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Abstract

Hyperpolarized-13C MRI takes advantage of the unprecedented 50,000x SNR enhancement to 

interrogate cancer metabolism in patients and animals. It can measure the pyruvate-to-lactate 

conversion rate, kPL, a metabolic biomarker of cancer aggressiveness and progression. Therefore, 

it is crucial to evaluate kPL reliably. In this study, three sequence components and parameters that 

modulate kPL estimation were identified and investigated in model simulations and through in vivo 
animal studies using several specifically designed pulse sequences. These factors included a 

magnetization spoiling effect due to RF pulses, a crusher gradient-induced flow suppression, and 

intrinsic image weightings due to relaxation. Simulation showed the RF-induced magnetization 

spoiling can be substantially improved using an inputless kPL fitting. In vivo studies found a 

significantly higher apparent kPL with an additional gradient that leads to flow suppression 

(kPL,FID-Delay,Crush/kPL,FID-Delay = 1.37±0.33, P<0.01, N=6), which agrees with simulation 

outcomes (12.5% kPL error with Δv=40cm/s), indicating that the gradients predominately 

suppressed flowing pyruvate spins. Significantly lower kPL was found using a delayed FID 

acquisition versus a minimum-TE version (kPL,FID-Delay/kPL,FID = 0.67±0.09, P<0.01, N=5), and 

the lactate peak had broader linewidth than pyruvate (Δωlactate/Δωpyruvate = 1.32±0.07, P<0.00001, 

N=13). This illustrated that lactate’s shorter T2* than pyruvate can affect calculated kPL values. 

We also found an FID sequence yielded significantly lower kPL versus a double spin-echo 

sequence that includes spin-echo spoiling, flow suppression from crusher gradients, and more T2-

weighting (kPL,DSE/kPL,FID = 2.40±0.98, P<0.0001, N=7). In summary, the pulse sequence, as well 

as its interaction with pharmacokinetics and tissue microenvironment can impact and be optimized 

for the measurement of kPL. The data acquisition and analysis pipelines can work synergistically 

to provide more robust and reproducible kPL measures for future preclinical and clinical studies.
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This study investigated three pulse sequence components and parameters that can affect estimates 

of kPL in HP-13C MRI. In vivo animal tumor studies showed significant impact of kPL with 

crusher-gradient induced flow suppression, and intrinsic image weighting due to relaxation, 

corroborated by signal-model simulations. RF-induced magnetization spoiling can be substantially 

improved using an inputless kPL fitting. These outcomes suggested that the pulse sequence, as well 

as its interaction with pharmacokinetics and tissue microenvironment can impact the measurement 

of kPL.
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1. Introduction:

Hyperpolarized-13C MRI (HP-13C MRI) has the potential to revolutionize global cancer care 

and management by providing unprecedented measurements of metabolic markers of 

aggressiveness and response to therapy [1]. This unique technology takes advantage of the 

unprecedented 50,000 fold enhancement in signal-to-noise ratio, enabled by dynamic 

nuclear polarization (DNP), to interrogate cancer pathophysiology, such as metabolism and 

perfusion in vivo and in real time [2–4]. Preclinical results have shown significant 

correlations between cancer grade and HP-13C MRI quantifications of metabolism via the 

pyruvate-to-lactate conversion rate kPL [5–7]. A recent study quantitatively investigated kPL 

in transgenic murine model of prostate cancer (TRAMP) using kinetic modeling, and found 

strong correlations between kPL, pathological grades, as well as expression and activity of 

several key genes and enzymes, notably LDHA, which is strongly associated with cancer 

aggressiveness and progression [8]. Preliminary outcomes from phase II patient studies 

further indicated that high kPL correlated very well with biopsy and pathological findings of 

aggressive human prostate cancer [9] and poor response to therapy [10]. Also, high lactate/

pyruvate ratios were found in progressive glioblastoma [11].

Reliable measurements of metabolism in vivo are necessary to non-invasively probe cancer 

metabolism, tumor aggressiveness and response to therapy in both research and clinical 

settings. The rate constant kPL can be calculated by first choosing a kinetic model, and 

fitting the measured signal evolution curves of HP-13C pyruvate and lactate to the model. 

Compared to ratiometric methods, kinetic modeling opens up the possibility to incorporate a 

range of pharmacokinetic interactions. For instance, this can include an arterial input 
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function (AIF) that characterizes the size, shape and timing of the injected pyruvate bolus 

[12]. Moreover, the bolus delivery and clearance parameters describe perfusion to the tumor 

microvasculature, permeability to interstitial space, cancer cellular uptake, and release and 

removal of HP compounds [13, 14]. Additionally, using kinetic modeling enables 

incorporation of hyperpolarized signal loss mechanisms, primarily the RF pulses used to 

interrogate HP magnetization and the intrinsic T1 relaxation of HP biomarkers.

A variety of modeling strategies have been developed to quantify kPL. For instance, Kazan 

and colleagues proposed a two-site exchange model where pyruvate and lactate 

compartments in tumor were individually supplied by pyruvate and lactate AIFs in blood 

[15]. Harrison et al. adopted a model that included both tumor and extracellular 

extravascular space (EES) compartments, but excluded an AIF for in vitro studies [16]. 

Zierhut’s model is similar to Kazan’s, but assumes no lactate AIF [17]. Bahrami et al. uses a 

two-site exchange model that incorporates neither pyruvate nor lactate AIF for simplicity 

[18, 19], and Hill et al. and Daniels et al. also adopted similar strategies [20, 21]. Recently, 

Bankson and Sun et al.’s works summarized several modeling techniques and found that a 

perfused-voxel model works better than 2-compartment based on Akaike’s information 

criterion [22] in a preclinical setting [23, 24].

