M.

• terms λx,y is a probability that measures how often ClonEvol predicts x upstream 

of y; when this approaches 1 we have stronger evidence that x is upstream of y.
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• η(T) = 1 only when 1) there is a unique possible assignment to the parents of 

every clone, and 2) there are no violations of the pigeonhole principle.

This score η(T) is a joint likelihood: the probability of each parent of a clone is weighted by 

a multinomial likelihood of error ϵ(x) estimated from the tumour data. This part of the 

algorithm can accommodate several customizations, and it is straightforward to use 

phylogenetic tools that provide alternative scoring function22–27.

For our score or variations thereof, the following min/max interpretation holds. If we 

maximize η(T) alone we select the tree with most-frequent structure (max), and the smallest 

violations (min). When η(T) is combined within REVOLVER we expect a min/max-max 
shrinkage effect where, at the same time, we minimize errors in each phylogeny, and 

maximize both tree edges that are frequent and represent repeated evolution in the cohort.

Building input models from binary observations

Binary data is lower-resolution than CCFs but can still be used to create a mutation tree for a 

patient. To do that, REVOLVER implements a method that links Suppes' theory of 

probabilistic causation to cancer progression11,48,49, see also Supplementary Notes.

Definition (Suppes' probabilistic causation in cancer) For any two variables x and y, edge x 
→ y can exist in Suppes’ probabilistic model only if p(x) ≥ p(y) and p(y|x) ≥ p(y|¬x), where 

p(·) are empirical multinomial probabilities estimated via ML from binary data.

A Suppes' partially ordered set (poset) Πi is the set of edges that satisfy probabilistic 

causation. We estimate for patient i its poset by data Di, and use it as building blocks of our 

mutation trees. Temporal priority acts as both an infinite sites assumption, and a no back-
mutations model (in phylogenetic jargon). In practice, we are assuming that alterations are 

persistent and, accordingly, we estimate temporal precedence via marginal frequencies. 

Probability rising, instead, is a measure of the degree of association between two variables, 

which implies statistical dependence as it is symmetric (like correlation), see Supplementary 

Notes.

A poset is also a weighted directed graph with constant normalized weights, if we assume all 

poset’s parents equally likely. So, it can be used to generate all minimum spanning trees 

rooted in the clonal group, which is the one whose alterations appear in all samples. 

Mutation trees can be sampled as done for phylogenetic trees, either exhaustively or by 

Monte Carlo, and can be scored via standard information theory. Each such model is a well-

known Chow-Liu tree, a generator of the joint distribution p(c1, … , cw) if c1, … , cw are the 

w groups for this patient – i.e., the probability of observing the presence/absence of the 

corresponding alterations in a sample50. A Chow-Liu tree contains second-order terms p(y|

x) for the product approximation of the joint distribution that we factorise. It is well known 

that it has the minimum Kullback-Leibler divergence to the true distribution, being its 

closest approximation in an information-theoretic sense.

Definition (Binary tree score) For a set of Chow-Liu trees 𝒯, each T ∈ 𝒯 can be scored as
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τ(T) = ∏
x y ∈ T

mutinf(x, y)

where mutinf(x, y) is the mutual information associated to random variables that take values 
x and y

mutinf(X, Y) = ∑
x, y

p(x, y)
p(x)p(y) .

Thus, the highest-scoring Chow-Liu tree is the optimal solution to this model-selection task. 

REVOLVER’s input Chow-Liu trees can be ordered by decreasing mutual information; our 

method will fit lower-rank ones only if they have smaller penalty.

Synthetic tests

We carried out synthetic tests with CCF data to validate and assess the performance of 

REVOLVER under different configurations of cohort size, number of samples per patient 

and other covariates modelling confounding factors. Tests and results are detailed in 

Supplementary Notes and Supplementary Figure 4.

In a first batch of tests, we generated phylogenetic trees and CCF data under a combined 

model of tumour sampling bias. Statistically speaking, in some patients CCF will be hard to 

process (i.e., noisy): they will suggest linear and branched models of evolution with the 

same score. In other patients, CCF data will top-score the true evolutionary model. Results 

show that REVOLVER, by transferring information across patients, can retrieve the true 

model also for patients with noisy CCF data. Uncorrelated inference (the baseline method 

that we compare against), instead, suffers from sampling bias and uncertainty in tree 

estimation. This shows that joint ML estimation of the correlated trees can de-noise 

genomics data, improving on the uncorrelated counterpart.

In a second batch of tests, we investigated resistance to noise of our estimator. 

REVOLVER’s information transfer is estimated from data, thus if CCF data are dominated 

by noise, the algorithm will transfer “noise” and might fit repeated errors. We investigate 

this phenomenon with synthetic datasets affected by different intensities of Gaussian noise 

(technical noise) and show that REVOLVER is robust for reasonable ranges of those 

parameters.

