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Abstract

Many scientific studies collect data where the response and predictor variables are both functions 

of time, location, or some other covariate. Understanding the relationship between these functional 

variables is a common goal in these studies. Motivated from two real-life examples, we present in 

this paper a function-on-function regression model that can be used to analyze such kind of 

functional data. Our estimator of the 2D coefficient function is the optimizer of a form of 

penalized least squares where the penalty enforces a certain level of smoothness on the estimator. 

Our first result is the Representer Theorem which states that the exact optimizer of the penalized 

least squares actually resides in a data-adaptive finite dimensional subspace although the 

optimization problem is defined on a function space of infinite dimensions. This theorem then 

allows us an easy incorporation of the Gaussian quadrature into the optimization of the penalized 

least squares, which can be carried out through standard numerical procedures. We also show that 

our estimator achieves the minimax convergence rate in mean prediction under the framework of 

function-on-function regression. Extensive simulation studies demonstrate the numerical 

advantages of our method over the existing ones, where a sparse functional data extension is also 

introduced. The proposed method is then applied to our motivating examples of the benchmark 

Canadian weather data and a histone regulation study.
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1 Introduction

Functional data have attracted much attention in the past decades (Ramsay & Silverman 

2005). Most of the existing literature has only considered the regression models of a scalar 

response against one or more functional predictors, possibly with some scalar predictors as 

well. Some of them considered a reproducing kernel Hilbert space framework. For example, 

Yuan & Cai (2010) provided a thorough theoretical analysis of the penalized functional 

linear regression model with a scalar response. The paper laid the foundation for several 

theoretical developments including the representer theorem and minimax convergence rates 

for prediction and estimation for penalized functional linear regression models. In a follow-
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up, Cai & Yuan (2012) showed that the minimax rate of convergence for the excess 

prediction risk is determined by both the covariance kernel and the reproducing kernel. Then 

they designed a data-driven roughness regularization predictor that can achieve the optimal 

convergence rate adaptively without the knowledge of the covariance kernel. Du & Wang 

(2014) extended the work of Yuan & Cai (2010) to the setting of a generalized functional 

linear model, where the scalar response comes from an exponential family distribution.

In contrast to these functional linear regression models with a scalar response, the model 

with a functional response Y (t) over a functional predictor X(s) has only been scarcely 

investigated (Yao et al. 2005b, Ramsay & Silverman 2005). Such data with functional 

responses and predictors are abundant in practice. We shall now present two motivating 

examples.

Example 1.1 Canadian Weather Data

Daily temperature and precipitation at 35 different locations in Canada averaged over 1960 

to 1994 were collected (Figure 1). The main interest is to use the daily temperature profile to 

predict the daily precipitation profile for a location in Canada.

Example 1.2 Histone Regulation Data

Extensive researches have been shown that histone variants, i.e. histones with structural 

changes compared to their primary sequence, play an important role in the regulation of 

chromatin metabolism and gene activity (Ausió 2006). An ultra-high throughput time course 

experiment was conducted to study the regulation mechanism during heat stress in 

Arabidopsis thaliana. The genome-wide histone variant distribution was measured by ChIP 

sequencing (ChIP-seq) (Johnson et al. 2007) experiments. We computed histone levels over 

350 base pairs (bp) on genomes from the ChIP-seq data, see left panel in Figure 2. The RNA 

sequencing (RNA-seq) (Wang et al. 2009) experiments measured the expression levels over 

seven time points within 24 hours, see right panel in Figure 2. Of primary interest is to study 

the regulation mechanism between gene expression levels over time domain and histone 

levels over spatial domain.

Motivated by the examples, we now present the statistical model. Let {(X(s), Y(t)) : s ϵ Ix, t 
ϵ Iy} be two random processes defined respectively on Ix,Iy ⊆ ℝ. Suppose n independent 

copies of (X, Y) are observed: (Xi(s), Yi(t)), i = 1, . . . n. The functional linear regression 

model of interest is

Y i(t) = α(t) + ∫
Ix

β(t, s)Xi(s)ds + ϵi(t), t ∈ Iy, (1)

where α(·) : Iy → ℝ is the intercept function, β(·, ·) : Iy ×Ix → ℝ is a bivariate coefficient 

function, and ϵi(t) independent of Xi(s), are i.i.d. random error functions with 𝔼ϵi(t) = 0 and 

𝔼 ϵi(t) 2
2 < ∞. Here || · ||2 denotes the L2-norm. In Example 1.1, Yi(t) and Xi(t) represent the 

daily precipitation and temperature at station i. In Example 1.2, the expression levels of gene 
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i over seven time points, Yi(t), from RNA-seq is used as the functional response. The histone 

levels of gene i over 350 base pairs (bp), Xi(s), from ChIP-seq is used as the functional 

predictor.

At a first look, model (1) might give the (wrong) impression of being an easy extension from 

the model with a scalar response, with the latter obtained from (1) by removing all the t 
notation. However, the coefficient function in the scalar response case is univariate and thus 

can be easily estimated by most off-the-shelf smoothing methods. When extended to 

estimating a bivariate coefficient function β(t, s) in (1), many of these smoothing methods 

may encounter major numerical and/or theoretical difficulties. This partly explains the much 

less abundance of research in this direction.

Some exceptions though are reviewed below. Cuevas et al. (2002) considered a fixed design 

case, a different setting from (1) with Yi(t) and Xi(s) represented and analyzed as sequences. 