In reality, however, accurate quantification of kPL depends not only on a reliable modeling 

strategy, but also a reproducible way to acquire HP 13C metabolite signals. Current efforts in 

kinetic modeling and parameter estimation have mainly focused on improving the 

quantification of pyruvate-to-lactate conversion a posteriori, in other words, after the HP 

data were acquired. Nevertheless, the pulse sequence design, including its components and 

parameters will inevitably modulate the detected pyruvate and lactate signal curves in vivo.

Successful HP-13C clinical trials require acquisition strategies offering volumetric coverage 

and high spatiotemporal resolution, combined with reliable kinetic modeling to provide 

accurate assessments of metabolism. The 3D dynamic compressed sensing EPSI (3D CS-

EPSI) sequence constitutes the backbone of an ongoing phase II clinical study, as well as 

several prior preclinical works [8, 9, 25, 26]. It provides 8mm isotropic (0.5cc) coverage of 

full human prostate gland with 2s temporal resolution. A preclinical version of 3D CS-EPSI 

features double spin-echo (DSE) refocusing pulses for improved linewidth and phase 

characteristics, and was used in prior studies of mouse prostate cancer [8]. The DSE version 

introduces two adiabatic 180° pulses and the crusher gradients around the 180°s.

The motivation behind this study was to examine how sequence design and parameters 

impact quantification of cancer metabolism. Although some sequence effects have been 

individually studied before [27, 28], this is, to our knowledge, the first work that 

simultaneously investigates multiple sequence design components, using advanced kinetic 

modeling strategies to assess kPL. Each effect was studied individually by means of 

preclinical HP-13C cancer studies, model simulations and theoretical calculations. For the in 
vivo studies, several variants of the 3D CS-EPSI sequence were designed, including a pulse-

and-acquire (FID) sequence, a DSE-enabled sequence, and 2 derivative sequences (FIDDelay 

and FIDDelay,Crush). Beyond the particular sequence designs in this study, the strategies 

proposed in this work may be useful toward investigating future pulse sequence designs and 
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parameters for clinical translation with more reliable data acquisition and kPL quantification 

pipelines.

2. Methods:

Pulse sequences:

A 3D dynamic echo-planar spectroscopic imaging sequence with compressed-sensing (3D 

CS-EPSI) was applied to all animal and phantom acquisitions in this work [8, 25, 26]. The 

sequence is composed of a multiband spectral-spatial excitation, followed by an optional 

DSE refocusing, and then the 3D compressed sensing EPSI readout using random blip 

gradients in the x and y phase encoding directions (Fig.1).

The basic acquisition backbone in this study was an FID version of the sequence, as shown 

in Figure 1A. The compressed-sensing EPSI readout follows the RF excitation pulses by a 

minimal delay (TE/TR=8.9/150ms). Sequence parameters include FOV = 4×4×8.64 cm, 

spatial resolution = (in-plane) 3.3mm and (axial) 5.4mm, spectral resolution = 9.8Hz, 

bandwidth = 581Hz, temporal resolution = 2s, sequence length = 36s. The multiband 

spectral-spatial excitation pulse train has peak B1 = 1.796(G) and pulse width = 8.9(ms). 

Variable flip angles were independently generated for pyruvate and lactate, with the aim of 

distributing signal across the dynamic acquisition with high SNR. Pyruvate and lactate 

variable flip angles were designed with a “const-signal” approach, using kPL= 0.05(s−1) in 

Eqs. 7,8 and 9 from Xing et al.’s work [29]. This approach has been found to provide 

reproducible kPL estimates on murine cancer model [8].

DSE refocusing can be added to the FID sequence, as illustrated in Figure 1B. With the 

addition of DSE pulses [30], the echo time becomes TE = 150 (ms). The DSE configuration 

introduces several sequence components and parameter alternations, including adiabatic 

180° pulses, crusher gradients around them, and a spin echo time TE.

To begin with, the adiabatic pulses may behave more like saturation pulses rather than 

refocusing pulses at the fringe field near the coil edge, as has previously been observed in 

animal imaging [28]. Since the B1+ field rolls off at coil edges, the adiabatic threshold is not 

satisfied there. Simulation was conducted to investigate this artifact, as described in the next 

section.

Secondly, the crusher gradients around the 180° pulses, which was intended to alleviate flip 

angle errors in the refocusing pulses, could in turn sensitize the sequence to flowing spins. 

This was investigated using FIDDelay and FIDDelay,Crush sequences (Fig.3A and 4A). 

FIDDelay,Crush sequence purposely introduces a bipolar gradient, which has the same 

parameter values as the spin-echo crusher gradients in the DSE acquisition (G=1G/cm on 

x,y,z, δ = 2ms, Δ = 11.8ms, Venc = 0.21m/s, b = 0.02s/mm2), therefore inducing the same 

flow and diffusion artifacts (Fig.3A, bottom). The echo time in the presence of the bipolar 

gradient was TE = 22.3 (ms). In contrast, FIDDelay (Fig.3A, top) does not have the bipolar 

gradient, but has an additional delay of tdelay = 13.4ms between RF excitation and echo. This 

gives FIDDelay the same TE as FIDDelay,Crush. While a prior study investigated crusher 
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effects in vivo [27], the use of same TE in this study decouples crusher flow suppression 

from T2* signal modulations.

