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Abstract

Chronic bladder pain evokes asymmetric behavior in neurons across the left and right hemispheres 

of the amygdala. An agent-based computational model was created to simulate the firing of 

neurons over time and in response to painful bladder stimulation. Each agent represents one 

neuron and is characterized by its location in the amygdala and response type (excited or 

inhibited). At each time step, the firing rates (Hz) of all neurons are stochastically updated from 

probability distributions estimated from data collected in laboratory experiments. A damage 

accumulation model tracks the damage accrued by neurons during long-term, painful bladder 

stimulation. Emergent model output uses neural activity to measure temporal changes in pain 

attributed to bladder stimulation. Simulations demonstrate the model’s ability to capture acute and 

chronic pain and its potential to predict changes in pain similar to those observed in the lab. 

Asymmetric neural activity during the progression of chronic pain is examined using model output 

and a sensitivity analysis.
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1 Introduction

Chronic visceral pain syndromes affect millions of people in the US with crippling and 

debilitating chronic pain. Urologic chronic pelvic pain, commonly diagnosed as interstitial 
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bladder pain syndrome or chronic pelvic pain syndrome, is one of the most common chronic 

visceral pain syndromes [17, 48, 50]. Many of the most common symptoms of chronic pain 

syndromes such as persistent pain and depression [31, 51] suggest the limbic nervous system 

is a strong mediator of these conditions. The peripheral nervous system plays a large role in 

urologic pain processing [1, 9]; however, during the transition from acute to chronic bladder 

pain a network including the prefrontal cortex, anterior cingulate, hippocampus, and 

amygdala is likely recruited to sustain pain and modulate its affects despite a lack of 

constant peripheral input [35, 49].

Recent data has indicated stable, significant changes in the central nervous system of men 

and women with visceral pain syndromes [5, 7, 21, 27, 28, 32, 34, 54]. One brain region in 

particular, the central nucleus of the amygdala (CeA), is altered in urologic chronic pelvic 

pain and has been implicated in both experiencing pain and modulating pain [5, 7, 20, 29, 

34, 38, 39, 47]. Notably, the CeA is one area where visceral pain is regulated differently than 

somatic pain. Somatic pain is pain arising from stimulation or perceived stimulation of soft 

tissue, skin, and muscle while visceral pain is that arising from stimulation or perceived 

stimulation of internal organs. Pharmacological inhibition of the right CeA in mice 

decreases visceral [19] but not somatic [30] pain-like responses. Although it is difficult to 

truly distinguish visceral and somatic pain in the brain due to the convergence of neurons in 

the spinal cord, this observation positions the CeA as a novel target for the treatment of 

chronic bladder pain. Identifying new differences and similarities between somatic and 

visceral pain is critical to understanding the susceptibility, symptomology, and treatment of 

different pain disorders [6, 16]. Bladder-specific changes in CeAmediated behavior or gene 

expression could be targeted to manage pain in patients who often show other comorbidities 

(e.g., fibromyalgia, irritable bowel syndrome, anxiety, etc) [35].

Differences in the functions of left and right CeA in both processing and experiencing pain 

has been a recent focus of research [29, 34, 38]. Results from our work and the work of 

others have described a dominance by the right CeA in controlling somatic pain [15, 26, 30]. 

Recent data from our lab also suggest that neuronal activity is sensitized after bladder injury 

and differs between the left and right CeA. The right CeA has a pro-nociceptive function, 

meaning that pain increases during excitation of the right CeA. The left CeA has an anti-

nociceptive function, meaning that pain decreases during excitation of the left CeA [45]. 

These differences may be driven in part by differences in the excitability of neurons in CeA 

in response to bladder stimulation. Lateralization of brain function has long been appreciated 

and exists across nearly all biological taxa [44]. Interestingly, right hemisphere lateralization 

of the limbic system, including the amygdala, has been observed in birds and mammals 

(rodents, primates, etc) especially in the context of stress and injury [44]. Nonetheless, the 

status quo in pain research is that functional lateralization remains relatively unexamined 

and unused from a clinical perspective.

In the current manuscript, we describe a computational agent-based modeling approach to 

understand the differences in excitability observed in preliminary electrophysiological 

recordings from naive and sensitized mice. During painful stimulation of the bladder, 

neurons in the CeA can either be excited or inhibited by the stimulation, determined by the 

changes in their firing rates. Inhibited neurons have a higher baseline firing rate and exhibit a 
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decrease in firing rate during painful bladder stimulation. Excited neurons have a lower 

baseline firing rate and exhibit an increase in firing rate during painful bladder stimulation. 