Nonetheless they provided many motivating applications in neuroscience, signal 

transmission, pharmacology, and chemometrics, where (1) can apply. The historical 

functional linear model in Malfait & Ramsay (2003) was among the first to study regression 

of a response functional variable over a predictor functional variable, or more precisely, the 

history of the predictor function. Ferraty et al. (2011) proposed a simple extension of the 

classical Nadaraya-Watson estimator to the functional case and derived its convergence 

rates. They provided no numerical results on the empirical performance of their kernel 

estimator. Benatia et al. (2015) extended ridge regression to the functional setting. However, 

their estimation relied on an empirical estimate of the covariance process of predictor 

functions. Theoretically sound as it is, this covariance process estimate is generally not 

reliable in practice. Consequently, their coefficient surface estimates suffered as shown in 

their simulation plots. Meyer et al. (2015) proposed a Bayesian function-on-function 

regression model for multi-level functional data, where the basis expansions of functional 

parameters were regularized by basis-space prior distributions and a random effect function 

was introduced to incorporate the with-subject correlation between functional observations.

A popular approach has been the functional principal component analysis (FPCA) as in Yao 

et al. (2005b) and Crambes & Mas (2013). The approach starts with a basis representation of 

β(t, s) in terms of the eigenfunctions in the Karhunen-Loève expansions of Y (t) and X(s). 

Since this representation has infinitely many terms, it is truncated at certain point to obtain 

an estimable basis expansion of β(t, s). Yao et al. (2005b) studied a general data setting 

where Y (t) and X(s) are only sparsely observed at some random points. They derived the 

consistency and proposed asymptotic point-wise confidence bands for predicting response 

trajectories. Crambes & Mas (2013) furthered the theoretical investigation of the FPCA 

approach by providing a minimax optimal rates in terms of the mean square prediction error. 

However, the FPCA approach has a couple of critical drawbacks. Firstly, β(t, s) is a 

statistical quantity unrelated to Y (t) or X(s). Hence the leading eigenfunctions in the 

truncated Karhunen-Loève expansions of Y (t) and X(s) may not be an effective basis for 

representing β(t, s). See, e.g., Cai & Yuan (2012) and Du & Wang (2014) for some scalar-

response examples where the FPCA approach breaks down when the aforementioned 

situation happens. Secondly, the truncation point is integer-valued and thus only has a 

discrete control on the model complexity. This puts it at disadvantage against the roughness 
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penalty regularization approach, which offers a continuous control via a positive and real-

valued smoothing parameter (Ramsay & Silverman 2005, Chapter 5).

In this paper, we consider a penalized function-on-function regression approach to 

estimating the bivariate coefficient function β(t, s). There have been a few recent 

developments in the direction of penalized function-on-function regression. Lian (2015) 

studied the convergence rates of the function-on-function regression model under a 

reproducing kernel Hilbert space framework. Although his model resembled model (1), he 

developed everything with the variable t fixed and did not enforce any regularization on the t 
direction. Firstly, this lack of t-regularization can be problematic since this leaves the noisy 

errors on the t direction completely uncontrolled and can result in an β(s, t) estimate that is 

very rough on the t direction. Secondly, this simplification of fixing t essentially reduces the 

problem to a functional linear model with a scalar response and thus makes all the results in 

Yuan & Cai (2010) directly transferrable even without calling on any new proofs. In the R 

package fda, Ramsay and his collaborators have implemented a version of penalized B-

spline estimation of β(t, s) with a fixed smoothing parameter. Ivanescu et al. (2015) 

considered a penalized function-on-function regression model where the coefficient 

functions were represented by expansions into some basis system such as tensor cubic B-

splines. Quadratic penalties on the expansion coefficients were used to control the 

smoothness of the estimates. This work provided a nice multiple-predictor-function 

extension to the function-on-function regression model in the fda package. Scheipl & 

Greven (2016) studied the identifiability issue in these penalized function-on-function 

regression models. However, this penalized B-spline approach has several well-known 

drawbacks. First, it is difficult to show any theoretical optimality such as the minimax risk of 

mean prediction in Cai & Yuan (2012). So its theoretical soundness is hard to justify. 

Moreover, the B-spline expansion is only an approximate solution to the optimization of the 

penalized least squares score. Hence the penalized B-spline estimate is not numerically 

optimal from the beginning either. These drawbacks can have negative impacts on the 

numerical performance as we shall see from the simulation results in Section 4.

The penalized function-on-function regression method proposed in this paper obtains its 

estimator of β(t, s) through the minimization of penalized least squares on a reproducing 

kernel Hilbert space that is naturally associated with the roughness penalty. Such a natural 

formulation through a reproducing kernel Hilbert space offers several advantages comparing 

with the existing penalized function-on-function regression methods. Firstly, it allows us to 

establish a Representer Theorem which states that, although the optimization of the 

penalized least squares is defined on an infinite dimensional function space, its solution 

actually resides in a data-adaptive finite dimensional subspace. This result guarantees an 

exact solution when the optimization is carried out on this finite dimensional subspace. This 

result itself is a nontrivial generalization of the Representer Theorems in the scenarios of 

nonparametric smooth regression model (Wahba 1990) and the penalized functional 

regression model with a scalar response (Yuan & Cai 2010). Based on the Representer 

Theorem, we propose an estimation algorithm which uses penalized least squares and 

Gaussian quadrature with the Gauss-Legendre rule to estimate the bivariate coefficient 

function. The smoothing parameter is selected by the generalized cross validation (GCV) 

method. Secondly, the reproducing kernel Hilbert space framework allows us to show that 
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our estimator has the optimal rate of mean prediction since it achieves the minimax 

convergence rate in terms of the excess risk. This generalizes the results in Cai & Yuan 

(2012) and Du & Wang (2014) for functional linear regression with a scalar response to the 

functional response scenario. In the numerical study, we have also considered the problem 

with sparsely sampled data. Particularly, we introduce an extra pre-smoothing step before 

applying the proposed penalized functional regression model. The pre-smoothing step 

implements the principal-component-analysis-through-expectation (PACE) method in Yao et 

al. (2005a). Our extensive simulation studies demonstrate the numerical advantages of our 

method over the existing ones. In summary, our method has the following distinguishing 

features: (i) it makes no structural dependence assumptions of β(t, s) over the predictor and 

response processes; (ii) the Representer Theorem guarantees an exact solution instead of an 

approximation to the optimization of the penalized score; (iii) benefited from the 

Representer Theorem, we develop a numerically reliable algorithm that has sound 

performance in simulations; (iv) we show theoretically the estimator achieves the optimal 

minimax convergence rate in mean prediction.

