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Abstract

Nuclear Magnetic Resonance (NMR) experiments provide distances between nearby atoms of a 

protein molecule. The corresponding structure determination problem is to determine the 3D 

protein structure by exploiting such distances. We present a new order on the atoms of the protein, 

based on information from the chemistry of proteins and NMR experiments, which allows us to 

formulate the problem as a combinatorial search. Additionally, this order tells us what kind of 

NMR distance information is crucial to understand the cardinality of the solution set of the 

problem and its computational complexity.
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1. Introduction: distance geometry

1.1. Protein structure

The 3D protein structure determination problem is of fundamental importance for studying 

protein function [19]. Indeed, biochemical reactions taking place in protein structure are the 

basic operations hidden behind all biological processes, including cell division, protein 

translation, host–pathogen interactions, and cell–cell communication. As a consequence, 

protein structure determination effectively builds a bridge between the description of 

biological cellular processes and the world of physical chemistry.

X-ray crystallography was the first method to enable the determination of protein structures. 

Crystallized proteins were perceived as rigid objects, displaying mostly a unique 

conformation, with some harmonic vibrations around this conformation. Beginning in the 

nineties, the development of Nuclear Magnetic Resonance (NMR) permitted the study of 
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protein structures in solution. Further developments in NMR relaxation methods exposed the 

rich internal dynamics of proteins, painting a more realistic picture of protein structure [27]. 

Protein internal flexibility was then recognized as playing a critical role in many biological 

processes. For example, many proteins are thought to be functionally important, despite the 

fact that they lack a precisely defined 3D structure.

NMR structure determination is mainly based on the measurement of inter-atomic distances, 

determined through the observation of the Nuclear Overhauser Effect (NOE). This is 

induced by the transfer of magnetization through dipolar coupling between the observed 

hydrogens. The obtained distance values contain both systematic and random errors, due to 

the numerous paths of magnetization transfer and to internal molecular dynamics [66]. 

Nevertheless, NOE-derived NMR experiments may be used to determine some (short) 

Euclidean distances between hydrogen atoms in a protein. Given this partial set of inexact 

distances, we are left with the problem of determining the 3D structure of the protein.

We use a weighted simple undirected graph G = (V, E, d) to model this problem, where V 
represents the set of atoms and E represents the set of atom pairs for which a distance is 

available, given by the function d : E ↦ [0, ∞) (the fact that we allow distances to be zero 

will be explained in Section 3).

The representation of a molecule as a set of atomic symbols linked by segments was 

originally described in [18] and, in fact, the origin of the word graph is due to this 

representation of molecules [64]. This relationship between molecules and graphs is 

probably the deepest one existing between chemistry and discrete mathematics. In effect, the 

graph G = (V, E, d) is a mathematical abstraction to represent the problem data. The 

problem itself is to find a function x : V ↦ ℝ3 that associates each element of V with a 

point in ℝ3 in such a way that the Euclidean distances between the points correspond to the 

values given by d. This is a Distance Geometry Problem (DGP) in ℝ3, formally described as 

follows.

Definition 1—Given an integer K > 0 and a simple undirected graph G = (V, E, d) whose 

edges are weighted by a function d : E ↦ [0, ∞), find a function x : V ↦ ℝK such that

∀{u, v} ∈ E, ‖xu − xv‖ = duv, (1)

where xu = x(u), xv = x(v), duv = d({u, v}), and ||xu − xv|| is the Euclidean distance between 

xu and xv.

For the remainder of this work, we will fix K = 3, since we are interested in the application 

of the DGP to protein conformation [17]. Recent surveys on Distance Geometry (DG) are 

given in [7,48], an edited book with different applications can be found in [54], two very 

recent books are given in [38,45], and some historical notes on DG are presented in [44].
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In 1983, the first DG-based method for molecular conformation was proposed [28] and in 

1984, the first protein structure was determined in its native solution state from NMR data 

[29].

The simplest approach to the problem is to directly attempt to solve the set of Eqs. (1). 

However, there is evidence that a closed-form solution is not possible [5]. Since the 

equations are also difficult to solve numerically, a common approach is to formulate the 

DGP as a nonlinear global minimization problem,

min
x1, …, xn ∈ ℝ3 ∑

{u, v} ∈ E
(‖xu − xv‖2 − duv

2 )2,

where |V| = n. However, solving such a problem is hard from a computational complexity 

point of view, as well as from a practical one [48,62,63]. In [39], some global optimization 

algorithms were tested, but none of them scale well to medium or large instances. A survey 

of different methods to the DGP is given in [49].

Assuming the input data are correct and precise (see Section 3 for other cases), the set X of 

solutions of a DGP will yield all the 3D structures of the protein that are compatible with the 

given distances. Any x ∈ X can be translated and rotated in ℝ3, implying that the solution 

set is not only infinite, but uncountable. However, if we do not consider the effect of 

translations and rotations, the cardinality of X depends generically on the structure of the 

associated graph G = (V, E, d). If the set of edges E contains all possible pairs from V, there 

is only one solution which can be found in linear time [20]. In general, the problem is NP-

hard [59].

Using algebraic geometry, it is possible to prove that there are just two possibilities 

regarding the cardinality of the solution set X: it is either finite or uncountable, supposing 

that X ≠ Ø [6]. This result is strongly related to graph rigidity [26]. For example, if the graph 

is rigid, the solution set is finite (up to translations and rotations). In this case, a 

combinatorial search is better suited than a continuous one, because in addition to the 

accuracy and efficiency of combinatorial methods, graph rigidity allows us to obtain more 

information about the cardinality and the structure of the solution set X [41,50] (in Section 

3, we will see that these results change when distance values are not precise).

