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Abstract

Objective: We aim to characterize the qualities of estimation approaches for individual exposure 

to ambient-origin fine particulate matter (PM2.5), for use in epidemiological studies.

Methods: The analysis incorporates personal, home indoor, and home outdoor air monitoring 

data and spatio-temporal model predictions for 60 participants from the Multi-Ethnic Study of 

Atherosclerosis and Air Pollution (MESA Air). We compared measurement-based personal PM2.5 

exposure with several measured or predicted estimates of outdoor, indoor, and personal exposures.

Results: The mean personal 2-week exposure was 7.6 (standard deviation 3.7) μg/m3. Outdoor 

model predictions performed far better than outdoor concentrations estimated using a nearest-

monitor approach (R=0.63 versus R=0.43). Incorporating infiltration indoors of ambient-derived 

PM2.5 provided better estimates of the measurement-based personal exposures than outdoor 

concentration predictions (R=0.81 versus R=0.63) and better scaling of estimated exposure (mean 

difference 0.4 versus 5.4 μg/m3 higher than measurements), suggesting there is value to collecting 

data regarding home infiltration. Incorporating individual-level time-location information into 

exposure predictions did not increase correlations with measurement-based personal exposures 

(R=0.80) in our sample consisting primarily of retired persons.

Conclusions: This analysis demonstrates the importance of incorporating infiltration when 

estimating individual exposure to ambient air pollution. Spatio-temporal models provide 

substantial improvement in exposure estimation over a nearest monitor approach.
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Introduction

Exposure estimation in epidemiological research of ambient air pollutants typically relies—

directly or indirectly—upon data collected from sparsely distributed networks of regulatory-

directed ambient monitors. While personal monitoring of exposure may in many ways be 

considered superior to these estimation approaches, such monitoring is impractical for large 

cohorts and for long-term studies. Further, if the goal is to understand ambient-origin 

exposures, personal monitoring introduces misclassification by including pollutants 

generated indoors and by personal activity.(1) As a result, prediction is preferred for ambient 

exposure assessment even as concerns remain about the degree of exposure 

misclassification. Several investigator groups have recently recommended improvements in 

exposure predictions used in epidemiology, including the testing of multiple exposure 

metrics with each health dataset(2) and the incorporation of pollutant-specific infiltration 

and detailed time-activity information.(3) This paper addresses these needs in the context of 

a recent epidemiological study.

While historical air pollution studies often used simpler exposure assignment approaches 

such as assignment of measured concentration from a single nearest monitor, many modern 

epidemiological studies use modeled ambient pollutant concentrations from spatial or 

spatio-temporal models assigned to discrete spatial locations (e.g., outside a given subject’s 

home). Outdoor air pollutant concentrations generated for geocoded residence locations are 

usually assumed to be representative of an individual’s true exposure. While much of 

outdoor fine particulate matter (PM2.5) air pollution may infiltrate indoors, infiltration rates 

can vary by season, geographic location, and with housing or behavioral characteristics 

including building age, air conditioning usage, and window opening.(4–8) Variability in 

PM2.5 infiltration is further affected by particle size distribution and by chemical 

composition; larger particles, ultrafine particles, and more volatile species all have reduced 

infiltration efficiency.(7, 9, 10) Further, people spend time at locations other than 

immediately outside or inside their homes, such as at work or commuting, which are not 

necessarily well-represented by residence-based predictions.

Understanding exposure misclassification is a key component of measurement error 

analysis. As part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA 

Air),(11) we examined sources of exposure misclassification associated with various 

approaches to exposure estimation for air pollution epidemiological research. This analysis 

incorporates personal, home indoor, and home outdoor air monitoring data collected for this 

study. Using particulate sulfur measurements, we created a “reference approach” for 

personal ambient-derived PM2.5 exposure and compared this measurement-based personal 

exposure metric to a number of additional exposure estimation metrics including spatio-

temporal exposure model predictions developed for the entire multi-city MESA Air cohort. 

These comparisons allowed us to understand different aspects of exposure misclassification 
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by comparing personal to outdoor and indoor exposures and measured to predicted 

exposures. We anticipated that outdoor concentrations predicted with the spatio-temporal 

model would be more aligned with our reference personal exposure metric than 

concentrations estimated with a simpler “nearest monitor” approach. Additionally, we 

hypothesized that incorporating information on pollutant infiltration and personal time-

location patterns would further improve this relationship.