Finally, the intrinsic image weighting due to T2, and T2* can modulate both pyruvate and 

lactate signals with different TEs. To study image weighting, the FID-based sequence was 

applied, and TE was varied while keeping the remaining configuration and parameters the 

same. It is conveniently achieved by simply comparing the FID sequence which has the 

minimum echo time (Fig.4A, top, TE = 8.9ms), versus FIDDelay (Fig.3A, top, and 4A, 

bottom, TE = 22.3ms), where the latter effectively introduces a longer TE. The T2* image 

weighting will be reflected in the relative lactate-versus-pyruvate signal level. For instance, 

if lactate has a shorter T2*, FIDDelay should produce a lower lactate/pyruvate ratio than the 

FID sequence, and therefore lower kPL.

Dynamic Modeling and Simulations:

A standard two-site exchange model between pyruvate and lactate was applied to generate 

signal in all simulations in this study. This two-site exchange model accounts for pyruvate 

blood input using a Gamma-shaped arterial input function (AIF), as described by equation 

CAIF t =   A0 ⋅ t − t0
α ⋅ e

− t − t0 /β
 with parameters α = 3.3, β = 4.0. The hybrid 

continuous-discrete model is summarized in the following magnetization and signal 

equations.

dMpyr t

dt = ktrans ⋅ MAIF t − kep + kPL + ρ Mpyr t

dMlac t

dt = kPL ⋅ Mpyr t − ρ ⋅ Mlac t

and

Mx
+[n] = Mx

−[n] ⋅ cosθn

Sx n = Mx
− n ⋅ sinθn

where Mx[n] is the longitudinal magnetization of HP biomarker x, and the − and + 

superscripts mean before and after nth RF excitation, respectively. Sx is the signal, θn is the 

flip angle of nth RF excitation, ρ = 1/T1, and ktrans and kep are the forward and reverse 

perfusion/permeability coefficient, respectively. Lactate-to-pyruvate conversion coefficient 

kLP was assumed to be negligible and omitted, and kep was fixed to nominal value of 

1200(ml/dL/min−1) to simplify model and to improve fitting reproducibility [8, 12].
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To emulate the DSE-induced magnetization spoiling effect due to the B1 drop-off at transmit 

coil edges [28], the net magnetization loss was modeled as an effective decay constant TDSE 

that affects the pyruvate AIF curve MAIF(t) (Fig.1C). The range of TDSE was chosen to be 

10–100(s) to simulate a spectrum of weak to strong spoiling effects. A lactate input function 

was not included in the modeling, assuming the majority of the blood flow through the coil 

edges consists of the pyruvate bolus that was injected through tail vein. This simplifies the 

model and allows for easier numerical analysis. The signal-generating model was the 

abovementioned two-site exchange model with MAIF(t) modulated by the TDSE loss on top 

of the intrinsic T1 relaxation. Nominal values of kPL = 0.04(s−1) and ktrans = 350(ml/dL·min
−1) were selected, and the coefficients for gamma function were set to α = 3.3, β = 4.0 with 

bolus arrival time t0 = 5s from the beginning of injection, based on typical values previously 

observed on the same TRAMP tumor model [4, 12].

Two types of kinetic models were applied for the kPL fitting. The first type attempted to fit 

both the pyruvate and lactate signal evolution to the same two-site model as that of signal-

generating equations, and assumed the AIF to be the gamma function with α = 3.3, β = 4.0, 

t0 = 5s. However, the fitting did not include any DSE-induced loss, namely TDSE →∞. The 

second type was an “inputless” fitting that assesses kPL only based on measured pyruvate 

and lactate signal evolution between timepoints, and does not make any assumptions about 

or fit an input function [15, 31, 32].

The next focus of this work is the flow suppression induced by crusher gradients. First, the 

percentage signal loss of flowing spins along the crusher direction can be approximated 

using equation

S Δ v = S0 sinc γm1 Δ v/2

from Gordon et al [27], where m1 is the first gradient moment, and Δv is the velocity 

distribution in a given voxel.

In simulations, we define the loss percentage rcrusher = 1-|sinc(γm1Δv/2)|. It was assumed 

that the majority of flowing spins are pyruvate in the tumor microvasculature and interstitial 

space, and thus the pyruvate signal Spyr(t) was scaled by (1- rcrusher) for each TR. Similar to 

what was done in the previous simulation scenario, the simulation signal was fit assuming 

the absence of the effect of interest (i.e. without crushing). Therefore, it can be calculated 

how crusher gradients suppress flowing spins, and how such signal loss affects kPL 

quantification.

The third focus is the intrinsic image weightings. Expected signal calculations were done 

with the differential T2* between pyruvate and lactate based on prior estimates [33, 34]. The 

reported in vivo T2* values for pyruvate and lactate are approximately equal to 50(ms) and 

25(ms), respectively. In the calculations, it was assumed that T1=30(s).

All the signal fitting, including the in vivo and simulation-generated data, was done using 

nonlinear least-squares method with the trust-region-reflective algorithm. The inputless 

fitting was applied for in vivo data. The RF excitations θn, as well as the T1 relaxation were 
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taken into account. T1 relaxation was assumed to be equal for pyruvate and lactate for 

simplicity and to stabilize the fit.

MRI Experiments:

MRI imaging studies were conducted on twelve transgenic prostate cancer (TRAMP) mice 

in this work. The TRAMP mice were generated in C57BL/6 x FVB strain background with 

SV40 T-antigen expression [35]. During imaging studies, the mice were anesthetized using 

1–1.5% isoflurane/100% oxygen at flow rate of 1L/min, and a heated water bed was applied 

to maintain normal body temperature. A 32-gauge catheter was placed in the tail vein of the 

subject mice for injection of hyperpolarized bolus. All animal studies and handling were 

conducted in compliance with an approved protocol under the regulations of the Institutional 

Animal Care and Use Committee (IACUC) at University of California, San Francisco.