The original contribution of this paper is theoretical. We present a new order on the vertices 

V of the protein graph G that uses information from the chemistry of proteins and NMR 

experiments (an order on V is a sequence r : ℕ ↦ V ∪ {0}, for which r(i) = 0 for all i > |r|, 
where |r| ∈ ℕ is the length of r). This order guarantees the rigidity of G and most 

importantly, “organizes the search space” in such a way that it can be searched efficiently for 

all solutions to the problem. Also, it tells us what kind of information from the NMR 

experiments is crucial to understanding the cardinality of the solution set and the 

computational complexity of the problem.
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To explain the properties of the proposed order, important connections between NMR 

protein structure, distance geometry, graph rigidity, and graph vertex orders are established. 

This is done without excessive formalism, although all important concepts and results are 

presented.

In the following subsection, we give the necessary results from graph rigidity. Section 1.3 

shows the importance of vertex orders in DGP graphs. Section 2 presents the discrete 

version of the DGP. In Section 3, the new order is defined along with its most important 

properties. Finally, we end with conclusions and some new research directions in Section 4.

1.2. Graph rigidity

Given a graph G = (V, E, d) of a DGP, a function x : V ↦ ℝ3 is called a realization of the 

graph in ℝ3. If x satisfies all Eqs. (1), it is a valid realization. A pair (G, x) where G is a 

graph and x is a realization is called a framework.

In order to use frameworks to model protein structures and to have a precise notion of 

framework rigidity [32], we must define two relations: isometry and congruence.

Two frameworks (G, x) and (G, y) are isometric, denoted as (G, x) ~ (G, y), if

∀{u, v} ∈ E, ‖xu − xv‖ = ‖yu − yv‖,

and congruent, denoted as (G, x) ≡ (G, y), if

∀u ≠ v ∈ V , ‖xu − xv‖ = ‖yu − yv‖ .

Thus, two frameworks are congruent only if all pairs of vertices from V have the same 

related distances, not only the pairs in E. Trivially, congruency implies isometry, but the 

converse is not true in general. We remark that any congruence is a composition of 

translations, rotations, and reflections [8].

(G, x) is a rigid framework if for any other realization y of G

(G, x) (G, y) (G, x) ≡ (G, y) .

Geometrically, this means that a framework is rigid if it has no continuous deformations 

aside from composition of translations, rotations and reflections. That is, the only way to 

continuously move a point in a rigid framework is moving all points such that all pairwise 

distances are preserved, and not only those given by the edges. Using the concept of 

infinitesimal rigidity of a framework [65], we can define graph rigidity.
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Let (G, x) be a framework in ℝ3, where |V| = n and |E| = m. Consider the linear system Rλ = 

0, where λ ∈ ℝ3n and R is the m × 3n matrix each {u, v}th row of which has exactly 6 

nonzero entries given by

xi(u) − xi(v) and xi(v) − xi(u), {u, v} ∈ E and i = 1, 2, 3,

where x1(u), x2(u), x3(u) are the Cartesian coordinates of xu in ℝ3.

The framework is infinitesimally rigid if the only solutions of Rλ = 0 are translations or 

rotations. Infinitesimal rigidity implies rigidity [23], and if a graph has a single 

infinitesimally rigid framework, then almost all its frameworks are rigid [30].

Consequently, it makes sense to define a rigid graph as a graph having an infinitesimally 

rigid framework. There is also a notion of a graph being rigid independently of the 

framework assigned to it, known as generic rigidity [14], which will not be used here.

A characterization of all rigid graphs in ℝ2 was described by Laman [35], but no such 

complete characterization is known in ℝ3. A heuristic method was introduced in [61] and 

current conjectures can be found in [33].

If a DGP graph has a unique valid realization, up to congruences, it is called globally rigid. 

In [14], necessary and sufficient conditions for global rigidity in ℝ2 were presented. 

Hendrickson [30] conjectured that the same conditions would be sufficient for ℝ3, but this 

was disproved by Connelly [14]. Some graph properties ensuring global rigidity in ℝ2 and 

ℝ3 are given in [4].

1.3. Vertex orders

The idea of exploiting vertex orders to investigate graph rigidity first appeared in [31]. In 

fact, vertex orders are important for solving many problems modeled by graphs [9,55].

If there is a trilateration order in a DGP graph (every vertex beyond the first four is adjacent 

to at least four predecessors) and the first four vertices induce a clique, the graph is globally 

rigid in ℝ3. Such an order makes it possible to uniquely triangulate the position of each 

subsequent vertex in the order. This implies the existence of a linear time algorithm to find 

the unique solution [21].

Adjacent predecessors in a vertex order are critical: any fewer than three, and the number of 

DGP solutions might be uncountable; any more, and the corresponding DGP can be solved 

uniquely in linear time [48]. So, the number of adjacent predecessors in a given order is 

related to the cardinality of the DGP solution set and also to the required computational 

effort to find a solution.

In general, we do not have trilateration orders in protein graphs G = (V, E, d) [40], but using 

the information provided by NMR experiments and chemistry of proteins, we can try to find 

vertex orders v1, …, vn ∈ V such that:
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• The first three vertices form a clique:

{v1, v2}, {v1, v3}, {v2, v3} ∈ E .

• Each vertex with rank greater than 3 is adjacent to at least 3 predecessors:

∀i > 3, ∃ j, k, l with j < i, k < i, l < i:{v j, vi}, {vk, vi}, {vl, vi} ∈ E .