Neurons in the CeA also show different physiological responses under normal conditions 

(noninjury) versus after bladder injury [22, 23, 25, 26]. In the present manuscript, this 

phenomenon of injury-induced changes was investigated in the context of bladder injury and 

sensitization. In laboratory experiments, mice were treated with cyclophosphamide (CYP), a 

chemotherapeutic drug that causes human patients to develop hemorrhagic cystitis, thus 

harming the bladder and inducing pain [18, 52]. Mice that were sensitized with CYP 

developed some symptoms (e.g., overactivity, bladder and pelvic nociception) similar to 

those of human patients with chronic bladder pain [11, 33]. The goal of these laboratory 

experiments was to provide preliminary data measuring changes in neural activity due to 

sensitization to support the development of the agent-based model.

Computational and mathematical models provide a non-invasive and humane method for 

studying pain and assessing different pain management strategies [2]. In 1986, Britton and 

Skevington constructed a system of differential equations describing the gate control theory 

of pain [14, 13]. Gate control theory asserts pain is modulated through the sending of signals 

from the spinal cord to the brain via “nerve gates” that open or close depending on 

conditions [36]. The differential equation model reproduced observations of acute pain and 

provided a framework for testing the theory’s applicability to chronic pain. Researchers have 

since developed computational and mathematical models that extend the basic assumptions 

of gate control theory to include, for example, functional properties of sub-categories of 

neurons [3, 4], interactions between neurons and increasing quantities of T-cells [41], and 

cortical reorganization attributed to amputation [10]. Other recent advances in pain modeling 

utilize artificial neural networks to explain the nonlinear processing of signals between the 

spinal cord and the brain [37, 24].

In this paper, we use an agent-based computational model to describe the behavior of 

individual neurons in response to painful bladder stimulation caused by distention. Agent-

based models are used increasingly in all disciplines to study emergent features of complex 

systems governed by the actions and interactions of individual agents [43, 53]. In our model, 

each agent represents one neuron and the behavior (e.g., firing rate) of all neurons are 

stochastically updated at each time step. The primary emergent feature of the model is a 

measure of bladder pain and our objective is to investigate the role of specific neurons in 

pain modulation. Moreover, because each agent in the model is assigned a location within 

the amygdala, we use the model to assess asymmetric neural behavior observed across the 

left and right hemispheres of the CeA.

A complete description of our agent-based model is provided in Section 2. Model 

parameters were estimated using preliminary data from our laboratory experiments. Section 

3 provides a description of these experiments and a summary of the statistical algorithm 

used to estimate model parameters from the experimental data. Results of model simulations 

and a sensitivity analysis are displayed in Section 4. Simulations demonstrate the model’s 

ability to capture acute and chronic pain and the model’s potential to predict changes in pain 

similar to those observed in the lab. A discussion of these results is provided in Section 5 

and concluding remarks follow in Section 6.
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2 Model Description

2.1 Purpose

The purpose of the agent-based model (ABM) is to observe system-level properties of 

excited and inhibited neurons in the central nucleus of the amygdala (CeA) during short and 

long-term bladder pain caused by bladder distention. System-level output measures pain 

attributed to bladder distention. Results are useful in understanding the role of excited and 

inhibited neurons in pain regulation and the lateralization of these neurons in the left and 

right hemispheres of the CeA.

2.2 Agents and Scale

Agents represent individual neurons in the CeA that are responsive to bladder pain. The 

model’s spatial domain includes 324 patches, each of which marks the location of one 

neuron. The space is partitioned into halves representing the left and right hemispheres of 

the CeA. Each model tick represents one time step.

Each neuron (i.e., agent) possesses five variables (Table 1) defining its properties and 

behavior. First, each neuron is assigned a location (loc) equal to either L or R, signifying the 

neuron’s placement in the left or right hemispheres of the CeA, respectively. Second, each 

neuron is assigned a response (res) equal to either Ex (excited) or In (inhibited). The 

classification of a neuron as either excited or inhibited refers to its behavior in response to 

painful bladder distention. A neuron’s location and response are both assigned during 

initialization and do not change during a simulation. Therefore, throughout a simulation 

each neuron can be categorized as one of four different types based on location and 

response. These types are Left Inhibited, Left Excited, Right Inhibited, and Right Excited.