The rest of the paper is organized as follows. In Section 2, we first derive the Representer 

Theorem showing that the solution of the minimization of penalized least squares can be 

found in a finite-dimension subspace. In addition, an easily implementable estimation 

algorithm is considered in the Section 2. In Section 3, we prove that our method has the 

optimal rate of mean prediction. Numerical experiments are reported in Section 4, where we 

compare our method with the functional linear regression models in Ramsay & Silverman 

(2005) and Yao et al. (2005b) in terms of prediction accuracy. Two real data examples, the 

Canadian weather data, and the histone regulation data are analyzed in Section 5. Discussion 

in Section 6 concludes the paper. Proofs of the theorems are collected in Supplementary 

Material.

2 Penalized Functional Linear Regression Method

We first introduce a simplification to model (1). Since model (1) implies that

Yi(t) − 𝔼Yi(t) = ∫Ix
β(t, s) Xi(s) − 𝔼Xi(s) ds + ϵi(t), t ∈ Iy,

we may, for simplicity, only consider X and Y to be centered, i.e., X = Y = 0. Thus, the 

functional linear regression model takes the form of

Y i(t) = ∫
Ix

β(t, s)Xi(s)ds + ϵi(t), t ∈ Iy . (2)

2.1 The Representer Theorem

Assume that the unknown β resides in a reproducing kernel Hilbert space ℋ(K) with the 

reproducing kernel K : I ×I → ℝ, where I = Iy ×Ix. The estimate βn can be obtained by 

minimizing the following penalized least squares functional
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1
n ∑

i = 1

n ∫
Iy

Y i(t) − ∫
Ix

β(t, s)Xi(s)ds
2
dt + λJ(β) (3)

with respect to β ∈ ℋ(K), where the sum of integrated squared errors represents the 

goodness-of-fit, J is a roughness penalty on β, and λ > 0 is the smoothing parameter 

balancing the trade-off. When β is a univariate function, a common example for J is J(β) = ∫
{β”(t)}2dt, the integral of the squared curvature of β. This integral takes a large value when 

β is rough and has high curvatures. When β is a bivariate function as considered in this 

paper, J is often a combination of multiple integrals, each representing the roughness of a 

certain part of β; see Example 2.1. We now establish the Representer Theorem stating that 

βn actually resides in a finite dimensional subspace of ℋ(K). This result generalizes 

Theorem 1 in Yuan & Cai (2010) and facilitates the computation by reducing an infinite 

dimensional optimization problem to a finite dimensional one.

Note that the penalty functional J is a squared semi-norm on ℋ(K). Its null space ℋ0 = {β ∈ 
ℋ(K) : J(β) = 0} is a finite-dimensional linear subspace of ℋ(K). Denote by ℋ1 its 

orthogonal complement in ℋ(K) such that ℋ(K) = ℋ0 ⊕ ℋ1, the tensor sum or direct sum 
of ℋ0 and ℋ1. That is, for any β ∈ ℋ(K), there exists a unique decomposition β = β0 + β1 

where β0 ∈ ℋ0 and β1 ∈ ℋ1. Let K0(·,·) and K1(·,·) be the corresponding reproducing 

kernels of ℋ0 and ℋ1. Then K0 and K1 are both nonnegative definite operators on L2, and K 

= K0 +K1. In fact the penalty term J(β) = β
K1

2 = β1 K1
2 . By the theory of reproducing 

kernel Hilbert spaces, ℋ(K) has a tensor product decomposition ℋ(K) = ℋy(Ky) ⊗ ℋx(Kx). 

That is, given the respective bases {f1,f2,...,} and {g1,g2,...,} of ℋy(Ky) and ℋx(Kx) any 

function β(t, s) ∈ ℋ(K) can be uniquely written as β(t, s) = ∑ jc j f j(t)g j(s) for some 

coefficients cj. Here ℋy(Ky) is the reproducing kernel Hilbert space with a reproducing 

kernel Ky : Iy × Iy → ℝ, and ℋx(Kx) is the reproducing kernel Hilbert space with a 

reproducing kernel Kx : Ix ×Ix → ℝ. For the reproducing kernels, we have K(t,s) = 

Ky(t)Kx(s). Note that the functions in ℋy(Ky) and ℋx(Kx) are univariate and defined 

respectively on Iy and Ix. Similar to the decomposition of ℋ and K, we have the tensor sum 

decompositions of the marginal subspaces ℋy(Ky) = ℋ0y ⊕ ℋ1y and ℋx(Kx) = ℋ0x ⊕ 
ℋ1x, and the orthogonal decompositions of the marginal reproducing kernels Ky = K0y +K1y 

and Kx = K0x +K1x. Here K∗ is a reproducing kernel on ℋ∗ with ∗ running through the 

index set {0y,1y,0x,1x}.

Upon piecing the marginal decomposition parts back to the tensor product space, we obtain 

ℋ0 = ℋ0y⊗ℋ0x and ℋ1 = (ℋ0y⊗ℋ1x)⊕(ℋ1y⊗ℋ0x)⊕(ℋ1y⊗ℋ1x). Correspondingly, the 

reproducing kernels satisfy that

K0 t1, s1 , t2, s2 = K0y t1, t2 K0x s1, s2 ,
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K1 t1, s1 , t2, s2 = K0y t1, t2 K1x s1, s2 + K1y t1, t2 K0x s1, s2 + K1y t1, t2 K1x s1, s2 .