The class of DGP instances possessing these orders, where the initial clique has a valid 

realization and the strict triangular inequalities relating the adjacent predecessors vj, vk, vl to 

vi, i > 3, are satisfied (i.e. dvjvk + dvkvl > dvjvl), is called the Discretizable Distance 
Geometry Problem (DDGP), and the orders themselves DDGP orders [24,52].

The initial clique guarantees that the solution set X will contain just incongruent solutions 

(aside from a single reflection) and the strictness of the triangular inequality prevents an 

uncountable number of solutions [52]. In the same paper, it was proved that the graph of any 

DDGP instance is rigid. An exact solution method, called Branch-and-Prune (BP), was 

presented for finding all incongruent solutions. The BP algorithm can be exponential in the 

worst case, which is consistent with the fact that the DDGP is an NP-hard problem 

[10,47,52].

In a DDGP order, the fourth vertex v4 can be realized by solving the following quadratic 

system (to simplify the notation, we will use xi instead of xvi and di,j instead of dvivj)

‖x4 − x1‖2 = d1, 4
2

‖x4 − x2‖2 = d2, 4
2

‖x4 − x3‖2 = d3, 4
2 ,

which can result in up to two possible positions for v4 [40]. Using the same strategy, for 

each position already determined for v4, we obtain other two positions for v5, and so on. 

Because of the rigidity of the DDGP graph, the search space is finite and has 2n−3 possible 

solutions.

If we have any “extra” distance information, {vr, vi} ∈ E with r < i, we can add more one 

equation to the system related to vi, i > 3, resulting in

‖xi − x j‖ = d j, i
‖xi − xk‖ = dk, i
‖xi − xl‖ = dl, i
‖xi − xr‖ = dr, i .

Squaring both sides of these equations, we obtain ( xi
⊤ denotes the transpose of xi):
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‖xi‖
2 − 2(xi

⊤x j) + ‖x j‖
2 = d j, i

2

‖xi‖
2 − 2(xi

⊤xk) + ‖xk‖2 = dk, i
2

‖xi‖
2 − 2(xi

⊤xl) + ‖xl‖
2 = dl, i

2

‖xi‖
2 − 2(xi

⊤xr) + ‖xr‖2 = dr, i
2 .

Now, subtracting one of these equations from the others, we eliminate the term ||xi||2 and 

obtain a linear system in the variable xi. If the points xj, xk, xl, xr are not in the same plane, 

we have a unique solution xi
∗ for vi, supposing ‖xi

∗ − xr‖ = dr, i. When there are other 

adjacent predecessors of vi besides vj, vk, vl, one or both possible positions for vi may be 

infeasible with respect to those additional distances. If both are infeasible, it is necessary to 

backtrack and try a different position for previous vertices [52].

The DDGP order organizes the search space in a binary tree and the additional distance 

information can be used to reduce the search space by pruning infeasible positions in the 

tree.

The tree begins with the three fixed positions for the initial clique, x1, x2, x3. At level i > 3, 

the tree contains all (2i−3) possible positions for vertex vi, if no pruning occurs. The search 

ends when a path from the root (i = 1) of the tree to a leaf node (i = n) is found by the BP 

algorithm: the positions relative to vertices in the path satisfy the DGP equations (1), and 

thus encode a valid realization of G. Considering precise input data, the BP performance is 

impressive from the points of view of both efficiency and reliability [39,40]. Although the 

DDGP is NP-hard, a DDGP order can be found in polynomial time [37].

In the definition of the DDGP, the only requirement on the adjacent predecessors vj, vk, vl to 

vi (for i > 3) is that the associated strict triangular inequality must be satisfied. However, 

depending on the instance, if the distances dj,i, dk,i, dl,i are not well scaled, the influence of 

numerical floating point error in solving the related quadratic system is increased. In some 

cases, this prevents the BP from finding solutions [52].

Protein graphs provided by NMR experiments have enough information to allow definition 

of vertex orders involving immediately contiguous adjacent predecessors that can avoid 

those kinds of problems in DDGP instances.

2. The discretizable molecular distance geometry problem (DMDGP)

The class of DGP instances that replaces a DDGP order by one with contiguous adjacent 

predecessors is called the Discretizable Molecular Distance Geometry Problem (DMDGP) 

and the order itself is a DMDGP order [40]. Formally, the DMDGP is defined as follows:

Definition 2—Given a DGP graph G = (V, E, d) and a vertex order v1, …, vn such that

• there exists a valid realization for v1, v2, v3 and

• i > 3, the set {vi−3, vi−2, vi−1, vi} is a clique with di−3,i−2 + di−2,i−1 > di−3,i−1,
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find a function x : V ↦ ℝ3 such that

∀{u, v} ∈ E, ‖xu − xv‖ = duv .

We remark that the DMDGP is a subclass of instances of the DDGP. However, the structural 

properties and hardness of the DMDGP and DDGP are very different, which justifies Defn. 

2.

The distance information in the clique {vi−3, vi−2, vi−1, vi} allows us to get the following 

values:

• d1,2, …, dn−1,n (distances associated to consecutive vertices),

• θ1,3, …, θn−2,n (angles in (0, π) defined by three consecutive vertices),

• cos(ω1,4), …, cos(ωn−3,n) (cosines of torsion angles in [0, 2π] defined by four 

consecutive vertices), given by [36]:

cos (ωi − 3, i)

=
2di − 2, i − 1

2 (di − 3, i − 2
2 + di − 2, i

2 − di − 3, i
2 ) − (di − 3, i − 2, i − 1)(di − 2, i − 1, i)

4di − 3, i − 2
2 di − 2, i − 1

2 − (di − 3, i − 2, i − 1
2 ) 4di − 2, i − 1

2 di − 2, i
2 − (di − 2, i − 1, i

2 )
,

(2)

where

di − 3, i − 2, i − 1 = di − 3, i − 2
2 + di − 2, i − 1

2 − di − 3, i − 1
2

di − 2, i − 1, i = di − 2, i − 1
2 + di − 2, i

2 − di − 1, i
2 .