Further material and case studies

REVOLVER is a framework with other features beyond its main inferential algorithm.

In Supplementary Notes we present:

I. Power calculations to correlate evolutionary trajectories;

II. A scalar index of divergent evolution that measures the heterogeneity of the 

trajectories inferred;
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III. A REVOLVER-derived evolutionary distance (grounded in ecological theory for 

species’ diversity) to stratify the cohort into subgroups of tumours that harbour 

similar evolutionary trajectories.

IV. A jackknife approach to estimate the stability of clusters and trajectories.

V. Further commentary on the approach;

VI. Algorithmic settings for the analysis of real data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identifying repeated evolution in cancer multi-region sequencing data using Transfer 
Learning.
(A) Cancer evolution studies often employ multi-region sampling (red circles) and genomic 

profiling to characterise intra-tumour heterogeneity (ITH). The data may encode specific 

sequences of somatic driver aberrations that correspond to repeated evolutionary trajectories 

common to patient subgroups (e.g. group red vs group purple). However, due to the 

underlying stochasticity of cancer evolution and inherent noise in the data, genomic patterns 

usually appear very variable between patients, and the details of the evolutionary process 

remain hidden. Considering ITH data from n patients with the same tumour type, we want to 

find n models that describe the evolution of each tumour, while at the same time highlighting 

the presence of repeated evolutionary trajectories across patients. (B) The standard approach 

is to infer one evolutionary model per patient at a time (i.e. a phylogenetic tree), and then 

compare the n trees. Because the models are inferred independently and are therefore 

uncorrelated, the statistical signal of repeated evolutionary trajectories is weak and all 

tumours seem different. (C) This leads to few repeated evolutionary trajectories identified 

(e.g. only part of the purple trajectory is identified). (D) REVOLVER uses Transfer Learning 
to infer n models jointly, with the aim of increasing their structural correlation. We obtain n 
trees that explain the data in each patient while highlighting repeated evolutionary 

trajectories in the cohort. (E) This results in a stronger statistical signal of repeated cancer 

evolution and recurrent trajectories are identified.
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Figure 2. Synthetic test of the method and biological validation.
(A) To test our method, we generated n random phylogenetic trees and used them to sample 

synthetic CCF data for n patients. Due to tumour sampling bias (multiple subpopulations 

admixed in a bulk sample with unknown phylogenetic relationship), CCF data from a 

proportion of cases (red) may be ambiguous. For example, using the pigeonhole principle 

alone it may not be possible to discern linear from branched evolution (Supplementary 

Figure 1). Moreover, technical noise in the estimation of CCF values further exacerbates the 

problem. (B) When we analyse data with standard phylogenetic methods, we rank the best 
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tree for a given patient. Due to sampling bias and technical noise, the true tree may remain 

hidden amongst lower ranking solutions in ambiguous samples (red). (C) REVOLVER 

transfers information across patients to de-noise the dataset and identify the true tree, even 

for patients with ambiguous data. We simulated 20 cohorts of n = 50 patients with 1-3 bulk 

regions each (extended tests in Supplementary Figure 4) and modelled sampling bias in a 

percentage p = 10, 30, 50% of patients, as well as Gaussian technical noise (σ = 0.05). 

Compared to standard uncorrelated phylogenetic inference in terms of trajectories retrieved 

(rate of true positives). Boxplots show mean and inter quartile range (IQR), upper whisker is 

3rd quartile +1.5 * IQR and lower whisker is 1st quartile − 1.5 * IQR. (D) We performed 

biological validation of REVOLVER using data describing the adenoma-to-carcinoma 

evolutionary transition. We analysed a multi-region sequencing dataset comprising of n = 19 

colorectal cancer patients (9 adenomas, and 10 carcinomas)32. REVOLVER detected 

repeated evolutionary trajectories (e.g. APC→KRAS, GL:germline, each column is a 

patient) involving key colorectal drivers such as APC, KRAS, TP53 and PIK3CA, which we 

can use to stratify patients (complete data in Supplementary Figure 5). In the bottom 

heatmap are putative driver alterations shaded by proportion of samples with the alteration. 