Let Ny = dim(ℋ0y) and Nx = dim(ℋ0x). Denote by {ψk,y : k = 1,...,Ny} and {ψl,x : l = 

1,...,Nx} respectively the basis functions of ℋ0y and ℋ0x. With some abuse of notation, 

define K1yg ( ⋅ ) = ∫
Iy

K1y( ⋅ , t)g(t)dt and K1x f ( ⋅ ) = ∫
Ix

K1x( ⋅ , s) f (s)ds. Now we can state 

the Representer Theorem as follows with its proof collected in the Supplementary Material.

Theorem 2.1 Let βn be the minimizer of (3) in H(K). Then βn resides in the subspace of 

functions of the form

β(t, s) = ∑
k = 1

Ny
dk, βy

ψk, y(t) + ∑
i = 1

n
ci, βy

K1yY i (t) ∑
l = 1

Nx
dl, βx

ψ l, x(s) + ∑
j = 1

n
c j, βx

K1xX j (s)

= dβy
⊤ ψ y(t) + cβy

⊤ K1yY (t) dβx
⊤ ψ x(s) + cβx

⊤ K1xX (s) ,

(4)

where dβy
= d1, βy

, …, dNy, βy

⊤
, cβy

= c1, βy
, …, cn, βy

⊤
, dβx

= d1, βx
, …, dNx, βx

⊤
 and 

cβx
= c1, βx

, …, cn, βx

⊤
 are some coefficient vectors, and ψx,ψy,K1yY and K1×X are vectors 

of functions.

For the purpose of illustration, we give a detailed example below.

Example 2.1 Consider the case of tensor product cubic splines with Iy = Ix = [0,1]. The 

marginal spaces ℋy Ky = ℋx Kx = g:∫0

1
g′′ 2 < ∞  with the inner product

f , g ℋy
= ∫0

1
f∫0

1
g + ∫0

1
f ′∫0

1
g′ + ∫0

1
f ′′g′′dt .

The marginal space ℋy(Ky) can be further decomposed into the tensor sum of ℋ0y = {g :g” 

= 0} and ℋ1y = g:∫0

1
g = ∫0

1
g′ = 0,∫0

1
g′′ 2 < ∞ . The reproducing kernel Ky is the 

orthogonal sum of K0y(t1,t2) = 1+r1(t1)r1(t2) and K1y(t1,t2) = r2(t1)r2(t2)−r4(|t1 −t2|),where 
rν(t) = Bν(t)/ν! is a scaled version of the Bernoulli polynomial Bν. The space ℋ0y has a 
dimension of Ny = 2 and a set of basis functions {1,r1(t)}.
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The function space ℋ(K) is defined as ℋ(K) = {β : J(β) < ∞} with the reproducing kernel 
K(t,s) = Ky(t)Kx(s) and the penalty functional

J(β) = ∫0
1 ∫0

1 ∂2

∂s2 β(t, s)dt
2

+ ∫0
1 ∂3

∂t ∂s2 β(t, s)dt
2

ds

+ ∫0
1 ∫0

1 ∂2

∂t2
β(t, s)ds

2
+ ∫0

1 ∂3

∂t2∂s
β(t, s)ds

2
dt + ∫0

1∫0
1 ∂4

∂t2∂s2 β(t, s)
2
dtds

Intuitively, these five integrals represent respectively the deviations of the function β from 
being linear in s, being linear in s and constant in t, being linear in t, being constant in s and 
linear in t, and being linear in both s and t. And we have ℋ(K) = ℋy(Ky) ⊗ ℋx(Kx) and K = 

KyKx; see, e.g., Chapter 2 of Gu (2013).

2.2 Estimation Algorithm

To introduce the computational algorithm, we first need some simplification of notation. Let 

N = NyNx and L = n(Ny + Nx + n). We rewrite the functions spanning the subspace in 

Theorem 2.1 as ψ1(t,s) = ψ1,y(t)ψ1,x(s), ···, ψN(t, s) = ψNy,y(t)ψNx,x(s) and ξ1(t, s) = ψ1,y(t)
(K1xX1)(s), ···, ξL(t, s) = (K1yYn)(t)(K1xXn)(s). Thus a function in this subspace has the 

form β(t, s) = dT ψ(t, s) + cT ξ(t, s) for some coefficient vectors d, c and vectors of functions 

ψ(t,s), ξ(t,s). To solve (3), we choose Gaussian quadrature with the Gauss-Legendre rule to 

calculate the integrals. Consider the Gaussian quadrature evaluation of an integral on Iy with 

knots {t1,··· ,tT } and weights {α1,··· ,αT } such that ∫
Iy

f (t)dt = ∑ j = 1
T α j f t j . Let W be the 

diagonal matrix with α1,··· ,αT repeating n times on the diagonal. Then the estimation of β 
in (3) reduces to the minimization of

Yw − Swd − Rwc T Yw − Swd − Rwc + nλcTQc (5)

with respect to d and c, where Yw = W1/2Y with Y = Y1 t1 , …, Y1 tT , …, Yn t1 , …, Yn tT
⊤, 

Sw = W1/2S with S being an nT×N matrix with the ((i−1)T+j,ν)th entry ∫
Ix

ψν t j, s Xi(s)ds, 

Rw = W1/2R with R being an nT×L matrix with the ((i−1)T+j,k)th entry ∫
Ix

ξk t j, s Xi(s)ds, 

and Q is a L×L matrix with the (i,j)th entry ξi, ξ j ℋ1
. Let 

Qx = ∫0

1∫0

1
Xi(u)K(u, v)X j(v)dudv

i, j = 1

n
, Qy = ∫0

1∫0

1
Y i(u)K(u, v)Y j(v)dudv

i, j = 1

n
, and Qxy 

= Qx ⊕Qy, where ⊕ denotes the Kro-necker product of two matrices. Then we have Q = 

diag(Qx,Qx,Qy,Qy,Qxy).