Using cos(ωi−3,i), for i = 4, …, n, we obtain two possible values for each torsion angle, 

implying that we do no longer need to solve quadratic systems. Computational results 

presented in [40] show that avoiding resolution of quadratic systems guarantees more 

stability in the branching phase of BP.

Considering that the vertex order v1, …, vn represents bonded atoms of a molecule, the 

values di−1,i, θi−2,i, ωi−3,i are exactly the internal coordinates of the molecule that can also be 

used to describe its 3D structure [40] (Fig. 1).

Another advantage of the DMDGP order is that it is enough to apply the BP (or other 

algorithm) to find only one solution, since all the others can be easily obtained using 

symmetry properties defined in the BP tree [50,53]. These properties are also related to the 

cardinality of the DMDGP solution set, which can be computed based on the DMDGP graph 
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[46], prior to actually finding realizations. In [50], possible extensions of this result when 

distances are not precise are also discussed.

There is a price to pay for all these results: in contrast to DDGP orders, finding a DMDGP 

order is an NP-complete problem [12], even considering cases when the initial clique is 

given. However, exploiting the chemistry of proteins and NMR data, it is possible to design 

a “hand-crafted” DMDGP order for any protein graph. We will see that this order can also be 

used to solve DMDGP instances that incorporate uncertainties from NMR data [15].

3. A new DMDGP order for protein graphs

In order to reduce the number of variables and also the computational effort required to 

solve problems related to protein structure, it is common to assume that all bond lengths and 

bond angles are fixed at their equilibrium values, which is known as the rigid geometry 
hypothesis [22]. This means that, in terms of internal coordinates, all the values di−1,i, for i = 

2, …, n, and θi−2,i, for i = 3, …, n, are given a priori, and that the 3D protein structure can be 

determined by the values ωi−3,i, for i = 4, …, n. Because of the properties of DMDGP 

orders, we can also know a priori all the values cos(ωi−3,i), for i = 4, …, n, implying that the 

protein structure is defined by choosing + or − from sin (ωi − 3, i) = ± 1 − cos2 (ωi − 3, i), for 

i = 4, …, n. These signs (+ or −) are related to the branches of the BP tree.

We will consider protein graphs related to the backbone of a protein, the “skeleton” of the 

molecule, from which its general 3D structure is determined. The protein backbone is a 

chain of smaller molecules, called amino acids, which are chemically bound to each other. 

The backbone is defined by a sequence of three atoms, N, Cα, C, where each Cα is bound to 

another group of atoms (the side chains of the protein) that distinguishes one amino acid 

from another. The atoms attached to N, Cα, C, respectively H, Hα, O, will be very important 

to establishing our results (Fig. 2 presents a backbone with three amino acids). More details 

about protein graphs including side chains are given in [16,57,58].

3.1. Repetition orders

Since we are interested in determining the 3D structure of the backbone of a protein, the 

sequence of atoms Ni, Cα
i , Ci, for i = 1, …, p (where p is the number of amino acids), would 

be the first candidate for defining the DMDGP order we are looking for. However, for this 

kind of order, we do not have all the distances di−3,i necessary to define a DMDGP instance. 

On the other hand, NMR experiments, in general, provide distances between hydrogen 

atoms that are close enough (less than 5 Åapart). An order involving only hydrogens was 

defined in [43]; unfortunately, this order has some limitations, mainly because of uncertainty 

in NMR data [43]. These limitations have been partially addressed by simultaneously using 

hydrogen atoms bonded to the backbone and the backbone itself [42].

As in [42], we allow the repetition of some vertices in the order, so that at least three 

adjacent predecessors can always be chosen to be contiguous. Such orders are called 

repetition orders (or re-orders), defined below. First, the set of edges E of the protein graph 

G = (V, E, d) is partitioned into E = E′ ∪ E″, where {u, v} ∈ E′ if duv ∈ (0, ∞), and {u, v} 
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∈ E″ if duv = [duv, d̄uv], with 0 < duv < d̄uv. Note that the function d is now more general: 

the interval values represent the uncertainties in NMR data. As we will see, E′ represents 

pairs of atoms separated by one and two covalent bonds and E″ represents pairs of 

hydrogen atoms whose distances are provided by NMR.

Definition 3—A re-order is a sequence r : ℕ ↦ V ∪ {0}, with length |r| ∈ ℕ (for which ri 

= r(i) = 0 for all i > |r|), such that

1. {r1, r2}, {r1, r3}, {r2, r3} ∈ E′;

2. ∀i ∈ {4, …, |r|}, {ri−1, ri}, {ri−2, ri} ∈ E′;

3. ∀i ∈ {4, …, |r|}, {ri−3, ri} ∈ E′ ∪ E″ or ri−3 = ri.

The first property says that dr1r2, dr1r3, dr2r3 ∈ (0, ∞) and the second one says that dri−1ri, 

dri−2ri ∈ (0, ∞), for i = 4, …, |r|. That is, all of them must be precise distances and greater 

than zero.