Methods

Approach

The primary goal of this paper was to evaluate and understand differences in estimates of 

personal exposure to ambient-origin air pollution. Eight different exposure metrics are 

presented, including several residence-specific measurement-based concentrations, 

predictions derived from highly resolved spatio-temporal models, and concentrations using 

data from the nearest regulatory monitors. These metrics were developed to reflect the range 

of exposure metrics presented in the epidemiological literature in order to better understand 

and characterize exposure misclassification that may be associated with each approach.

Study Population

MESA Air is an ancillary study to the Multi-Ethnic Study of Atherosclerosis (MESA),(12) a 

prospective cohort study of the incidence and progression of cardiovascular diseases (CVD) 

in adults. MESA included 6,814 participants from six US communities: Baltimore, MD; 

Chicago, IL; Forsyth County, NC; Los Angeles, CA; New York, NY; and St. Paul, MN. 

Participants were aged 45–84 years at enrollment, which occurred between 2000-2002, with 

an approximately equal sex ratio, and were free of recognized CVD at baseline. Four ethnic/

racial groups were targeted for inclusion: non-Hispanic white, non-Hispanic black, Hispanic, 

and Chinese. MESA Air includes 7,551 participants, of which the majority are from the 

parent MESA cohort. Additional participants were recruited from a second ancillary study to 

MESA, the MESA Family Study (n=490), and directly for MESA Air (n=257) in three 

additional areas near existing MESA communities, two areas in the Los Angeles basin and 

one area near New York City.(11)

Between 2005-2008, a subset of 90 MESA Air participants completed a two-week personal 

monitoring study. All of the participating centers’ institutional review boards approved the 

study, and all study participants gave written informed consent before data collection. These 

participants completed concurrent indoor, outdoor, and personal PM2.5 monitoring and 

recorded their locations for the duration of the personal monitoring period in detailed time-

location diaries; 80 of these participants completed the monitoring protocol twice, in two 

distinct seasons.(13) Participation in this personal monitoring study was restricted to 

individuals living in nonsmoking households.

Data Sources

Residential and Personal Measurements of Fine Particulate Matter (PM2.5)—
MESA Air collected two-week concurrent outdoor, indoor, and personal measurements of 

PM2.5 using previously described methods.(13) Briefly, outdoor sampling was typically 
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conducted in a participant’s backyard, away from all structures, and indoor samplers were 

deployed in the participant’s main activity room away from pollutant sources or ventilation 

systems. Harvard personal environmental monitors (HPEM, Cambridge, MA) were worn 

during the day, with an inlet to the sampler worn in the breathing zone, with the air sampling 

pump (TSI SidePak SP530, Shoreview, MN) carried in a backpack or fanny pack, running on 

battery power. PM2.5 mass concentrations were gravimetrically determined from Teflon 

filters at the University of Washington in a temperature- and humidity-controlled 

environment(14) using standard filter weighing procedures.(15) In addition to determining 

PM2.5 mass, filters were also analyzed for sulfur content by x-ray fluorescence. Sulfur has 

been found to be a reasonable tracer of ambient particle infiltration, with a similar 

infiltration rate to particles as a whole, but with very few indoor sources.(16)

Modeled PM2.5 Exposures—Outdoor fine particulate matter concentrations were 

modeled on the two-week scale for each MESA city using area-specific finely resolved 

spatio-temporal methods.(17) These models were developed by determining a temporal 

trend from MESA Air study-specific and government agency monitors, incorporating land-

use information such as distance to road, population in buffers, elevation, vegetative cover, 

industrial emissions, and other variables through partial-least squares (PLS) regression, and 

universal kriging of the spatio-temporal residuals between model predictions generated by 

the time-trend and PLS components and two-week measurements. Measurement data were 

derived from monitors at regional regulatory agency sites (13-45 sites in each area with 

51-346 2-week observations per site), MESA Air stationary sites (3-7 per area with 6-93 2-

week observations per site), and MESA Air home monitoring locations (86-136 in each area 

with 1-5 observations per site), including the homes of personal monitoring study 

participants. The prediction models use data derived from participant-specific home outdoor 

measurements, so predictions at personal monitoring participants’ homes would have been 

expected to be better on average than those for a randomly selected cohort members. This 

could have led to potentially biased misclassification assessments, as the majority of cohort 

members did not have a monitor placed outside at their home. To address this possibility, 

predictions used in this paper were derived from models developed for cross-validation 

exercises which excluded the home under study. Spatio-temporal models were re-fit 10 

times, each time leaving out 10% of the monitors and generating predictions for those 

locations based on the remaining 90% of the monitoring data. Cross-validated R2 for each 

model were calculated based on these out-of-sample predictions, and ranged from 0.54 to 

0.85 for prediction at home sites. The RMSE ranged from 1.00 to 2.92 μg/m3. Predictions 

were generated for non-overlapping two-week periods that generally aligned well with 

residential monitoring.