We then utilize standard numerical linear algebra procedures, such as the Cholesky 

decomposition with pivoting and forward and back substitutions, to calculate c and d in (5) 
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(Gu 2013, Section 3.5). To choose the smoothing parameter λ in (5), a modified Generalized 

Cross-Validation (GCV) score (Wahba & Craven 1979),

V(λ) =
(nT)−1Yw

T(I − A(λ))2Yw

(nT)−1tr(I − αA(λ)) 2 (6)

is implemented, where α > 1 is a fudge factor curbing undersmoothing (Kim & Gu 2004) 

and A(λ) is the smoothing matrix bridging the prediction Yw and the observation Yw as 

Yw = A(λ)Yw, similar to the hat matrix in a general linear model.

3 Optimal Mean Prediction Risk

We are interested in the estimation of coefficient function β and mean prediction, that is, to 

recover the functional ηβ(X, ⋅ ) = ∫
Ix

β( ⋅ , s) X(s)ds based on the training sample (Xi,Yi), i = 

1,...,n. Let βn(t, s) be an estimate of β(t, s). Suppose (Xn+1,Yn+1) is a new observation that 

has the same distribution as and is also independent of (Xi,Yi), i = 1,...,n. Then the 

prediction accuracy can be naturally measured by the excess risk

ℜn βn = ∫Iy
𝔼* Yn + 1(t) − ∫Ix

βn(t, s)Xn + 1(s)ds
2

− 𝔼* Yn + 1(t) − ∫Ix
β(t, s)Xn + 1(s)ds

2
dt

= ∫Iy
𝔼* η

βn
Xn + 1, t − ηβ Xn + 1, t

2
dt

where ∗ represents the expectation taken over (Xn+1,Yn+1) only. We shall study the 

convergence rate of ℜn as the sample size n increases.

This section collects two theorems whose combination indicates that our estimator achieves 

the optimal minimax convergence rate in mean prediction. We first establish the minimax 

lower bound for the convergence rate of the excess risk ℜn. There is a one-to-one 

relationship between K and ℋ(K) which is a linear functional space endowed with an inner 

product 〈·,·〉ℋ(K) such that

β(t, s) = K((t, s), ⋅ ), β ℋ(K),  for any β ∈ ℋ(K) .

The kernel K can also be treated as an integral operator such that

K(β)( ⋅ ) = K((t, s), ⋅ ), β L2
= ∬I

K((t, s), ⋅ )β(t, s)dtds .

It follows from the spectral theorem that there exist a set of orthonormal eigenfunctions {ζk : 

k ≥ 1} and a sequence of eigenvalues κ1 ≥ κ2 ≥ ··· > 0 such that
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K t1, s1 , t2, s2 = ∑
k = 1

∞
κkζk t1, s1 ζk t2, s2 , K ζk = κkζk, k = 1, 2, … .

Denote K1/2 (t1, s1), (t2, s2)) = ∑k = 1
∞ κk

1/2ζk t1, s1 ζk t2, s2 . Let C(t, s) = cov (X(t), X(s)) be 

the covariance kernel of X. Define a new kernel Π such that

Π t1, s1 , t2, s2 = ∭
Ix × Ix × Iy

K1/2 t1, s1 , (z, u) C(u, v)K1/2 t2, s2 , (z, v) dudvdz . (7)

Let ρ1 ≥ ρ2 ≥ ··· > 0 be the eigenvalues of Π and {øj : j ≥ 1} be the corresponding 

eigenfunctions. Therefore,

Π t1, s1 , t2, s2 = ∑
k = 1

∞
ρkϕk t1, s1 ϕk t2, s2 , ∀ t1, s1 , t2, s2 ∈ Iy × Ix .

Theorem 3.1 Assume that for any β ∈ L2([0,1]2)

∫ 𝔼 ∫ β(t, s)X(s)dt
4
dt ≤ c∫ 𝔼 ∫ β(t, s)X(s)ds

2 2
dt (8)

for a positive constant c. Suppose that the eigenvalues {ρk : k ≥ 1} of the kernel Π in (7) 

satisfy ρk ≈ k−2r for some constant 0 < r < ∞. Then,

lim
A ∞

lim
n ∞

sup
β ∈ ℋ(K)

ℙ ℜn ≥ An
− 2r

2r + 1 = 0, (9)

when λ is of order n−2r/(2r+1).

Theorem 3.1 indicates that the convergence rate is determined by the decay rate of the 

eigenvalues of this new operator Π, which is jointly determined by both reproducing kernel 

K and the covariance kernel C as well as the alignment between K and C in a complicated 

way. This result has not been reported in the literature before. A closely related result is from 

Yuan & Cai (2010) who studied an optimal prediction risk for functional linear models, 

where the optimal rate depends on the decay rate of the eigenvalues of K1/2CK1/2. It is 

interesting to see, on the other hand, whether the convergence rate of βn in Theorem 3.1 is 

optimal. In the following, we derive a minimax lower bound for the risk.

Theorem 3.2 Let r be as in Theorem 3.1. Then the excess prediction risk satisfies
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lim
c 0

lim
n ∞

inf
η

sup
β ∈ ℋ(K)

ℙ ℜn ≥ cn
− 2r

2r + 1 = 1, (10)

where the infimum is taken over all possible predictors ñ based on {(Xi,Yi) : i = 1,...,n}.