From the third property, there are three possibilities for dri−3ri, i = 4, …, |r|:

• dri−3ri = 0, meaning that there is a vertex repetition (ri−3 = ri);

• dri−3ri ∈ (0, ∞), when ri−3, ri are related to atoms separated by one or two 

covalent bonds;

• dri−3ri = [dri−3ri, d
̄
ri−3ri], with 0 < dri−3ri < d̄ri−3ri (these distances are called 

interval distances).

If ri = rj for some i ≠ j (ri−3 = ri is a specific case), then drirj = 0. However, if vertex repetition 

is used inappropriately, we might end up with a triangle with a side of zero length, which 

might in turn imply an infinity of possible positions for the next atom (we emphasize the 

importance of strict triangular inequalities in the definition of the DMDGP). Thus, to 

preserve discretization, vertex repetition can occur only between pairs {ri, rj} with |i − j| ≥ 3. 

In this case, there is no branching at level max(i, j).

A repetition of a vertex only increases the length of the sequence without affecting the 

search, since its position in ℝ3 is already known. However, it can be recomputed in order to 

control possible numerical instabilities and to check if there are any inconsistencies in the 

distance information.

To understand what happens when {ri−3, ri} ∈ E″, let us rewrite expression (2) as

cos (ωi − 3, i) =
a + bdi − 3, i

2

c ,

where a, b, c ∈ ℝ and di−3,i ∈ [dri−3ri, d
̄
ri−3ri]. The fact that a, b, c are precise numbers is a 

consequence of the second condition above, i.e. {ri−1, ri}, {ri−2, ri} ∈ E′.
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Considering the cases ωi−3,i = 0 and ωi−3,i = 2π, we get the minimum value for dri−3ri, 

denoted by dri − 3ri
min , and the maximum value for d̄ri−3ri, denoted by dri − 3ri

max , respectively. 

Thus, [dri − 3ri
, dri − 3ri

] ⊂ [dri − 3ri
min , dri − 3ri

max ]. When di−3,i is a precise number (di−3,i ∈ ℝ), 

with dri − 3ri
min < di − 3, i < dri − 3ri

max , we obtain two possible values for ωi−3,i, associated to two 

positions in ℝ3 for ri. However, when di−3,i = [dri−3ri, d
̄
ri−3ri], with 

dri − 3ri
min < dri − 3ri

< dri − 3ri
< dri − 3ri

max , we have two possible intervals for ωi−3,i, associated to 

two arcs in ℝ3 for ri. In Fig. 3, we illustrate these two arcs given as the intersection of two 

spheres (centered at xi−1, xi−2 with radii di−1,i, di−2,i, respectively) and a spherical shell, 

defined by two other spheres with the same center xi−3 but with radii given by dri−3ri and 

d ̄ri−3ri [51]. This is the geometrical interpretation of the branching phase of BP.

Thus, any re-order corresponds to a DMDGP order, where some of the pairs {ri, rj}, with |i − 

j| ≥ 3, may not correspond to precise distances, but rather to intervals.

The concept of a re-order was an important step to apply all the properties of the DMDGP as 

a mathematical model for problems related to 3D protein structure determination using 

NMR data. In the same paper that introduced re-orders [42], an extension of the BP 

algorithm, called iBP, was developed. The basic idea to deal with interval distances is to 

sample values from the intervals [dri−3ri, d
̄
ri−3ri], implying that the search space will no 

longer be a binary tree. Computational results presented in [11,25] reveal the main difficulty 

of iBP: even for large samples, there is no guarantee that a solution will be found.

Essentially, there are two reasons for this difficulty:

• The re-orders presented in [25,42] have some pairs of vertices {ri−3, ri} whose 

interval distances may not be associated to NMR data, i.e.

[dri − 3ri
, dri − 3ri

] = [dri − 3ri
min , dri − 3ri

max ], (3)

implying that sample values will be taken from a circle instead of two arcs;

• The sampling process “transforms” the iBP into a heuristic: we can no longer 

guarantee that a solution may be found.

Very recent results [2,3] using Clifford algebra propose an alternative that avoids the 

sampling process in the branching phase of iBP. However, in order to apply these results to 

protein structure calculations, a new re-order must be defined that avoids the situation (3). 

The most important property of the re-order we will describe now is that it allows branches 

(in the iBP search) only at hydrogen atoms that are bonded to the protein backbone. Previous 

re-orders [25,42] do not have this property.
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3.2. The hand-crafted vertex order

Let us define a protein graph G = (V, E, d) associated to the backbone of a protein ({Nk, Cα
k , 

Ck}, for k = 1,…, p), including oxygen atoms Ok, bonded to Ck, and hydrogen atoms Hk and 

Hα
k , bonded to Nk and Cα

k , respectively (see Fig. 2, for p = 3).

The hand-crafted vertex order (hc order) we propose is the following:

hc = N1, H1, H1′, Cα
1, N1, Hα

1, C1, Cα
1, …, Hi, Cα

i , Oi − 1, Ni, Hi, Cα
i , Ni, Hα

i , Ci, Cα
i , …, H p,

Cα
p, Op − 1, N p, Hp, Cα

p, N p, Hα
p, Cp, Cα

p, Op, Cp, Op′ ,
(4)

where i = 2,…, p−1, H1′ is the second hydrogen bonded to N1 and Op′ is the second oxygen 

bonded to Cp (Fig. 4 illustrates this order for p = 3).