Additionally, each neuron possesses three variables related to neural ‘damage’. A damage 

accumulation model is used to track a neuron’s progress towards sensitization caused by 

long-term bladder distention. A neuron’s damage level (d) is a value with range [0,100] 

indicating the percent of total damage accumulated by the neuron and is updated each time 

step. A damage level of 0 indicates that the neuron has accumulated no damage. A damage 

level of 100 indicates that the neuron has reached its maximum damage level and is 

sensitized. Damage levels between 0 and 100 indicate the neuron is partially-damaged and is 

sensitizing (i.e, in the process of becoming sensitized). A neuron’s damage level starts at 

zero and increases only when the bladder has been distended for a number of time steps 

exceeding tL, the length of the neuron’s damage latency period. A neuron accrues damage at 

a rate of 100
tS

 units per time step, where tS is the length of the neuron’s sensitizing period. 

Thus, when the bladder is distended, a sensitizing neuron will become sensitized after tS 

time steps. Both tL and tS are positive integers assigned to each neuron during initialization 

and do not change during a simulation. In all simulations presented here, each neuron was 

assigned a value of tL between 20 and 80 and a value of tS between 50 and 150.

Lastly, each neuron has a firing rate (fr) describing the frequency in hertz (spikes per 

second) of the neuron’s action potential. A neuron’s firing rate is stochastically updated at 
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each time step based on the bladder’s current state (distended or not distended) and the 

neuron’s location, response, and current damage level.

2.3 Global Variables

The model includes three global variables (Table 2). Variables p1 and p2 control the quantity 

of excited and inhibited neurons within the left and right hemispheres of the amygdala. 

Specifically, p1 denotes the proportion of neurons in the left amygdala that are excited. 

Therefore, 1−p1 denotes the proportion of neurons in the left amygdala that are inhibited. 

Similarly, p2 denotes the proportion of neurons in the right amygdala that are excited and 

1−p2 denotes the proportion of neurons in the right amygdala that are inhibited. Both p1 and 

p2 are specified at the initialization of the model and do not change during a simulation.

The third global variable, CBD, tracks the cumulative number of time steps during which the 

bladder is distended. Variable CBD is initially set to zero and incremented by 1 during 

appropriate time steps.

2.4 Model Input

The timing and duration of bladder distention during a simulation is specified by the user as 

a file consisting of zeros and ones. During the initialization, the model reads this file and 

creates a vector BD, where the ith element of BD (denoted by BDi) is equal to the ith value 

from the file. A value BDi = 0 indicates that the bladder is not distended during the ith time 

step, while a value BDi = 1 indicates that the bladder is distended during the ith time step.

2.5 Model Processes

2.5.1 Overview—The model simulates neural behavior across the left and right 

hemispheres of the amygdala over time and in response to the bladder distention history 

provided by the user. The quantity of excited and inhibited neurons in the left and right 

hemispheres is determined at the model’s initialization and does not change during a 

simulation. During each time step, neural firing rates are stochastically updated in response 

to the current state of the bladder (distended or not distended). Individual neuron firing rates 

are determined using the neuron’s location, response, and current damage level. Damage is 

accrued by neurons during long-term bladder distentions. When damage reaches a threshold 

value, neurons become sensitized. Parameters defining the firing rates of neurons in the 

sensitized and unsensitized states were estimated from laboratory experiments. Emergent 

measures of pain are calculated as the difference in cumulative firing rates of excited and 

inhibited neurons in the left and right hemispheres.

2.5.2 Initialization—During the model’s initialization, the vector BD is established from 

the input file and 324 neurons are created on the agent space. Half of the neurons are 

assigned to the left hemisphere of the amygdala (loc = L) and the other half are assigned to 

the right hemisphere of the amygdala (loc = R). Each neuron on the left hemisphere is 

randomly assigned a response (res = Ex or In) based on the value of p1. In particular, for 

each neuron in the left hemisphere, a random number in [0,1] is drawn using a uniform 

probability distribution. If the random number is less than or equal to p1, then the response 

of the neuron is set to excited. If the random number is greater than p1, then the response of 
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the neuron is set to inhibited. Similarly, each neuron on the right hemisphere is randomly 

assigned a response type based on the value of p2. Additionally, all neurons are randomly 

assigned individual values of tL and tS using a uniform probability distribution over the 

ranges specified in Table 1. The damage (d) of each neuron is set to 0. Lastly, global variable 

CBD is set to 0.