Theorem 3.2 shows that the minimax lower bound of the convergence rate for the prediction 

risk is n−2r/2r+1, which is determined by r and the decay rate of the eigenvalues of Π. We 

have shown that this rate is achieved by our penalized estimator, and therefore our estimator 

is rate-optimal.

4 Numerical Experiments

We compared the proposed optimal penalized function-on-function regression (OPFFR) 

method with existing function-on-function linear regression models under two different 

designs. In a dense design, each curve was densely sampled at regularly-spaced common 

time points. We compared the OPFFR with two existing models. In a sparse design, each 

curve was irregularly and sparsely sampled at possibly different time points. We extended 

the OPFFR to this design by adding an extra pre-smoothing step and compared it with the 

FPCA model. In the first model (Ramsay & Silverman 2005) for comparison, the coefficient 

function is estimated by penalizing its B-spline basis function expansion. This approach 

does not have the optimal mean prediction property and partially implemented in the fda 

package of R (linmod function) for the case of a fixed smoothing parameter. We shall add a 

search on the grid 10(−2:0.4:2) for smoothing parameter selection to their implementation and 

denote this augmented approach by FDA. The coefficient function is represented in terms of 

10 basis functions each for the t and s directions. The second model for comparison was the 

functional principal component analysis (hence denoted by FPCA) approach proposed by 

Yao et al. (2005b). The coefficient function is represented in terms of the leading functional 

principal components. This is implemented in the MatLab package PACE (FPCreg function) 

maintained by the UC-Davis research group. The Akaike information criterion (AIC) and 

fraction of variance explained (FVE) criterion were used to select the number of principal 

components for predictor and response respectively. The cutoff value for FVE was 0.9. The 

‘regular’ parameter was set to 2 for the dense design and 0 for the sparse design. No binning 

was performed.

4.1 Simulation Study

4.1.1 Dense Design—We simulated data according to model (2) with three scenarios.

• Scenario 1: The predictor functions are Xi(s) = ∑k = 1
50 ( − 1)(k + 1)k−1Zikϑ1(s, k), 

where Zik is from the uniform distribution U( − 3, 3), and ϑ1(s,k) = 1 if k = 1 

and 2cos((k − 1)πs) otherwise. The coefficient function β(t,s) = e−(t+s) is the 

exponential function of t and s.
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• Scenario 2: The predictor functions Xi(s) are the same as those in Scenario 1 and 

the coefficient function β(t, s) = 4∑k = 1
50 ( − 1)(k + 1)k−2ϑ1(t, k)ϑ1(s, k).

• Scenario 3: The predictor functions Xi(s) are generated as 

Xi(s) = ∑k = 1
3 ( − 1)(k + 1)k−1Zikϑ2(s, k), where ϑ2(s,k) = 1 if k = 3 and 2cos(kπs)

otherwise. The coefficient function β(t, s) = ∑k = 1
3 ( − 1)(k + 1)k−2ϑ2(t, k)ϑ2(s, k).

For each simulation scenario, we generated n = 30 samples, each with 20 time points on the 

interval (0,1). The random errors ϵ(t) were from a normal distribution with a constant 

variance σ2. The value of σ was adjusted to deliver three levels of signal-to-noise ratio 

(SNR= 0.5, 5, and 10) in each scenario. To assess the mean prediction accuracy, we 

generated an additional n∗ = 30 predictor curves X and computed the mean integrated 

squared error MISE = 1/n*∑i = 1
n* ∫0

1
(η

β
(Xi, t) − ηβ(Xi, t))2dt, where βn was the estimator 

obtained from the training data. We had 100 runs for each combination of scenario and SNR.

We applied the OPFFR, FDA and FPCA methods to the simulated data sets. Figure 3 

displayed the perspective plots of the true coefficient functions in the three scenarios as well 

as their respective estimates for a single run with SNR= 10. In the first two scenarios, both 

OPFFR and FDA did a decent job in recovering the true coefficient function although the 

FDA estimates were slightly oversmoothed. In both scenarios the FPCA estimates clearly 

suffered since the true coefficient function could not be effectively represented by the 

eigenfunctions of the predictor processes.

Figure 4 gave the summary reports of performances in terms of MISEs based on 100 runs. 

When the signal to noise ratio is low, the OPFFR and FDA approaches had comparable 

performances. But when the signal to noise ratio increases, OPFFR showed clear advantage 

against FDA. The FPCA method failed to deliver competitive performance against the other 

two methods in all the settings due to its restrictive requirement of the effective 

representation of the coefficient function.

4.1.2 Sparse Design—In this section, we compared the performance of the proposed 

OPFFR method and the FPCA method regarding prediction error on sparsely, irregularly, 

and noisily observed functional data. To extend our method to sparsely and noisily observed 

data, we first applied the principal-component-analysis-through-conditional-expectation 

(PACE) method in Yao et al. (2005a) to the sparse functional data. Then we obtained a dense 

version of functional data by computing the PACE-fitted response and predictor functions at 

50 selected time points for each curve. We applied the OPFFR method to these densely 

generated data and called this sparse extension to the OPFFR by the OPFFR-S method. The 

original OPFFR method, FPCA and OPFFR-S methods were all applied to the simulated 

data for comparison.

We first generated n = 200 samples for both response and predictor functions in Scenario 3, 

each with 50 time points on interval (0,1). To obtain different sparsity levels, we then 

randomly chose 5, 10 and 15 time points from the 50 ones for each curve independently. 
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Normally distributed random errors were added to functional response and predictor with the 

SNR set to 10 in generating each pair of noisy response and predictor. The mean integrated 

squared error (MISE) was calculated based on additional n∗ = 50 predictor curves without 

random noises.