[1-13C]pyruvic acid was polarized in either a 3.35T SpinLab polarizer (GE Healthcare, 

Waukesha WI) or a Hypersense polarizer (Oxford Instruments, UK) for 1–2 hours, yielding 

80mM pyruvate solution with 20–35% polarization [36]. The dissolved pyruvate, neutralized 

using sodium hydroxide solution of concentration 0.72M (Spinlab) or 80mM (Hypersense), 

was at pH = 7.0±0.5. After dissolution, 500ul of pyruvate solution was manually injected 

into the established tail vein catheter over 15 seconds, such that around 350ul of pyruvate 

solution entered the subject mouse.

The 36s-long acquisition started immediately after the end of injection. For the crusher-

induced flow-suppression study (Fig.3), HP-13C images were acquired using either the 

FIDDelay or FIDDelay,Crush sequence in a set of back-to-back studies. For the intrinsic T2* 

weighting study (Fig.4), images were acquired using either the FID or FIDDelay sequence. 

Finally, the DSE and FID sequences were compared in a similar fashion. In all the back-to-

back comparison studies, interval between injections were 15–20 minutes.

The MRI scans were performed using a commercial 3T MR scanner (MR750, GE 

Healthcare, Waukesha, WI) using a custom-built 1H/13C dual-tuned mouse coil. Anatomical 
1H reference images were acquired using a T2-weighted fast spin-echo (T2-FSE) sequence. 

Scanning parameters for the T2-FSE sequence included spatial resolution = 0.23mm, slice 

thickness = 2mm, FOV = 6 cm, TE/TR = 102/5821 ms.

Data Analysis:

The compressed sensing reconstruction was implemented in MATLAB (Mathworks, Nattick 

MA). MRI images were examined and analyzed using the open-source SIVIC package [37] 

and MATLAB. The tumor region of interest (ROI) was determined based on T2-FSE images, 

where only the voxels that had > 85% area of tumor were selected for quantification of 

HP-13C signal evolution and kPL estimation.

Peak location and area of each metabolite were evaluated using the peak fitting algorithm as 

previously described [8]. Area under the spectral peak was measured as the signal value at 

each time point since it is less susceptible to noise compared to spectral peak height. 

Pyruvate and lactate linewidths were estimated using full-width-half-maximum.
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The pyruvate or lactate signals used to calculate the ratio diagrams (Figures 3E and 4B) 

were normalized to total carbon across the animal summed over time in each injection. 

These ratiometric figures were designed to show the relative spatial distribution of signal 

changes, but are not quantitative due to variations in polarization, delivery, and pulse 

sequence effects.

The statistical analysis for kPL values was conducted using the Mann-Whitney-Wilcoxon 

test, where significance was determined based on P-values.

3. Results:

In all the back-to-back injection studies, the order of study was randomized and no 

difference was found in outcomes regardless of the order. The kPL findings from in vivo 
experiments in this study is summarized in Table I.

Spin-Echo Pulse Magnetization Spoiling:

In simulation, the spoiling was modeled as magnetization loss in the blood pyruvate pool 

with a time constant TDSE. As shown in Figure 2B, the blood pyruvate pool suffers from 

increasingly more magnetization loss with the increasing DSE spoiling from weak (TDSE = 

100s) to strong (TDSE = 10s). The magnetization loss manifested as a change in amplitude, 

shape and duration of the AIF signal curve since the beginning of acquisition (t=0), and this 

subsequently affected the signal evolution of both pyruvate and lactate in the tumor 

compartment, which the blood pool supplies.

Figure 2B illustrates the signal evolution curves, where the top figure shows the pyruvate 

and lactate signal curves fit to a two-site model. As opposed to the signal-generation model, 

the fitting model uses the original, unspoiled AIF. In the presence of a strong spoiling with 

equivalent time constant TDSE = 10s, the estimated kPL value from the fit was kPL = 0.055(s
−1), a 37% error compared to the nominal value of 0.04(s−1) from the signal-generation 

model. As the DSE spoiling effect decreases (that is, increase of TDSE), the estimated kPL 

decreases asymptotically toward the nominal value just as anticipated.

The inputless fitting (Fig.2B bottom) does not use any a priori knowledge or model to 

emulate the AIF, but instead takes the observed pyruvate and lactate magnetization at each 

time point to evaluate the real-time conversion rate. At TDSE = 10(s), the fit gives kPL = 

0.0405(s−1), or about 1.25% error, substantially lower than that from the two-site model 

assuming the original AIF.

Crusher-induced Flow Suppression:

Simulation results in Figure 3B show the fraction of transverse magnetization being 

quenched by crusher gradients given a typical variability range of in vivo flow velocities. For 

a flow velocity distribution Δv = 30 (cm/s), about 10% of the flowing spins should be 

suppressed by the standard crusher gradients around the DSE pulses.

Simulated kPL against Δv is shown in Figure 3C. The net pyruvate signal loss in tumor was 

taken from the simulation in Figure 3B. Assuming Δv=30 (cm/s) along the crusher direction, 
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the signal model fitting yielded kPL,fit = 0.043(s−1), or 6.7% error versus the nominal 

kPL,signal-generation = 0.04(s−1), whereas Δv=40 (cm/s) produces 12.5% error (kPL,fit = 0.045 s
−1).

Figure 3D shows pyruvate area under curve (AUC) maps acquired using FIDDelay (bipolar 

gradient off) versus FIDDelay,Crush (gradient on). Comparing the images, flow-suppression 

effect is most pronounced at the vascular and renal regions, as highlighted by the green 

arrow.