2.5.3 Neural behavior though time—The following procedures occur each time step 

to simulate neural behavior. First, at each time step i, global variable CBD is updated 

according to

CBDi =
CBDi − 1 + 1 if BDi = 1,
CBDi − 1 if BDi = 0, (1)

where CBDi is the value of CBD at time step i, BDi = 1 indicates the bladder is distended at 

time step i, and BDi = 0 indicates the bladder is not distended at time step i. Therefore, CBD 
tracks the cumulative number of time steps during which the bladder is distended.

Second, the damage of each neuron is updated. For each neuron, damage (d) at time step i is 

updated using the damage accumulation model

di =

min di − 1 + 100
tS

, 100 if CBDi > tL

and BDi = 1,
di − 1 if CBDi ≤ tL

or BDi = 0,

(2)

where di is the damage accrued by the neuron at time step i, tS is the length of the neuron’s 

sensitization period, CBDi is the cumulative bladder distention value at time step i, tL is the 

length of the neuron’s latency period, and BDi indicates whether the bladder is distended 

(BDi = 1) or not distended (BDi = 0) at time i. Therefore, a neuron’s damage increases only 

during time steps in which the bladder is distended (BDi = 1) and the cumulative distention 

period has exceeded the neuron’s damage latency (CBDi > tL). The maximum value of 

damage is 100 and indicates the neuron is sensitized. If the bladder is not distended (BDi = 

0) or the cumulative distention period has not exceeded the neuron’s damage latency (CBDi 

<= tL), the neuron’s damage level does not change. Figure 1 displays an example bladder 

distention history and the corresponding accumulation of damage for a single neuron using 

equation (2).

Lastly, during time step i, each neuron’s firing rate is stochastically updated using the 

equation
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f ri =
100 − di

100 ⋅ X +
di

100 ⋅ Y (3)

where fri is the firing rate at time i, X is a random variable describing the firing rate of the 

neuron in an unsensitized state, and Y is a random variable describing the firing rate of the 

neuron in a sensitized state. Both random variables X and Y are defined by truncated normal 

distributions and estimated using data collected in laboratory experiments (Section 3). Each 

random variable is defined by a mean (μ), standard deviation (σ), minimum value (min) and 

maximum value (max). These parameters depend on the neuron’s location (Left or Right), 

the neuron’s response (Excited or Inhibited) and whether or not the bladder is distended at 

time i (BDi = 0 or BDi = 1).

The model updates global variable CBD (equation (1)) and the damage (equation (2)) and 

firing rates (equation (3)) of all neurons each time step until the end of the simulation. The 

length of a simulation (i.e., number of time steps) is equal to the length of vector BD.

2.5.4 Emergence—The primary emergent feature of the model is the measure of pain 

attributed to bladder distention. In the model, pain is measured as the difference between the 

cumulative firing rates of all excited neurons and the cumulative firing rates of all inhibited 

neurons across the left and right hemispheres of the CeA. At time step i, pain is computed as

Pi = ∑
loc = L, R

∑
res = Ex

f ri − ∑
loc = L, R

∑
res = In

f ri (4)

where fri denotes the firing rate of a neuron at time i.

2.6 Implementation

The model was coded in NetLogo (Version 6.0) [53]. This software has a unique 

programming language and customizable interface that is designed specifically for ABM 

development and implementation. For access to the NetLogo code, please contact the 

corresponding author. In Net-Logo, BehaviorSpace was used to automate the simulations. 

Statistical and graphical analyses of model output were completed using R statistical 

software [42].

3 Parameter Estimation

3.1 Overview

Random variables X and Y describe the firing rates of a neuron in the unsensitized and 

sensitized states, respectively. Each random variable is assumed to have a truncated normal 

distribution with mean (μ), standard deviation (σ), minimum value (min) and maximum 

value (max). Values of μ, σ, max and min depend on the current state of the bladder 

(distended or not distended) as well as the neuron’s location (Left or Right) and response 

(Excited or Inhibited). Thus, there are eight possible parameter sets defining X and eight 
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possible parameter sets defining Y. These parameters were estimated using data from 

laboratory experiments in which the firing rates of neurons in the CeA of naive and 

chemically-sensitized mice were measured before and during painful bladder distention.