We will now prove that hc is a re-order. We have assigned the following order to the atoms 

of the first amino acid of a protein:

N1, H1, H1′, Cα
1, N1, Hα

1, C1, Cα
1 . (5)

Since we are assuming that all bond lengths and bond angles are fixed at their equilibrium 

values (the rigid geometry hypothesis mentioned in the beginning of Section 3), the first and 

the second requirements of a re-order are satisfied. The third requirement is also satisfied, 

with the following distances for {ri−3, ri} (we will denote by I(Hi, Hj) the interval distance 

related to the pair of hydrogens {Hi, Hj}):

• d(N1, Cα
1) ∈ (0, ∞ ),

• d(H1, N1) ∈ (0, ∞),

• d(H1′, Hα
1) = I(H1′, Hα

1),

• d(Cα
1, C1) ∈ (0, ∞ ),

• d(N1, Cα
1) ∈ (0, ∞ ).

The nitrogen N1 and the carbon Cα
1 appear twice in the sequence, but they are related to the 

pairs {r1, r5} and {r4, r8}.

To prove that hc is a re-order, we have to check the connection between the order (5) and the 

order for the second amino acid, given by the last three atoms of (5) and the first six atoms 

of the second amino acid:

Hα
1, C1, Cα

1, H2, Cα
2, O1, N2, H2, Cα

2 . (6)
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Here, in addition to the rigid geometry hypothesis, we also have to use the properties of the 

so-called peptide plane [19], which states that the atoms { Cα
1, C1, O1, N2, H2, Cα

2} are in the 

same plane (Fig. 5). This implies that d(Cα
1, H2) (related to the pair {r8, r9}), d(Cα

1, Cα
2)

(related to the pair {r8, r10}), d(H2, O1) (related to the pair {r9, r11}), d(Cα
2, O1) (related to the 

pair {r10, r11}), and d(O1, H2) (related to the pair {r11, r13}) are all precise distances, 

satisfying the second requirement for a re-order. The third requirement is also satisfied, with 

the following distances for {ri−3, ri}:

• d(Hα
1, H2) = I(Hα

1, H2),

• d(C1, Cα
2) ∈ (0, ∞ ),

• d(Cα
1, O1) ∈ (0, ∞ ),

• d(H2, N2) ∈ (0, ∞),

• d(Cα
2, H2) ∈ (0, ∞ ),

• d(O1, Cα
2) ∈ (0, ∞ ).

The atoms H2 and Cα
2 are repeated, but they are related to the pairs {r9, r13} and {r10, r14}, 

respectively.

We have assigned the following order to the atoms of a generic amino acid of a protein:

Hi, Cα
i , Oi − 1, Ni, Hi, Cα

i , Ni, Hα
i , Ci, Cα

i . (7)

By the same arguments used for the orders (5) and (6), the second and the third re-order 

requirements are satisfied, with the following distances for {ri−3, ri}:

• d(Hi, Ni) ∈ (0, ∞),

• d(Cα
i , Hi) ∈ (0, ∞ ),

• d(Oi − 1, Cα
i ) ∈ (0, ∞ ),

• d(Ni, Ni) = 0,

• d(Hi, Hα
i ) = I(Hi, Hα

i ),

• d(Cα
i , Ci) ∈ (0, ∞ ),

• d(Ni, Cα
i ) ∈ (0, ∞ ).

In the order (7), Hi, Cα
i , Ni are repeated, where Hi and Cα

i  are related to pairs {ri, rj}, with i 

− 3 < j, and Ni is related to a pair {ri−3, ri}, which explains d(Ni, Ni) = 0 above.

Lavor et al. Page 13

Discrete Appl Math. Author manuscript; available in PMC 2019 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The connection between two generic amino acids, given by

Hα
i , Ci, Cα

i , Hi + 1, Cα
i + 1, Oi, Ni + 1, Hi + 1, Cα

i + 1 ,

and the one between a generic amino acid and the last one, given by

Hα
p − 1, Cp − 1, Cα

p − 1, H p, Cα
p, Op − 1, N p, H p, Cα

p ,

both have the same order given in (6).

The result above implies the following distances for {ri−3, ri}, related to the connection 

between two generic amino acids,

• d(Hα
i , Hi + 1) = I(Hα

i , Hi + 1),

• d(Ci, Cα
i + 1) ∈ (0, ∞ ),

• d(Cα
i , Oi) ∈ (0, ∞ ),

• d(Hi+1, Ni+1) ∈ (0, ∞),

• d(Cα
i + 1, Hi + 1) ∈ (0, ∞ ),

• d(Oi, Cα
i + 1) ∈ (0, ∞ ),

and related to the connection between a generic amino acid and the last:

• d(Hα
p − 1, H p) = I(Hα

p − 1, H p),

• d(Cp − 1, Cα
p) ∈ (0, ∞ ),

• d(Cα
p − 1, Op − 1) ∈ (0, ∞ ),

• d(Hp, Np) ∈ (0, ∞),

• d(Cα
p, H p) ∈ (0, ∞ ),

• d(Op − 1, Cα
p) ∈ (0, ∞ ).

Finally, we have assigned the following order to the atoms of the last amino acid of a 

protein:

H p, Cα
p, Op − 1, N p, H p, Cα

p, N p, Hα
p, Cp, Cα

p, Op, Cp, Op′ . (8)
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Using once more the rigid geometry hypothesis and the peptide plane properties, the second 

and the third requirements of a re-order are satisfied, with the following distances related to 

{ri−3, ri}:

• d(Hp, Np) ∈ (0, ∞),

• d(Cα
p, H p) ∈ (0, ∞ ),

• d(Op − 1, Cα
p) ∈ (0, ∞ ),

• d(Np, Np) = 0,

• d(H p, Hα
p) = I(Hα

p, H p),

• d(Cα
p, Cp) ∈ (0, ∞ ),

• d(N p, Cα
p) ∈ (0, ∞ ),

• d(Hα
p, Op) = I(Hα

p, Op),

• d(Cp, Cp) = 0,

• d(Cα
p, Op) ∈ (0, ∞ ).