Personal Time-Activity Patterns—Time activity patterns were assessed using two 

different questionnaires.(18) Two-week specific time-location information was provided by 

personal monitoring study participants using a time-location diary (TLD) that was 

completed concurrently with personal exposure monitoring. In the TLD, participants 

recorded their location (the number of minutes in each hour) for each hour of each study day 

spent in one of seven microenvironments: home indoors, home outdoors, motorized vehicle, 

work indoors, work outdoors, other indoors, and other outdoors. A second questionnaire, the 
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“MESA Air Questionnaire” (MAQ) was administered to the entire MESA Air cohort. The 

MAQ included an assessment of a typical week in July (warm weather) and in January (cold 

weather), with time-location behavior (hours per day) recorded for each day in a similar set 

of seven microenvironments (home indoors, home outdoors, work/volunteer/school indoors, 

work/volunteer/school outdoors, in transit (e.g., car, bike, public transit), other indoors, and 

other outdoors) as had been documented in the TLD.

Modeled Infiltration Efficiency (Finf(p))—As part of the MAQ, participants reported on 

home characteristics and behaviors that impact air flow into the home, such as window-

opening frequency and air conditioning use. These responses together with ambient 

temperature data were used to develop an infiltration model generalizable to the entire 

cohort, including participants that were not included in the environmental monitoring subset.

(4)

Regulatory Monitor Measurements of PM2.5—A common approach to exposure 

estimation is to assign each participant pollutant concentration data measured at the air 

monitoring agency station closest to their residence. Station monitors are brought online or 

decommissioned according to national and local regulatory priorities, which could introduce 

additional variability if the “nearest monitor” assigned to a particular participant changes. 

Therefore, for our nearest-monitor approach, we included only monitors that had 

measurements available during the entire study period. The list of monitors is provided in 

Supplementary Table S1.

Exposure Metrics

Table 1 summarizes the eight measured and modeled exposure metrics compared in this 

study, which each cover the intended two-week study-specific sampling period.

1. Measurement-based Personal Ambient-Derived PM2.5 (Reference 
Approach)—The measurement-based reference approach estimates personal exposure to 

PM2.5 of ambient origin by multiplying measured outdoor PM2.5 by the ratio of personal 

sulfur to outdoor sulfur. This sulfur ratio is used to estimate the proportion of measured 

personal PM2.5 that is thought to be of ambient origin.

2. Measured Outdoor PM2.5—This metric represents the two-week integrated 

measurements of PM2.5 collected outside participant residences as described above.

3. Predicted Outdoor PM2.5—Predicted ambient concentrations of PM2.5 at each 

subject’s home concurrent with measured concentrations are available from the spatio-

temporal model developed for the entire cohort.(17) Ten of the 170 personal monitoring 

rounds did not occur on this schedule due to logistical conflicts, and their measurements 

overlap two consecutive predictions. In these cases, the two predictions were averaged for 

comparison to the measurements.

4. Nearest Monitor Outdoor PM2.5—EPA Air Quality System (AQS) monitors were 

selected to represent ambient community-scale exposure. A list of the selected monitors is 

provided in the Supplemental Materials. Daily or one-in-three day 24-hour integrated 
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measurements collected during the two-week study-specific sampling period were averaged 

to yield this metric.

5. Measurement-Based Indoor Ambient-Derived PM2.5—The measurement-based 

indoor approach estimates indoor exposure to PM2.5 of ambient origin by multiplying the 

measured outdoor PM2.5 by the ratio of indoor sulfur to outdoor sulfur. This sulfur ratio is 

used to estimate the proportion of measured indoor PM2.5 that is thought to be of ambient 

origin (measured infiltration efficiency, Finf(m)).