The normalized signal ratio maps between FIDDelay versus FIDDelay,Crush for pyruvate and 

lactate also highlight flow-suppression effects. These can be identified on the pyruvate ratio 

map at the kidney and tumor regions (Fig.3E), where images acquired using FIDDelay,crush 

produced relatively lower pyruvate signal. On the other hand, the flow-suppression was 

much less pronounced on the lactate ratio map for either the kidney/vasculature or the tumor 

region.

In the prostate tumors, kPL was evaluated and compared between FIDDelay and 

FIDDelay,Crush for six animals. kPL,FID-Delay,Crush / kPL,FID-Delay was calculated as 1.37 

± 0.33 (Fig.3D, N = 6, P<0.01). This indicated that the crusher-induced flow suppression 

significantly affected kPL estimation. Sensitivity of ktrans to double spin-echo and crusher 

flow suppression can be found in the simulation depicted in Supplemental Figure 1. 

Example kPL fits can be found in Supplemental Figure 2.

Intrinsic Image Weighting with Focus on T2*:

Based on theoretical calculations, the differential T2* (~50ms for pyruvate and ~25ms for 

lactate) would, theoretically, create 23.5% extra loss of pyruvate transverse magnetization, 

and 36.0% that of lactate in FIDDelay relative to FID, due to the additional delay of tdelay = 

13.4ms. In other words, the shorter lactate T2* creates 12.5% more lactate loss relative to 

pyruvate in FIDDelay versus the FID sequence.

In Figure 4B, the normalized signal ratio maps between FIDDelay and FID sequences were 

illustrated in a TRAMP tumor for pyruvate and lactate, respectively. Both the pyruvate and 

lactate maps showed considerable spatial inhomogeneity within the prostate tumor and in the 

vasculature adjacent to the tumor. Figure 4C shows the estimated maps of kPL using the 

same datasets as Figure 4B. The right anterior (from the image perspective) of the tumor had 

higher pyruvate ratio, but relatively low lactate ratio. This was reflected on the kPL map as 

substantially lower kPL over the right anterior region in the FIDDelay map (<0.01 s−1) versus 

the FID map (~0.035 s−1). On the other hand, the left posterior of the tumor had comparable 

pyruvate and lactate ratios in Figure 4B. As a result, the estimated kPL was also comparable 

in the FIDDelay versus FID kPL maps (~0.025 s−1) in the left posterior region. The change of 

contrast between the two kPL maps suggests local variabilities of pyruvate and lactate T2*’s 

in vivo.

When an average was taken across the entire tumor, the FIDDelay sequence generated overall 

lower kPL estimates compared to the FID (N=5). The kPL ratio was kPL,FID-Delay / kPL,FID = 
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0.67 ± 0.09 (Fig.4C right, P<0.01). This outcome indicated that lactate has, on average, 

shorter T2* than pyruvate over the tumor region.

A typical spectrum extracted from tumor regions using the FID acquisition is shown in 

Figure 4D. From the spectrum, one can also observe that lactate has generally a broader 

linewidth compared to pyruvate, another piece of evidence that supports the shorter lactate 

T2*. Examining N=13 sets of data acquired using the FID sequence revealed that the 

linewidth ratio of pyruvate versus lactate was Δωlactate/Δωpyruvate = 1.32 ± 0.07 (P<0.00001, 

N=13). The measured linewidth of pyruvate and lactate translated to T2*pyr = 21.1 ± 1.2(ms) 

and T2*lac = 16.0 ± 2.1(ms), respectively.

FID vs DSE Mode Acquisition:

In the studies conducted on 7 TRAMP mice, the kPL ratio was calculated as kPL,DSE/kPL,FID 

= 2.40±0.98 (Fig.5A, P<0.0001). A sample kPL map (Fig.5C) also shows generally higher 

kPL,DSE versus kPL,FID over the tumor region, consistent with the statistical kPL outcomes 

from the N=7 studies. Significantly higher lactate SNR was also found in the DSE versus 

FID sequence (Supplemental Figure 3, SNRDSE,lac / SNRFID,lac = 2.15 ± 1.01, P<0.001), 

while pyruvate SNR was comparable (SNRDSE,pyr / SNRFID,pyr = 1.06 ± 0.88, P=0.09) 

between the two.

4. Discussion:

Spin-Echo Pulse Magnetization Spoiling

The DSE-induced AIF spoiling happens in the transmit RF coil fringe fields. In our mouse 

setup, this is primarily occurring in the mouse tail vein, while in typical patient setups this 

will occur at the edge of the coil. In the presence of spoiling, a conventional two-site 

exchange model kPL fit using an unspoiled AIF leads to errors as large as 37% (with TDSE = 

10s), since the additional loss of pyruvate signal induces deviation from the assumed AIF 

(Fig.2).

One approach for mitigating this error is to physically apply an RF shield, as suggested by 

von Morze et al [38], who showed that the inflowing spins can be sheltered from RF pulses 

using aluminum shielding on tail vein. Another approach is to use the inputless kinetic 

modeling that disregards the AIF, and estimates kPL only based on the real-time pyruvate 

and lactate signals. This substantially reduced the AIF-related errors. (~1% error with TDSE 

= 10s). Yet another option is to use slice-selective refocusing pulses to control the fringe 

field region [39].