REVOLVER trees (bottom) show that by transferring information across patients, repeated 

evolution in early-stage tumours (adenomas) become informative of evolutionary trajectories 

in late-stage tumours (carcinomas), in which many alterations appear clonal and cannot 

otherwise be ordered. This analysis confirms the identification of the expected evolutionary 

trajectories of APC→KRAS→PIK3CA and APC→TP53 that drive malignant 

transformation.
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Figure 3. Repeated evolutionary trajectories in lung cancer.
(A) REVOLVER analysis of Cancer Cell Fraction (CCF) data from n = 99 non-small cell 

lung cancers from the TRACERx study18 (columns are patients). Top heatmap shows the 

most recurrent repeated evolutionary trajectories identified by our method (GL: germline, 

complete data in Supplementary Figure 6). Bottom heatmap shows most recurrent putative 

driver genes reported as average CCF values as provided in18. Alterations are ordered by 

frequency in the cohort, truncal alterations highlighted with orange squares. REVOLVER 

stratified this cohort in 10 evolutionary subgroups characterized by repeated evolution 
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(Supplementary Figure 7). Subgroup stability was estimated via jackknife (N = 1,000 

resamples, leave out p = 10%; Supplementary Figure 8) and annotated in the dendrogram 

(median per cluster). These groups can be used to derive a decision-tree classifier that 

stratifies n = 589 tumours in orthogonal single-sample cohorts (Supplementary Figure 11). 

(B) Repeated trajectories characterising cluster C5. In each edge of the graph we report the 

number of times a transition x →y is observed in the group, which contains 9 patients. For 

each alteration, we also annotate the number of times it is clonal or subclonal in the cohort, 

as well as the probability of detecting the edge across resamples (Supplementary Notes). (C) 
The phylogenetic model for patient CRUK0016 (cluster C5) has 13 clones (CCFs clusters), 

5 with drivers annotated (in colour). The REVOLVER tree ranked 5th of 56 alternative ones. 

Via Transfer Learning, REVOLVER can also estimate the intra-clone orderings, for example 

the trajectory CDKNA→TP53→TERT can be expanded.
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Figure 4. Repeated evolutionary trajectories in breast cancer.
(A) REVOLVER analysis of data from n = 50 breast cancers from Yates et al. 201515 

(columns are patient). Top heatmap shows the most common repeated evolutionary 

trajectories identified by our method (GL:germline, complete data in Supplementary Figure 

12). Bottom heatmap shows most recurrent putative driver genes reported as average CCF 

values as provided in15 (data were presence/absence). Alterations are ordered by frequency 

in the cohort, truncal alterations annotated with orange squares. REVOLVER stratified this 

cohort in 6 evolutionary subgroups characterized by repeated evolution (Supplementary 
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Figure 13). Subgroup stability was estimated via jackknife (N = 1,000 resamples, leave out p 
= 10%; Supplementary Figure 14), and annotated in the dendrogram (median per cluster). 

(B) Repeated trajectories in cluster C2. In each edge of the graph we report the number of 

times a transition x → y is observed in the group, which contains 11 patients. For each 

alteration, we also annotate the number of times it is clonal or subclonal in the cohort, as 

well as the probability of detecting the edge across resamples. This group highlights the 

evolutionary trajectory TP53→PIK3CA→-8p→+8q. (C) The clone tree for patient 

PD14753 (cluster C2) had 11 nodes, 7 of which containing drivers (in colour). With a 

standard approach, this tree would have scored 2/200 alternative trees. By transferring 

information from other patients in the cohort (dashed lines), REVOLVER can expand 

evolutionary transitions within the same node. In this case, we identified TP53 as tumour-

initiating alteration (early clonal), followed by loss of 16q/17p (late clonal). Uncertainty on 

-16q and -17p ordering remains because of equally likely observations in the cohort. 

Transfer Learning also works at the subclonal level, identifying the trajectory 

FANCD2→BRCA2. The order of MLL3 and KDR remained uncertain.
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Figure 5. Stratifying single-sample cross-sectional cohorts with repeated evolutionary 
trajectories.
(A) From the subgroups identified with REVOLVER using multi-region sequencing (in this 

example the breast cancer dataset), we can build a decision tree. (B) The decision tree was 

used to classify n = 1,752 single-samples tumours from large cross-sectional cohorts 

(METABRIC and TCGA BRCA2012), showing that REVOLVER subgroups reproduced in 

large orthogonal datasets. Most recurrent driver alterations, PAM50 and IntClust 

classifications are reported. (C) The evolutionary subgroups identified by REVOLVER were 
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prognostic (two-tailed log-rank test, p < 0.05, 95% confidence interval shaded). 

Interestingly, poor survival group C3 was enriched for a specific subset of basal tumours 

characterised by trajectory TP53→+8q. See Supplementary Figure 11 for the same analysis 

in lung cancer. (D, E) Enrichment of REVOLVER clusters for IntClust classification and 

PAM50 classifications (one-tailed Fisher’s Exact test, p < 0.05 adjusted with Bonferroni 

correction, odds ratio and confidence interval in Supplementary Table 3).
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