Figure 5 displayed the perspective plots of the true coefficient functions in the sparse 

scenario as well as their respective estimates for a single run with 10 sampled time points 

per curve. The OPFFR-S method and FPCA performed well in estimating the coefficient 

function. The estimate recovered by the original OPFFR method was a little oversmoothed. 

In Figure 6, the performance in terms of MISEs based on 100 runs was compared. The 

OPFFR-S method always had the best prediction performances at all the three sparsity 

levels. When the sparsity level was high (5 time points per curve), the original OPFFR 

method had a worse prediction performance than the FPCA. However, its prediction 

performance quickly picked up as the data became denser. When the sparsity level was 15 

time points per curve, it actually delivered a better prediction performance than the FPCA. 

Such an interesting phenomenon was referred to as the “phase transistion” (Cai & Yuan 

2011, Wang et al. 2016).

5 Real Data Examples

We analyzed two real example in this section. We showed that our method had the numerical 

advantage over other approaches in terms of prediction accuracy in the analysis of the 

Canadian weather and histone regulation data. The results in the Canadian weather data, a 

dense design case, and the histone regulation data, a sparse design case, echoed with our 

findings in the simulation study. The smoothing parameters used in FDA for Canadian 

weather data were taken from the example codes in Ramsay et al. (2009) and seven basis 

functions were used for the t and s directions respectively. In the histone regulation data we 

selected the smoothing parameter for FDA by a grid search on 10(−5:1:5) and used six basis 

functions each for the t and s directions. For the FPCA method, the ‘regular’ parameter was 

set to 2 for the Canadian weather data and 0 for the histone regulation data. The other 

parameters for FDA and FPCA approaches were the same as those used in the simulation 

study.

5.1 Canadian Weather Data

We first look at the Canadian weather data (Ramsay & Silverman 2005), a benchmark data 

set in functional data analysis. The main goal is to predict the log daily precipitation profile 

based on the daily temperature profile for a geographic location in Canada. The daily 

temperature and precipitation data averaged over 1960 to 1994 were recorded at 35 locations 

in Canada. We compared OPFFR with FDA and FPCA in terms of prediction performance 

defined by integrated squared error (ISE)∫0

365
Y i(t) − η

β−i
Xi, t

2
dt, where i = 1,··· ,35 and 

β−i was estimated by the dataset without the ith observation. For the convenience of 

calculation, we computed Y i(t) − η
β−i

Xi, t
2

2 at a grid of values t as the surrogate of ISE. 

Since the findings through the coefficient function estimates were similar to those in Ramsay 

Sun et al. Page 13

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



& Silverman (2005), we only focused on the comparison of prediction performance. The 

summary in Table 1 clearly showed the numerical advantage of the proposed OPFFR 

method over the FDA and FPCA methods.

5.2 Histone Regulation Data

Nucleosomes, the basic units of DNA packaging in eukaryotic cells, consist of eight histone 

protein cores including two copies of H2A, H2B, H3, and H4. Besides the role as DNA 

scaffold, histones provide a complex regulatory platform for regulating gene activity 

(Wollmann et al. 2012). Focused study of the interaction between histones and gene activity 

may reveal how the organisms respond to the environmental changes. There are multiple 

sequence variants of histone proteins, which have some amino acid changes compared to 

their primary sequence, coexist in the same nucleus. For instance, in both plants and 

animals, there exist three variants of H3, the H3.1, the H3.3, and the centromere-specific 

CENP-A (CENH3) (Deal & Henikoff 2011). Each variant shows distinct regulatory 

mechanisms over gene expression.

In this paper, an ultra-high throughput time course study was conducted to explore the 

interaction mechanism between the gene activity and histone variant, H3.3, during heat 

stress in Arabidopsis thaliana. In this study, the 12-day-old Arabidopsis seedlings that had 

been grown at 22 ¼C were subject to heat stress of 38 C, and plants were harvested at 7 

different time points within 24 hours for RNA sequencing (RNA-seq) (Wang et al. 2009) and 

ChIP sequencing (ChIP-seq) (Johnson et al. 2007) experiments. We were interested in the 

genes responding to the heat shock, therefore 160 genes in response to heat (GO:0006951) 

pathway (Ashburner et al. 2000) were chosen. We selected 55 genes with the fold change 

above 0.5 at at least two consecutive time points in RNA-seq data. In ChIP-seq experiments, 

we calculated the mean of normalized read counts by taking the average of normalized read 

counts over seven time points for the region of 350 base pairs (bp) in the downstream of 

transcription start sites (TSS) of selected 55 genes. The normalized read counts over 350 bp 

from ChIP-seq and the normalized fragments per kilobase of transcript per million mapped 

reads (FPKM) (Trapnell et al. 2010) over seven time points from RNA-seq were used to 

measure the histone levels and gene expression levels respectively.

We applied the OPFFR, FDA and FPCA methods to histone regulation data in example 1.2. 

Since the gene expression levels were sparsely observed, we also applied the OPFFR-S 

method to the data. The comparison of the four methods is shown in Table 2. In the table, the 

standard deviation of ISEs was the only measure that neither the OPFFR nor the OPFFR-S 

was the most optimal. This was caused by a few observations where all the methods failed to 

make a good prediction and the OPFFR methods happened to have larger ISEs. In terms of 

all the other measures, the proposed OPFFR and OPFFR-S methods clearly showed the 

advantage in prediction accuracy again. Since the results from the OPFFR and OPFFR-S 

were comparable to each other, we chose to present all the following results based on the 

OPFFR analysis.