To date, the DSE refocusing pulses have yet to be applied in human studies. Our current 

clinical prostate 13C MR excite coil [40] cannot support adiabatic pulses with wide enough 

bandwidths due to peak RF power and RF duty cycle constraints, as well as B1 

inhomogeneities that could lead to violations of the adiabatic condition. Nevertheless, in the 

general sense, any RF pulse such as an excitation pulse could still induce undesired 

magnetization loss that may not be observed, for example if it hits a major blood vessel 

outside the imaging FOV. As a case in point, spoiling could occur if the antecubital injection 
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site on the patient’s arm is near a high-power region of the RF coil, and may go unnoticed 

when imaging a FOV focused on the prostate.

Crusher-induced Flow Suppression

The signal loss due to the crusher gradients is determined by the dispersion of flow 

velocities Δv across a given voxel along the gradient direction. Higher Δv induces more 

signal loss, and Δv is often proportional to the vector flow velocity. The signal loss is not 

only a function of the perfusion/permeability coefficient ktrans, but also depends on the 

fraction of extracellular extravascular space ve. The former dictates the shape and maximum 

enhancement of the pyruvate magnetization curve in tumor MPyr,T(t). The latter is strongly 

associated with Δv, where flowing spins are predominantly vascular and interstitial, and 

static spins are mainly from cellular uptake.

Our results showed substantial pyruvate signal loss with crusher gradients near the tumor 

(Figure 3E), inferior vena cava, and kidneys (Figure 3D). The vena cava and kidneys are 

known to have high pyruvate Δv due to strong perfusion. Within the TRAMP tumors, 

pathology and pharmacokinetics could explain the increased kPL (Figure 3F): As the tumor 

undergo angiogenesis, the formation of leaky microvasculature could create an irregular 

blood flow pattern that results in a wide spectrum of Δv, leading to preferential suppression 

of pyruvate since it has a larger vascular fraction than lactate as suggested by prior reports. 

Since angiogenesis is a hallmark of cancer, analogous phenomena need to be considered in 

patient studies [41, 42]. For instance, if a measured AIF is to be extracted for modeling, 

differential flow suppression between tumor versus blood may impact the accuracy of kPL 

estimation [13, 14, 43, 44].

While both DSE magnetization spoiling and crusher-induced flow suppression seemingly 

increase kPL artificially by reducing pyruvate signal, there are a few fundamental 

differences. In general, RF spoiling, including DSE spoiling, acts on longitudinal 

magnetization, creating an effective loss similar to T1 relaxation. This creates signal 

modulations in the tumor that is a direct consequence of the magnetization loss from AIF. 

The crusher gradients, on the other hand, create a transverse signal loss similar to T2*. This 

independently modulates AIF and tumor signals as a function of flow velocity distribution. 

Therefore, the magnetization spoiling of the AIF depends on the RF pulses seen by the 

inflowing HP spins through major arteries, while the signal loss due to crusher-induced flow 

suppression is a function of the distribution of spin vector velocities within any given voxel. 

Another interesting factor to explore in the future is how the blood lactate pool interacts with 

the pulse sequences, and how that affects kPL estimation [14].

T2* Image Weighting

In hyperpolarized acquisition scenarios, image weighting/contrast in a given voxel is 

dictated by local T2 and T2*. The outcomes of this study indicated that longer TE in the FID 

scheme decreases the lactate signal relative to pyruvate, and therefore giving a lower 

apparent kPL. Along with the broader linewidth of the lactate peak, these findings suggested 

that lactate has shorter T2* than pyruvate. This could be due to J-coupling of lactate [33, 

34]. While the theoretical calculations in the Results section assumed that T2 and T2* were 
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constant over time, in reality T2 and T2* can be both spatially and temporally dependent 

based on the intra-voxel distribution and voxel content.

From Figure 4C, it is also interesting to note that TE changes spatial variations in the kPL 

map in addition to changing the average kPL values. The altered relative contrast reflects 

heterogeneity of in vivo T2* in different tumor regions. This could result from a 

heterogeneous microenvironment, with differences in cellularity, vascular density and 

leakage, ve [45, 46], and also the presence of metal ions or paramagnetic molecules that 

creates relaxation pathways [47, 48]. As human prostate cancer is known to be 

biochemically and pathologically heterogeneous, the differential HP-13C T2* can potentially 

act as molecular signatures of tumor microenvironment.

FID vs DSE Sequences

We observed ~2-fold increases in lactate SNR in DSE compared to FID. Meanwhile, we also 

observed ~2-fold increased kPL estimates with DSE compared to FID. The expected 

differences in this comparison are spin-echo spoiling, crusher gradient flow suppression, and 

T2 image weighting. Since an inputless model was used, the spin-echo spoiling is expected 

to make no difference. The crusher gradients in the DSE sequence lead to relative loss of 

pyruvate signal in tumor, thereby expected to increase kPL estimates. Finally, the DSE 

sequence is T2-weighted and has echo time of TE = 150ms, whereas the FID sequence has a 

small amount of T2*-weighting at a relatively short echo time (TE = 8.9 ms).

Our FID TE experiments showed that T2*-weighting leads to decreased tumor kPL. 

However, the DSE, which was T2-weighted, had a significantly higher tumor kPL versus 

FID. Overall, this ~2-fold increase of the DSE kPL is more than can be explained by our RF 

spoiling simulations (no significant difference with inputless model), crusher flow 

suppression (1.1-fold increase in kPL) or differences in transverse relaxation times (1.4-fold 

increase assuming equal T2 in simulations). This strongly suggests that T2* and T2 do not 

have the same effect on kPL, and likely they have an opposite effect on kPL. Based on this, 

we posit that in this prostate tumor model, lactate is likely to have a longer or equal T2 than 

pyruvate. This is supported by prior studies [6, 13] of in vivo T2 values, that reported 

pyruvate T2 with short component = 0.12s, long component = 0.54s, whereas lactate had 

short component = 0.13s, medium = 0.75s, and long = 2.2s, respectively. Assuming these 

components contribute equally to the signals, pyruvate would suffer from 30.8% more signal 

loss compared to lactate at TEDSE = 150ms, which would lead to increased kPL as was 

observed. Also, it is worth noting that the in vivo T2 values reported varied between tissue 

and tumor types.