6. Prediction-Based Indoor Ambient-Derived PM2.5—The prediction-based indoor 

approach estimates indoor exposure to PM2.5 of ambient origin by adjusting the predicted 

outdoor PM2.5 using the predicted two-week specific predicted infiltration efficiency 

modeled in MESA Air (Finf(p)).(4)

7. Measurement-Based Individually-Weighted Ambient-Derived PM2.5—This 

metric is an alternative, measurement-based approach that uses two-week specific 

measurements. These measurements are analogous to the components used in the prediction-

based approach, described below. For this metric, measured outdoor PM2.5 and 

measurement-based indoor ambient-derived PM2.5 are averaged with weighting by time 

reported spent indoors and outdoors on the TLD. In calculating this metric, we assumed that 

the home indoor and outdoor concentrations are representative of all indoor and all outdoor 

locations, respectively.

8. Prediction-Based Individually-Weighted Ambient-Derived PM2.5—This 

metric included both outdoor predictions and the indoor predictions, which incorporate 

Finf(p). (4) Individual-level predictions were made by calculating time-weighted air pollution 

predictions incorporating the indoor and outdoor predictions and reported time-location 

information from the MAQ. For this analysis, we assumed that concentrations measured at 

home indoors are representative of all indoor locations, and concentrations measured at 

home outdoors are representative of all outdoor locations.

For purposes of evaluation in the context of our epidemiological study, metrics 3, 4, 6, and 8 

can be estimated for most cohort members while the other methods require the information 

from the personal monitoring study described in this paper.

Analysis Methods

For all measurement-based exposure metrics, we excluded rounds of sampling that did not 

contain a complete set of measurements (outdoor PM2.5, outdoor sulfur, indoor sulfur, 

personal sulfur, and time-location data). Results were also excluded if the sulfur ratios 

(personal to outdoor or indoor to outdoor) were higher than 1.05 to avoid samples that 

represent rare or isolated atypical exposures.(4)

For the individual-level calculations, the percent of time spent outdoors was based on the 

sum of the time spent outdoors at home, outdoors at work, outdoors at other locations, and in 

transit/in vehicle. Data from the TLD and MAQ were used for the measurement-based and 

predicted exposure metrics, respectively.
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Summary statistics (mean, median, standard deviation, and range) were calculated for each 

exposure metric. Our analysis focused on a series of comparisons among the eight exposure 

metrics (Table 2). This allowed us to assess the contributions of different layers of 

estimation to the measurement error present in exposure estimates generated for unmeasured 

locations and times. For each of these comparisons, we calculated the following between-

exposure metrics: Pearson correlation coefficient (R), mean relative percent difference 

(RPD; |X - Y|/mean(X,Y)), and root mean square error (RMSE). For primary analyses, 

summary statistics and comparisons were calculated using all two-week sampling periods. 

Additional analyses were limited to data from participants with two sampling rounds; these 

results were presented as both averaged and unaggregated. All analyses were conducted 

using R Statistical Software (Foundation for Statistical Computing, Vienna, Austria).

As part of a sensitivity analysis, the comparisons between our reference exposure metric (1) 

and the prediction-based individually-weighted ambient-derived PM2.5 (8), were evaluated 

to explore the impact of city, race/ethnicity, sex, participant age, building age, time away 

from home, time in transit, season (cold, warm, very warm), and month of sampling. We 

also conducted sensitivity analyses where we included all available valid data in the 

comparisons. Further, the infiltration model was re-fit excluding homes in the personal 

monitoring study and Finf re-calculated using results of this model; R was computed among 

personal monitoring homes comparing predicted Finf from both versions of the model.

Results

Individuals who participated in personal monitoring were more likely to be white and tended 

to be younger than the overall MESA Air cohort. Although 90 individuals participated in 

personal monitoring, several were missing at least one of the indoor, outdoor, or personal 

measurements, primarily due to problems with sampling equipment performance. There 

were also a number of participants living in New York City who could not wear the active 

samplers (due to security concerns) while riding the subway. Five two-week sampling 

episodes were excluded because the measured ratio of indoor/outdoor sulfur or personal/

outdoor sulfur was greater than 1.05. Sixty individuals met the complete data criterion for 

primary analyses. Of these, 29 provided one valid monitoring session and 31 provided two 

valid sessions. Participants from New York City and Los Angeles were most likely to have 

missing data, while participants from Baltimore and St. Paul were least likely. Measurement 

counts and participant characteristics are provided in Table 3 with additional detail provided 

in Supplementary Table S2. Summary statistics for measured data are provided in Table S3.

Exposure metric distributions are shown in Figure 1 and Supplementary Table S4, with 

results for the subset with two sampling rounds provided in the Supplementary Table S5. 