3.2 Laboratory Experiments

A brief description of the laboratory experiments is provided here. All laboratory 

experiments were approved by the Duquesne University Institutional Animal Care and Use 

Committee. Prior to experimental recording, female mice were treated three times over five 

days with either saline (control treatment) or cyclophosphamide (CYP) (sensitizing 

treatment). All animal experiments were completed blinded to animal treatment. On the 

sixth day, mice were prepared for bladder distention recording experiments. Animals were 

anesthetized at 37°C and a catheter was inserted into the bladder via the urethra [46]. The 

skull overlying the CeA was removed and a carbonfiber electrode was lowered into brain in 

5μm bursts until single-unit spikes (action potentials) were identified for a neuron [45]. 

Neuronal activity was relayed in real time to a computer using Spike2 data acquisition 

software (Version 7, Cambridge Electronic Design).

Action potentials were recorded immediately before, during, and after a bladder distention. 

Each distention lasted 20 seconds and action potentials were measured for 20 seconds before 

and after the distention. This 60 second sequence is considered one distention trial. Between 

3 and 5 distentions trials were performed for one neuron. Bladder distention was completed 

through a custom mechanical air controller connected to the urethral catheter. Pressures of 

30mmHg (innocuous) and 60mmHg (noxious) were delivered in sequence with at least 2 

minutes between trials. For the building of the agent based model, only 60mmHg data was 

used and is reported here. Action potentials were counted by a custom script in Spike2 

software (Cambridge Electronic Design) using the WaveMark feature.

The location within the CeA of each neuron was established in the laboratory. After 

recording neural activity, electric current was used to mark the recording position of a 

neuron and the brain was sectioned to verify the neuron’s location in the left or right 

hemisphere of the CeA.

3.3 Classification of Neurons Observed in Laboratory Experiments

In the computational model, neurons are classified as one of four types based on location 

(Left or Right) and response (Excited or Inhibited). As described above, a neuron’s location 

was established in the laboratory.

The response (Excited or Inhibited) of each neuron was determined by applying the 

following statistical algorithm. For each of the 171 distention trials performed in the 

laboratory experiment described above, 20 measurements of the neuron’s firing rate before 

distention and 20 measurements of the same neuron’s firing rate during distention were 

recorded. A two sample t-test was applied to each set of measurements (40 values total) to 

determine if there was significant difference (p < 0.05) in the average firing rates observed 

before distention and during distention. The 171 distention trials were ranked in ascending 

order according the their corresponding p-value. A Benjamini-Hochberg controlling 
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procedure [8] was then performed to decrease the likelihood of a false positive. Specifically, 

a critical value was calculated for each distention trial using the following formula.

Critical value = rank
171 ⋅ 0.05 (5)

If the measurements from one distention trial resulted in a p-value greater than its critical 

value, then that distention trial was disregarded from further analysis. The remaining 52 

distention trials were grouped according to the corresponding neuron ID and inspected for 

either an increase or decrease in the average firing rate before and during bladder distention. 

If all distention trials corresponding to the same neuron showed an increase in average firing 

rates, then the neuron was classified as Excited. If all distention trials corresponding to the 

same neuron showed a decrease in average firing rates, then the neuron was classified as 

Inhibited. If any neuron exhibited an increase in its average firing rate during one distention 

trial and a decrease in average firing rate during a different distention trial, then the neuron 

was not classified and it was excluded from our analyses.

3.4 Determining X and Y

The procedure above yielded the classification of 18 neurons, 6 of which were CYP-

sensitized and 12 of which were not. Firing rates from the 12 unsensitized neurons were 

used to estimate parameters defining random variable X. Of these 12 unsensitized neurons, 3 

were Left Inhibited, 2 were Left Excited, 2 were Right Inhibited, and 5 were Right Excited. 

The mean, standard deviation, minimum and maximum of all firing rates observed before 

bladder distention and during bladder distention for each of the four types was calculated 

and used to define random variable X (Table 3). Firing rates from the 6 CYP-sensitized 

neurons were used to determine random variable Y. Of these 6 CYP-sensitized neurons, 1 

was Left Inhibited, 3 were Left Excited, 1 was Right Inhibited, and 1 was Right Excited. The 

mean, standard deviation, minimum and maximum of all firing rates observed before 

bladder distention and during bladder distention for each of the four types was calculated 

and used to define random variable Y (Table 4)