Figure 7 is the plot of the fitted coefficient function generated from our OPFFR method. For 

region between 300 bp and 350 bp, there was a strong negative influence of H3.3 on genes 

activity from half hour to 8 hours. It indicted that the loss of H3.3 might have the biological 
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influence on the up-regulation of heat-induced genes. This negative correlation phenomenon 

was also observed after 30 minutes on the region of 250 bp to 300 bp between H3.3 and 

gene activity. In addition, the region from 50 bp to 150 bp had a positive effect on genes 

activity over time domain from 0 hour to half hour and 4 hours to 8 hours. Therefore, we 

provided a numerical evidence that heat-shock-induced transcription of genes in response to 

heat stress might be regulated via the epigenetic changes of H3.3, especially on the 

downstream region of TSS. The sample plots in Figure 8 showed a nice match of the 

predicted gene expression curves with the observed values.

6 Conclusion

In this article, we have presented a new analysis tool for modeling the relationship of a 

functional response against a functional predictor. The proposed method is more flexible and 

generally delivers a better numerical performance than the FPCA approach since it does not 

have the restrictive structural dependence assumption on the coefficient function. When 

compared with the penalized B-splines method, the proposed method has the theoretical 

advantage of possessing the optimal rate for mean prediction as well as some numerical 

advantage as shown in the numerical studies. Moreover, the Representer Theorem 

guarantees an exact solution to the penalized least squares, a property that is not shared by 

the existing penalized function-on-function regression models. The application of our 

method to a histone regulation study provided numerical evidence that the changes in H3.3 

might regulate some genes through transcription regulations. Although such a finding sheds 

light on the relationship between histone variant H3.3 and gene activity, the details of the 

regulation process are still unknown and merit further investigations. For instance, we may 

investigate how the H3.3 organizes the chromatins to up-regulate those active genes. Such 

investigations would call for more collaborations between statisticians and biologists.

When the regression model has a scalar response against one or more functional predictors, 

methods other than the roughness penalty approach are available to overcome the inefficient 

basis representation drawback in the FPCA method. For example, Delaigle et al. (2012) 

considered a partial least squares (PLS) based approach. Ferré & Yao (2003) and Yao et al. 

(2015) translated the idea of sufficient dimension reduction (SDR) into the setting of 

functional regression models. Intuitively, these methods might be more efficient in their 

selection of the principal component basis functions since they incorporate the response 

information into consideration. However, our experiments with a functional response version 

of the functional PLS (Preda & Saporta 2005), not shown here due to space limit, did not 

look so promising. Therefore, further investigation in this direction is surely needed.

In some applications the response functions may show a different level of smoothness from 

the predictor functions. Then it is reasonable to require different levels of smoothness for the 

coefficient function β(t, s) in the directions of t and s. This can be effectively implemented 

through introducing 5 new smoothing parameters θk,k = 1,...,5 in Example 2.1 such that θk
−1

precedes the kth integral in the penalty J. Then one essentially selects λ/θk,k = 1,...,5 to 

determine the appropriate level of smoothness for each component. Note that this would also 

require the incorporation of θk into the RKs. Numerically, these parameters can be tuned by 

Sun et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



first fixing all θk to some constant and selecting an optimal λ to pin down the overall 

smoothness level, and then fix λ and fine tune θk to determine the component-wise 

smoothness levels.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Smoothed trajectories of temperature (Celsius) in left panel and the log (base 10) of daily 

precipitation (Millimetre) in right panel. The x-axis labels in both panels represent 365 days.
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Figure 2: 
Smoothed trajectories of normalized histone levels in ChIP-seq experiments in left panel and 

the normalized expression levels in RNA-seq experiments in right panel. The x-axis label in 

the left panel stands for the region of 350 bp. The x-axis label in the right panel represents 

seven time points within 24 hours.
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Figure 3: 
Perspective plots of the true β(t, s) in three scenarios, and their respective estimates by the 

OPFFR, FDA, and FPCA methods when SNR= 10.
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Figure 4: 
Boxplots of log2(MISE) for three scenarios under three signal-to-noise ratios (SNR= 0.5, 5, 

10), based on 100 simulation runs. OPFFR is the proposed approach.
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Figure 5: 
Perspective plots of the true β(t, s) in the sparse scenario, and their respective estimates by 

the OPFFR-S, FPCA, and OPFFR methods when the number of randomly selected time 

points is ten.
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Figure 6: 
Boxplots of MISEs for the sparse scenario under three different sparsity levels, based on 100 

simulation runs. The boxplots with different grayscale shades from left to right respectively 

represent the sparsity levels of 5, 10 and 15 time points per curve.
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Figure 7: 
The estimated coefficient function β(t,s) for the histone regulation study. The y-axis label 

represents the positions on genomes and x-axis label represents seven time points.
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Figure 8: 
The fitted response functions for six genes in the histone regulation study. The y-axis stands 

for the normalized expression levels and x-axis label represents seven time points. The curve 

fitted using OPFFR is in the solid line, with the data in circles.
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Table 1:

The mean, standard deviation and three quartiles of ISEs for the three approaches. The best result on each 

metric is in boldface.

Method Median Mean Standard Deviation 1st Qu. 3rd Qu.

OPFFR 21.6400 40.2800 45.7631 13.8000 36.1700

FDA 25.9000 44.1600 56.9544 18.7400 40.6100

FPCA 30.7752 45.5065 45.7763 20.5031 52.1827
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Table 2:

The mean, standard deviation and three quartiles of ISEs for the four approaches. The best result on each 

metric is in boldface.

Method Median Mean Standard Deviation 1st Qu. 3rd Qu.

OPFFR 1.5700 7.7120 18.9180 0.5077 5.1900

OPFFR-S 1.4070 7.7150 18.6037 0.6972 5.5820

FDA 2.2060 7.9770 18.7004 0.5461 6.2750

FPCA 2.0170 8.4720 18.3978 0.9126 6.1790
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