The distance d(Hα
p, Op) is an interval, but the last level of the search tree can be related to the 

position of Cp, already determined using d(Cα
p, Cp).

The presented analysis can be summarized in the following theorem:

Theorem 4—The hc order is a re-order.

3.3. Minimal NMR distance information

In NMR experiments, the protein is placed within a magnetic field, inducing an alignment of 

the magnetic moments of the observed nuclei. The through-space transmission of this 

magnetization between nuclei is called the Nuclear Overhauser Effect (NOE), which is 

approximately proportional to d−6, where d is the distance between the nuclei of two 

different atoms [13]. In general, if two nuclei are more than 5 Å apart, the NOE signal is too 

weak to be measured for estimating distances.

The measured signal recorded during NOE experiments may be distorted, due to dynamics 

of the protein under study, experimental noise, and the influence of neighboring atoms [56]. 

NOE measurements are often converted into upper distance bounds, where the 

corresponding lower bounds are given by the sum of the van der Waals radii of the involved 

atoms [34]. Therefore, interval distances may be defined for hydrogen pairs that are close 

enough, implying the following result.

Theorem 5—Using the hc order, the rigid geometry hypothesis, and the properties of 
peptide planes, the set of distances between the pairs of hydrogen atoms
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{H1′, Hα
1}, …, {Hα

i − 1, Hi}, {Hi, Hα
i }, {Hα

i , Hi + 1}, …, {H p, [Hα
p]}, (9)

where i = 2,…, p − 1 and p is the number of amino acids of a protein, are sufficient 
conditions to represent the solution space of the associated DGP as a search tree.

Let us consider this search tree more carefully. Since the hc order is a re-order, all distances 

di−1,i and di−2,i are precise values, greater than zero. Thus, concerning the size of the search 

space, we have to analyze all distances di−3,i (recall that the branching of the search tree is 

the result of intersecting two spheres with precise radii di−1,i, di−2,i with a third one of radius 

di−3,i, possibly given by an interval distance (Fig. 3)).

In addition to the rigid geometry hypothesis and the peptide plane properties, we also need 

the chirality property [19], which defines the orientation of the tetrahedra formed by {N1, 

H1, H1′, Cα
1} and { Cα

i , Ni, Hα
i , Ci}, implying only one possible position for Cα

1 and Ci, i = 1,

…, p (Fig. 6).

Considering the first amino acid and the links to the second one, we have:

• d(N1, Cα
1) > 0 2 possible positions in ℝ3 for Cα

1, but we can fix one of them 

because of chirality defined on {N1, H1, H1′, Cα
1}.

• d(H1, N1) > 0 ⇒ 2 possible positions in ℝ3 for N1, but we can fix one of them, 

since N1 is repeated.

• d(H1′, Hα
1) = I(H1′, Hα

1) 2possible arcs in ℝ3 for Hα
1.

• d(Cα
1, C1) > 0 2 possible positions in ℝ3 for C1, but we can fix one of them 

because of chirality defined on { Cα
1, N1, Hα

1, C1}.

• d(N1, Cα
1) > 0 2 possible positions in ℝ3 for Cα

1, but we can fix one of them, 

since Cα
1 is repeated.

• d(Hα
1, H2) = I(Hα

1, H2) 2 possible arcs in ℝ3 for H2.

• d(C1, Cα
2) > 0 2 possible positions in ℝ3 for Cα

2, but we can fix one of them 

because of the plane already defined by {C1, Cα
1, Hα

2}.

• d(Cα
1, O1) > 0 2 possible positions in ℝ3 for O1, but we can fix one of them 

because of the plane already defined by {C1, Cα
1, Hα

2}.

These are the distances di−3,i in the generic amino acid (with the links to the next one):
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• d(Hi, Ni) > 0 ⇒ 2 possible positions in ℝ3 for Ni, but we can fix one of them 

because of the plane already defined by {Ci−1, Cα
i − 1, Hi}.

• d(Cα
i , Hi) > 0 2 possible positions in ℝ3 for Hi, but we can fix one of them, 

since Hi is repeated.

• d(Oi − 1, Cα
i ) > 0 2 possible positions in ℝ3 for Cα

i , but we can fix one of them, 

since Cα
i  is repeated.

• d(Ni, Ni) = 0 ⇒ 1 possible position in ℝ3 for Ni (the related torsion angle is 0).

• d(Hi, Hα
i ) = I(Hi, Hα

i ) 2 possible arcs in ℝ3 for Hα
i .

• d(Cα
i , Ci) > 0 2 possible positions in ℝ3 for Ci, but we can fix one of them 

because of chirality defined on { Cα
i , Ni, Hα

i , Ci}.

• d(Ni, Cα
i ) > 0 2 possible positions in ℝ3 for Cα

i , but we can fix one of them, 

since Cα
i  is repeated.

• d(Hα
i , Hi + 1) = I(Hα

i , Hi + 1) 2 possible arcs in ℝ3 for Hi+1.

• d(Ci, Cα
i + 1) > 0 2 possible positions in ℝ3 for Cα

i + 1, but we can fix one of 

them because of the plane already defined by {Ci, Cα
i , Hα

i + 1}.

• d(Cα
i , Oi) > 0 2 possible positions in ℝ3 for Oi, but we can fix one of them 

because of the plane already defined by {Ci, Cα
i , Hα

i + 1}.