4 Model Simulations and Results

4.1 Simulation of Acute and Chronic Bladder Pain

We provide an example of model output generated using a bladder distention history with no 

distention for the first 20 time steps (BDi = 0 for 1 ≤ i ≤ 20), bladder distention for the 

subsequent 230 time steps (BDi = 1 for 21 ≤ i ≤ 250), and no bladder distention for the 

remaining 40 time steps (BDi = 0 for 251 ≤ i ≤ 290). The model was simulated 100 times 

with this distention history. In each simulation, we assumed an equal proportion of excited 

and inhibited neurons in both the left and right hemispheres (i.e., p1 = p2 = 0.5). Figure 2A 

displays the distention history and Figure 2B displays the corresponding measures of pain 

outputted by the model. Blue lines show the maximum and minimum values of pain over 

each of the 100 simulations while the black line indicates the average value of bladder pain 

obtained from the 100 simulations.
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As seen in Figure 2, pain values range from −4000 to −3000 with an average value of −3475 

during the first 20 time steps when no bladder distention has occurred. These values are 

considered baseline values because they measure neural activity in the absence of pain. 

When the bladder is distended at time step 20, pain values immediately increase to an 

average of −83. This large increase in pain from the baseline value is interpreted as acute 

pain attributed to bladder distention. During the distention, all neurons accrue damage and 

become sensitized. Pain values increase to an average value of 1368 at time step 245. 

Finally, when the bladder is not distended at the end of the simulation, the average value of 

pain decreases to −867. This value is still substantially higher than the average baseline 

value of pain observed at beginning of the simulation and is therefore interpreted as chronic 

pain that exists when the bladder is not distended.

Figure 3 displays individual firing rates of inhibited neurons (blue circles) and excited 

neurons (red circles) in the left and right hemispheres at time steps 15, 30, 245, and 275 

from one of the 100 simulations. These images aid in understanding the asymmetric neural 

behavior in the CeA during different pain states. At all times displayed in Figure 3, the 

inhibited neurons in the left hemisphere are on average firing at a higher rate than inhibited 

neurons in the right hemisphere. This asymmetric behavior of inhibited neurons is most 

apparent during the pain-free state (time step 15). On the other hand, during long-term and 

chronic pain (time steps 245 and 275), the excited neurons in the right hemisphere are on 

average firing at a higher rate than excited neurons in the left hemisphere.

4.2 Sensitivity Analysis

Using the steps outlined in [43], a local sensitivity analysis was performed to quantify the 

impact of global variables p1 and p2 on pain values outputted by the model at critical time 

steps. Recall that variable p1 represents the proportion of neurons in the left hemisphere that 

are excited and p2 represents the proportion of neurons in the right hemisphere that are 

excited. In the sensitivity analysis, both variables were assumed to have a range of [0.4,0.6] 

with a baseline value of 0.5. To generate sensitivity values for p1, the model was simulated 

100 times for p1 valued at each the lower endpoint (R− = 0.4), baseline (R = 0.5), and upper 

endpoint (R+ = 0.6) while p2 remained at baseline value. Likewise, sensitivity values for p2 

were generated by simulating the model 100 times for p2 valued at each the lower endpoint 

(R− = 0.4), baseline (R = 0.5), and upper endpoint (R+ = 0.6) while p1 remained at baseline 

value. The sensitivity of pain with respect to each parameter was then calculated as 

S+ = P+ − P

R+ − R
 and S− = P− − P

R − R−  where P−, P, P+ are the average values of pain when the 

parameter is valued at R−, R, R+, respectively. Each simulation used the bladder distention 

history displayed in Figure 2A and pain was outputted at time steps 15, 30, 130, 245, and 

275.

Table 5 displays the sensitivity values for variables p1 and p2 at time steps 15, 30, 130, 245, 

and 275. Graphs displaying sensitivity values S+ and S− over time are presented in Figure 4. 

The positive values of S+ indicate an increase in pain when each variable is increased by 0.1 

and negative values of S− indicate a decrease in pain when each variable is decreased by 0.1. 

At time steps 15, 30, and 130, pain output is more sensitive to p1 than p2. This indicates that 
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the distribution of excited and inhibited neurons in the left hemisphere is most influential in 

pain modulation during the absence of pain and during short-term pain events. On the other 

hand, at times steps 245 and 275, pain output is more sensitive p2 than p1. This indicates that 

the distribution of excited and inhibited neurons in the right hemisphere is most influential in 

pain modulation during long-term pain events.