Potential Strategies for Robust Acquisition

The results of this paper can be used to inform on differences between imaging sequences 

being applied in HP-13C clinical studies.

While a few prior works studied how some individual pulse sequence factors (e.g. double-

spin echo) affects HP-13C signal evolutions in generic terms, none have addressed the pulse 

sequence considerations in the context of the translational need to quantitatively model 
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pyruvate-to-lactate metabolism that may potentially differentiate clinically aggressive vs 

indolent cancer.

The findings of this work indicated that pulse sequence design can significantly impact the 

accuracy of kPL measurements when using advanced clinical acquisition and kinetic 

modeling techniques. From this perspective, we recommend rigorous reporting of pulse 

sequence design and parameters in future clinical trial and preclinical studies since kPL 

estimations can be affected by the acquisition factors discussed above. Our 

recommendations include whether a spin-echo was applied, the echo time (TE), and crusher 

gradients parameters such as b-value, because this study found that all of these factors can 

affect the estimated apparent rate constant and its spatial distribution. This will facilitate 

interpretation of kPL measurements between studies with different acquisition strategies.

Using DSE has the potential to improve lactate SNR, which is important for patient studies 

where lactate is often the SNR-limiting factor. For instance, in prostate cancer imaging the 

mean pyruvate SNR over time was reported around 45, whereas lactate approximately 6 [9]. 

Hence, it might be beneficial to utilize the relatively long lactate T2 (as opposed to short 

T2*) with spin-echo refocusing to enhance lactate SNR for more reliable quantification. For 

clinical studies, this requires clinical 13C MR coils with sufficient max power and B1 

homogeneity, such as a whole body 1H-13C dual-tuned coil [49] or a human-brain birdcage 

transmitter [50] to support spin-echoes, in addition to efficient RF pulse designs. When 

using spin-echo refocusing, care should be taken to mitigate RF spoiling [28]. Even though 

the inputless kinetic is robust to spoiling, this effect still reduces total SNR. One solution is 

to delay the start of acquisition until bolus clearance from arteries. Appealing alternative to 

DSE are the balanced steady-state free precession (bSSFP) sequences [51, 52] that can also 

exploit long T1 and T2 to improve lactate SNR.

From the measurements in this study, an additional 13.4 ms elongation in TE caused 

significant lactate signal loss relative to pyruvate that led to 33% reduction in kPL. This 

makes the minimization of T2* loss a key pulse design parameter for FID sequences 

especially when lactate is SNR-limited.

The T2* weighting varies across sequences: IDEAL spiral CSI [53] has short TE, since no 

spectral-spatial excitation is required and the spiral readout starts at the center of k-space. 

The 3D EPSI used in our phase II prostate cancer study also has short TE because it uses 

short spectral-spatial RF pulses (4.1ms) with relaxed flip angle constraints on irrelevant 

resonances [9]. These sequences offer minimized T2* losses. On the other hand, metabolite-

specific imaging sequences [54, 55] might be more susceptible to T2* relaxation, as a longer 

spectral-spatial pulse is required to attain spectral selectivity for a single metabolite. EPI has 

a longer TE compared to spiral readouts, although it can be reduced through use of partial 

Fourier acquisitions [55]. Within a specific acquisition scheme and pulse sequence, one 

should keep the echo time and readout minimum to mitigate the T2* losses. For instance, a 

sequence designer should heavily consider the total TE when attempting a large-TBW pulse 

for spectral or spatial selectivity in FID sequences.
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Overall, a T2-weighted sequence exploiting the long T2 of lactate (spin-echo or bSSFP) may 

be favored versus a T2*-weighted sequence whenever hardware supports. On top of 

alleviating T2* losses, the relatively longer lactate T2 provides additional lactate SNR 

benefit without pyruvate SNR loss. Among the FID sequences, ones that are less demanding 

on RF selectivity may have precedence over metabolite-specific acquisitions due to the 

shorter TE.

Potential Strategies for Robust Quantification

A challenge for robust quantification is that numerous constituents participate in the 

formulation of the apparent rate coefficient kPL. First and foremost, the LDH-mediated 

pyruvate-to-lactate conversion is presumed to be the primary factor contributing to kPL,. 

Secondly, the pharmacokinetic behavior in vivo, known to closely affiliate with the tumor 

microenvironment, can also affect kPL measurements. Thirdly, the HP-13C imaging exam 

parameters, including acquisition strategies discussed in this paper, can also modulate the 

quantification of kPL. This is a good example of the observer effect [56], where interrogating 

the HP-13C magnetization using RF pulses and gradients alters the HP-13C magnetization 

from its intrinsic behavior.

Ideally, the LDH-mediated conversion, pharmacokinetics, and exam parameters can be 

separated when estimating kPL, and a reliable kPL measurement should be independent of 

the last. Using an inputless modeling strategy can accurately estimate kPL even with DSE (or 

generally RF) spoiling of the AIF, while models that rely on the AIF may give errors. 