Now, let us analyze the distances di−3,i in the last amino acid (as we already mentioned, we 

are considering that the last level of the search tree is being related to the position of Cp):

• d(Hp, Np) > 0 ⇒ 2 possible positions in ℝ3 for Np, but we can fix one of them 

because of the plane already defined by {Cp−1, Cα
p − 1, Hp}.

• d(Cα
p, H p) > 0 2 possible positions in ℝ3 for Hp, but we can fix one of them, 

since Hp is repeated.

• d(Op − 1, Cα
p) > 0 2 possible positions in ℝ3 for Cα

p, but we can fix one of them, 

since Cα
p is repeated.

• d(Np, Np) = 0 ⇒ 1 possible position in ℝ3 for Np (the related torsion angle is 0).

• d(H p, Hα
p) = I(H p, Hα

p) 2 possible arcs in ℝ3 for Hα
p.

• d(Cα
p, Cp) > 0 2 possible positions in ℝ3 for Cp, but we can fix one of them 

because of chirality defined on { Cα
p, Np, Hα

p, Cp}.
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The discussion above implies the following result.

Theorem 6—Using the hc order, the rigid geometry hypothesis, the peptide plane 
properties, the chirality property, and the set of distances between the pairs of hydrogen 
atoms

{H1′, Hα
1}, …, {Hα

i − 1, Hi}, {Hi, Hα
i }, {Hα

i , Hi + 1}, …, {H p, Hα
p}, (10)

where i = 2,…, p − 1 and p is the number of amino acids of a protein, the branches in the 
search tree occur only at hydrogen atoms given by

{Hα
1, …, Hi, Hα

i , …, H p, Hα
p} . (11)

There are two main consequences of this theorem:

1. If the distances related to the pairs (10) are precise values, the search space of the 

associated DGP is finite, represented as a binary tree;

2. If the distances related to the pairs (10) are precise values and there is at least one 

additional distance (from NMR data) for each hydrogen in the list (11) to 

previous hydrogens, there is only one DGP solution that can be found in linear 

time.

Although precise and additional distances are very strong hypotheses, this kind of 

information emphasizes the relationship of the cardinality of the DGP solution set with the 

computational complexity of the problem.

From the definition of the hc order (4) and from Theorem 6, we can note that the position of 

atom Ni depends on the position of atom Hi and that the position of atom Ci depends on the 

position of atom Hα
i . Since the protein backbone is determined by the torsion angles defined 

by {Ni−1, Cα
i − 1, Ci−1, Ni} and {Ci−1, Ni−1, Cα

i − 1, Ci} (the so-called (ϕ,ψ) angles [19]), the 

term minimal NMR distance information is justified by the fact that we require only NMR 

distances related to d(Hi, Hα
i ) and d(Hα

i − 1, Hi).

Since atoms Hi, Hα
i  are in the same amino acid, the associated distance d(Hi, Hα

i ) is likely to 

be detected by NMR. Although atoms Hα
i − 1, Hi are in consecutive amino acids, there is just 

one torsion angle (the one defined by {Ni−1, Cα
i − 1, Ci−1, Ni}) related to the position of Hi, 

because the peptide plane “constrains” the torsion angle defined by { Cα
i − 1, Ci−1, Ni−1, Cα

i } 

to be π radians. In the worst case, supposing that the distance d(Hα
i − 1, Hi) is not available, 
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we can use “implicit” information associated with the fact that the distance was not detected 

[1] or some estimations given in [67].

4. Conclusion and future directions

The contribution of this paper is related to how to combine information from protein 

geometry (rigid geometry hypothesis, peptide plane, and chirality) and NMR experiments in 

order to model the problem of 3D protein calculation using NMR data as a DMDGP that 

also considers interval distances. From the results of this work, we select four new research 

directions:

1. Exploit the hc order for the purpose of designing new pruning devices for the 

iBP;

2. Apply the hc order and the corresponding pruning devices to the Clifford algebra 

approach recently proposed in the literature;

3. Investigate the possibility of designing new NMR experiments that focus on the 

accuracy of distances between hydrogen atoms used in the hc order;

4. Develop robust algorithms that can integrate all of the above items.

Regarding item 1, we can do the following: (a) exploit information on lower and upper 

bounds to the backbone torsion angles provided by NMR chemical shifts [60]; (b) and 

exploit information on hydrogen bonds defined between a hydrogen (bound to N) of one 

amino acid and the oxygen (bound to C) of another one. More precisely:

• Since the position of atom Oi−1 is determined by the position of atom Hi, 

hydrogen bond distances can be used to prune infeasible positions of Hi;

• Since the position of atom Ni is also determined by the position of atom Hi, 

NMR chemical shift information on the torsion angle defined by {Ni−1, Cα
i − 1, Ci

−1, Ni} can be used to prune infeasible positions of Hi;

• Since the position of atom Ci is determined by the position of atom Hα
i , NMR 

chemical shift information on the torsion angle defined by {Ci−1, Ni−1, Cα
i − 1, Ci} 

can be used to prune infeasible positions of Hα
i .

Of course, all the information related to the NMR distances

d(H j, Hi), d(Hα
j − 1, Hi) and d(H j − 1, Hα

i ), d(Hα
j , Hα

i ),

where j < i, can also be used to prune infeasible positions of Hi and Hα
i .
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Fig. 1. 
Cartesian and internal coordinates.
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Fig. 2. 
Protein backbone.
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Fig. 3. 
Geometric interpretation of branching in BP.
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Fig. 4. 
The hc order.
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Fig. 5. 
Peptide plane.
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Fig. 6. 
Chirality property.
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