4.3 Model Predictions of Pain During Inhibition of the Left and Right CeA

In this section, we assess the model’s predictive capability by comparing pain values 

outputted by the model with the behavioral responses of mice during painful bladder 

distention. In previously published laboratory experiments, optogenetic inhibition of neural 

activity in one hemisphere only was achieved by applying light stimulation to neurons in 

either the left or right CeA to decrease neural activity [45]. Figure 5 displays the percent 

change in pain-like responses compared to the average baseline value obtained when no 

inhibition occured. These experiments showed that optogenetic inhibition of the left CeA 

caused an increased in pain-like responses to bladder distention in unsensitized female mice. 

In contrast, optogenetic inhibition of the right CeA did not change pain-like responses in 

unsensitized mice. Overall, these data suggest the left CeA has an anti-nociceptive output at 

baseline. When this anti-nociceptive output is inhibited (using optogenetics), bladder pain 

increases. On the other hand, the right CeA is likely inactive at baseline so inhibition does 

not change the spontaneous output of these neurons and the overall output is likely similar to 

what would be seen with no optogenetic manipulation.

In the model, these optogenetic experiments were replicated by inputting the bladder 

distention history seen in Figure 2 and outputting pain at time step 30. Time step 30 was 

chosen because it corresponds to the a time at which all neurons are unsensitized. To 

simulate the inhibition of neurons in one of the hemispheres, pain was calculated as the 

difference in the cumulative firing rates of all excited and all inhibited neurons in the other 

hemisphere only. During inhibition of the left hemisphere, pain was calculated as

Pi
R = ∑

loc = R
∑

res = Ex
f ri − ∑

loc = R
∑

res = In
f ri (6)

where i = 30. Similarly, during inhibition of the right hemisphere, pain was calculated as

Pi
L = ∑

loc = L
∑

res = Ex
f ri − ∑

loc = L
∑

res = In
f ri (7)

where i = 30.

The model reproduced results similar to those observed in the lab. Figure 6 displays 

measures of pain at time step 30 from 100 simulations of the model in which pain was 

calculated using both hemispheres (equation (4)), left hemisphere only (equation (7)), and 

right hemisphere only (equation (6)). Solid dots represent average values of pain with error 

bars indicating ±2 standard deviations. Inhibition of the left hemisphere resulted in a 
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statistically significantly higher pain output (449.1 ± 98.2) compared to pain values 

generated using both hemispheres (−68.7 ± 160.9), P < 0.001. On the other hand, pain values 

generated by the model during inhibition of the right hemisphere were significantly lower 

(−509.7 ± 121.8) than pain values generated using both hemispheres (−68.7 ± 160.9), P < 

0.001. The decrease in pain during inhibition of the right hemisphere suggests pain is 

reduced but still present. Pain elimination would be expected only when pain values are 

within baseline range of −4000 to −3000.

5 Discussion

Our agent-based model incorporates several important biological features including 

stochasticity and neural sensitization, but it does not yet include interaction between 

neurons. The central nucleus of the amygdala (CeA) is comprised of interconnected neurons 

that send and receive information with one another as well as other parts of the amygdala. In 

our current model, neurons act independently in response to painful bladder stimuli. This 

simplifying assumption is not biologically plausible, but it allowed us to focus on the 

function of each neuron and its role in pain, rather than focusing on the connectivity and 

interdependence of neurons. Enhancing the model by including more complex features, such 

as connectivity and the ability of neurons to transmit signals to one another, is feasible 

within the framework of our agent-based model and will be explored in future work.

Despite its simplicity, the model has the ability to simulate acute and chronic pain attributed 

to prolonged painful stimuli (Figure 2). The majority of mathematical and computational 

models of pain focus on acute pain and do not include features necessary for explaining 

chronic pain [2, 40]. In our model, chronic pain emerges from the sensitization of neurons. 

This is accomplished by assigning a damage variable to each neuron and using a damage 

accumulation model to track the neuron’s progress towards sensitization caused by long-

term bladder distention. As far as we know, our use of a damage accumulation model to 

account for neural sensitization is new. The model is formulated such that neural damage 

accrues during periods of bladder distention; however, damage is never repaired in the 

absence of distention. Accounting for damage repair is a simple modification to the model 

(for example see [12]), but requires additional biological assumptions. Further laboratory 

experiments are needed to determine if sensitization can wane over time and, if so, under 

what conditions.