Correction for crusher-induced flow suppression will require either knowledge or an 

estimate of Δv, and potentially also ktrans and ve based on models. To evaluate the 

differential crusher suppression between microvascular versus interstitial/intracellular pool 

of pyruvate, one potential solution is to utilize the two-compartment two-site exchange 

model proposed by Bankson et al. [23] that aims to discriminate circulating and static 

HP-13C spins. This once again highlights the importance of rigorously reporting parameters 

such as b-value in the presence of crusher gradients. At this stage, it appears that existing 

kinetic models do not adequately account for T2 or T2* weightings. One option is to 

estimate relaxation times using the HP-13C T1 and T2 mapping methods based on bSSFP 

[47, 52].

Generally speaking, the amount of a priori knowledge about the tissue properties and 

pharmacokinetic behaviors still imposes a limit on model performance. Akaike’s 

information criteria serves as a good benchmark to determine if additional factors will 

benefit the model/fit based on in vivo data [22].

Summary

Through in vivo studies of mice with transgenic tumor, model simulations and theoretical 

deductions, this study investigated how HP-13C MR acquisition methods can affect the 

calculation of kPL. This included higher apparent kPL due to RF magnetization spoiling and 

crusher-induced signal loss, and also effects of intrinsic T2/T2* weighting on kPL 

calculations. Just as importantly, this study established a way to explore sequence-specific 
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effects on quantification of cancer metabolism, which are important to benefit ongoing and 

future clinical and preclinical studies.

The findings of this study indicated that an optimal pulse sequence design is equally 

important as robust data processing and kinetic modeling methodologies. A key observation 

is that the quantitative impact of data acquisition on kPL not only depends on the pulse 

sequence per se, but the interaction between the sequence, pharmacokinetic behavior and 

tissue microenvironment. The outcomes also provided insight into potential solutions and 

strategies that may minimize the impact of systematic artifacts from pulse sequences, and 

therefore making kPL a reliable measure that is robust to the offsets and errors introduced by 

the acquisition process.

5. Conclusions:

Using a 3D dynamic MRSI sequence applied in clinical/preclinical studies along with 

advanced kinetic modeling techniques, this work explored how sequence components and 

parameters impact kPL quantification in cancer. For ongoing and future patient and 

preclinical studies, development of both robust data acquisition and analysis strategies will 

be the key toward reliable measures that reflects the true underlying cancer metabolism.
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Figure 1. 
The A) FID and B) double-spin echo (DSE) mode of 3D dynamic compressed sensing EPSI 

sequence [25,26], as well as two modified version of FID mode, were used to investigate 

impact of the sequence design and parameter on quantitative kPL estimation.
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Figure 2. 
A) A two-site exchange model that includes pyruvate vascular input was applied for the 

simulation of spin-echo RF spoiling effects. Spoiling was modeled as magnetization loss in 

the input function Mpyr,A(t) with equivalent decay factor TDSE. B) With stronger DSE 

spoiling (i.e. a shorter time constant), the pyruvate signal decays more rapidly than expected. 

This leads to poor pyruvate fits and overestimation of kPL if a fixed AIF is used, which can 

be eliminated with an inputless fitting that makes no assumptions about the AIF [15,28]. 

Note that MAIF(t) is the AIF magnetization curve, while Sx(t) is the signal curve for 

metabolite x. In fact, the magnetization and signal curves have independent scaling and were 

only plotted together for illustration purposes.
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Figure 3. 
Simulated and experimental results testing the impact of crushers gradient (applied around 

DSE refocusing pulses) that can suppress flowing spins, which are predominately pyruvate. 

A) FID sequences with (FIDDelay,Crush) and without (FIDDelay) crusher gradients that were 

tested. B) Fraction of signal remaining with the given crusher gradient strength in A). C) 
Simulated kPL estimates increased with higher flow velocity, where more flowing spins were 

suppressed. D) Map of pyruvate area under curve. Spatially-dependent flow-suppression can 

be observed around the major vasculature. E) Crusher gradient-induced flow-suppression 
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can be seen in signal ratio maps between FIDDelay,Crush and FIDDelay, where pyruvate saw 

stronger suppression around tumor, kidney and vasculature. F) The ratio was calculated 

kPL,FID-Delay,Crush / kPL,FID-Delay = 1.37 ± 0.33.
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Figure 4. 
Evaluation of T2* image weighting on kPL. A) If lactate has a shorter T2* as shown 

previously, adding a delay to an FID sequence will reduce kPL. B) Ratio of pyruvate and 

lactate signal AUC in the same TRAMP tumor using FID versus FIDDelay sequences. The 

latter has substantially reduced lactate signals compared to pyruvate. C) kPL map of FID 

versus FIDDelay sequences. Ratio of kPL estimates in the same TRAMP tumor showing that 

adding a delay lowers kPL, where kPL,FID-Delay / kPL,FID = 0.67 ± 0.09. D) The in vivo 
lactate linewidth was broader than pyruvate, and thus lactate had a shorter T2*.
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Figure 5. 
A) Increased tumor kPL estimates were found using DSE versus FID sequences. For each 

pair of data, the hyperpolarized study was conducted back-to-back using the same TRAMP 

mouse. B) The DSE sequence gives higher kPL estimates across this example TRAMP 

tumor.
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Table I.

This table briefly summarizes all the in vivo comparisons made, in order to investigate the effects of crusher 

gradient-induced flow suppression and image weighting that can affect kPL estimation.

Compared Values Ratio (unitless)

kPL,DSE / kPL,FID 2.40±0.98

kPL,FID-Delay /kPL,FID 0.67±0.09

kPL,FID-Delay,Crush /kPL,FID-Delay 1.37±0.33

Spectral linewidth Δωlac/Δωpyr 1.32±0.07
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