Our agent-based model serves as a theoretical framework for assessing asymmetric neural 

activity in the left and right hemispheres of the CeA. Figure 3 illustrates the differences in 

firing rates of excited and inhibited neurons across left and right hemispheres at critical 

times during pain progression. A main advantage of using an agent-based model to describe 

neural behavior in the CeA is the ability to utilize mathematical tools, such as a sensitivity 

analysis, to quantify the importance of select parameters on model output. Our sensitivity 

analysis revealed that measures of pain are more sensitive to neural behavior in left 

hemisphere (as controlled by p1) during the absence or onset of pain whereas measures of 

pain were more sensitive to neural behavior in the right hemisphere (as controlled by p2) 

during long-term and chronic pain (Figure 4). Both the graphical displays of model output 
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and the sensitivity analysis provide a means of assessing asymmetric neural behavior related 

to pain that could not be inferred from the laboratory data alone.

The model’s ability to generate changes in pain similar to those observed in the laboratory 

during optogenetic inhibition experiments (described in Sadler et al. [45]) is encouraging 

and demonstrates potential for the model to aid future laboratory studies. Both the laboratory 

experiments (Figure 5) and model predictions (Figure 6) showed that inhibition of the left 

hemisphere in unsensitized mice leads to a significant increase in pain during bladder 

distention. This increase in pain suggests the left hemisphere of the CeA is responsible for 

anti-nociceptive output during painful bladder distention. On the other hand, the model 

predicted that inhibition of the right hemisphere in unsensitized mice would reduce, but not 

eliminate pain during bladder distention, suggesting that the right hemisphere of the CeA is 

responsible for pro-nociceptive output. The corresponding lab experiments showed no 

significant change in pain during optogenetic inhibition of the right hemisphere. While the 

model predictions and laboratory outcomes were not identical, both showed the persistence 

of pain during inhibition of the right CeA. Overall, the similarities in results from the lab 

experiments and corresponding model simulations support the continued use and refinement 

of the model.

6 Conclusions

We used preliminary laboratory data to develop and parameterize an agent-based model of 

neural activity in the central nucleus of the amygdala as it evolves in response to painful 

bladder stimuli. Given an individual’s history of bladder distention, the model simulates the 

firing of individual neurons and uses system-level output to measure bladder pain. The 

model is simple in design, but has the ability to simulate neural sensitization and the 

development of chronic pain over time. Model predictions of bladder pain were shown to be 

similar to those observed in independent laboratory experiments, thus validating the model’s 

potential for future use in pain prediction. The model and analyses presented in this paper 

complement ongoing laboratory studies to assess differences in neural behavior across the 

left and right hemispheres. Future work will aim to enhance the model with more complex 

and biologically plausible features, including connectivity of neurons.
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Figure 1: 
Example bladder distention history (Top) and corresponding damage level of a single neuron 

with latency period tL and sensitization period tS (Bottom). A neuron is unsensitized when 

damage is zero, sensitizing when damage is between zero and 100, and sensitized when 

damage reaches a max value of 100.
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Figure 2: 
Top: Bladder distention history inputted into the model. Bottom: Corresponding pain values 

outputted by model. Maximum, minimum, and average values were obtained from 100 

model simulations.
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Figure 3: 
Firing rates of individual neurons in the left and right hemispheres of the CeA.
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Figure 4: 
Sensitivity of pain with respect to global variables p1 and p2. Panel A illustrates changes in 

sensitivity value S+ over time. Panel B illustrates changes in sensitivity value S− over time.
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Figure 5: 
Measurements of pain recorded in mice during optogenetic inhibition of the left or right 

CeA. Optogenetic inhibition (with halorhodopsin) of the left CeA caused an increase in 

bladder pain suggesting an on-going anti-nociceptive output from the left CeA in naive mice. 

Left CeA effects are statistically significantly different from right CeA optogenetic 

inhibition (t-test P = 0.013; n = 8 − 9) and significantly different from baseline (onesample t-

test compared to hypothetical value of 100% (pink dotted line); P = 0.029). In contrast, 

optogenetic inhibition of the right CeA did not significantly change bladder pain-like effects 

compared to baseline (one sample t-test compared to hypothetical value of 100%; P = 0.53). 

Error bars represent mean ±1 standard error. Data adapted from Sadler et al. [45].
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Figure 6: 
Measurements of pain predicted by the model during inhibition of the left or right CeA. Pain 

values at time step 30 generated by 100 model simulations using neural activity during no 

inhibition of the CeA, inhibition of the right CeA, and inhibition of the left CeA. Circles 

represent average values and bars indicate ±2 standard deviations. Asterisks denote a 

significant change in average pain output during inhibition (P < 0.001).
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