The range and variability of all outdoor metrics were similar, though on average slightly 

lower for the predicted outdoor concentrations (# 3) compared to the measured 

concentrations (# 2). When comparing measurement-based and prediction-based metrics, the 

distribution and scale of the reference metric (#1) was most similar to the distribution of 

predicted indoor exposure (#6). On average, the values of the measurement-based 

individually-weighted method (#7) and of the prediction-based individually-weighted, 

ambient-derived exposure (#8) were both slightly higher than the reference method.
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Strong correlations (Table 4), low RPD (Table 5), and low RMSE (Supplementary Table S6) 

were observed when comparing the reference method (#1) with prediction-based ambient-

derived individually-weighted (#8) and indoor exposures (#6). The reference method also 

compared very well with measurement-based ambient-derived individually-weighted (#7) 

and indoor exposures (#5), and there was good agreement between the two individually-

weighted exposures (#7 and #8).

Weaker correlations and larger RPD and RMSE were observed when comparing the 

reference method to the outdoor predictions (#3), although the correlation between measured 

(#2) and predicted outdoor (#3) was high. Figure 2 shows the correlation plot between the 

reference metric and the nearest monitor (#4), the predicted outdoor (#3), the predicted 

indoor (#6), and the predicted personal (#8) metrics. Variability was greatest and correlation 

weakest with the nearest monitor metric.

Results including aggregated data for participants with two sampling rounds are presented in 

Supplementary Tables S7-S9 and Figure S1. When restricted to participants with two rounds 

of sampling, RMSE values tended to be lower but correlations and RPD values were similar. 

Averaging the results from the two sampling rounds did not substantially change RMSE, 

RPD, or correlation values.

For sensitivity analyses including all available data, correlations were substantially similar to 

those observed in the main analyses (Supplementary Tables S10-S11). Among personal 

monitoring homes, predicted Finf generated from both versions of the infiltration model were 

highly correlated (R2=0.997;Supplementary Table S12 and Figure S2). There was no impact 

of city, race/ethnicity, sex, participant age, building age, time away from home, time in 

transit, season, or month of sampling on comparisons between the primary exposure metric 

(#1) and the predicted personal exposures (#8) (see table S13 of the supplement).

Discussion

Using personal monitoring measurements and predictions from a highly-spatially resolved 

exposure model, this study provides a novel evaluation of the characteristics of exposure 

misclassification found in a variety of air pollution exposure estimation approaches used in 

epidemiological research. Comparisons with a reference method that robustly estimated 

personal exposure to ambient-derived fine particles revealed several key observations. First, 

the predicted and measured outdoor concentration approaches were comparable in 

estimating personal exposure, while the nearest monitor approach was clearly worse. 

Second, both measured and predicted home outdoor concentrations introduced notable error 

in terms of scale (having higher concentrations) and poor correlation with personal 

exposure. Third, accounting for predicted residential particulate infiltration corrected the 

scaling problem (as both infiltrated and personal exposure had similar concentration values) 

and also improved correlations. Fourth, further accounting for personal time-activity data did 

not appear to add predictive value for this cohort.

Previous personal monitoring studies, with varying designs and objectives, have compared 

personal measurements to those inside and outside a subject’s residence.(5, 19–27) 
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However, few personal PM2.5 monitoring studies have been nested within cohorts, where 

estimates from exposure metrics applied to the entire cohort population can be compared to 

personal ambient-derived PM2.5 measurements. Personal monitoring within a cohort setting, 

as was done in this study, can inform questions of exposure measurement error within the 

same study and in other studies. Adjustments for spatial misalignment can be incorporated 

into epidemiological analyses,(28-30) although care must be taken to account for bias and 

inflated standard errors due to limitations in the size of validation data sets.(31, 32)

Compared with the nearest monitor method, predicted outdoor PM2.5 from the spatio-

temporal model showed a stronger relationship with both the reference personal exposure 

method and with measured outdoor concentrations (Tables 4 and 5). This confirms our 

hypothesis that the advanced methods used to model outdoor air pollution provide improved 

spatial resolution of the exposure concentration contrasts. The relative strengths of these 

relationships were tested through the use of cross-validation models, which excluded 

measurements specific to the participants monitored in this study.

Predicted indoor exposure was as highly correlated with the personal exposure reference 

method as was predicted personal exposure. These results imply that for this older cohort 

(likely representative of individuals who spend a great deal of time indoors at home), there 

may be little benefit in assessing detailed time-location patterns. This observation may not 

be true for other populations, particularly those with individuals who spend a large portion 

of their time away from home. For example, a simulation study using the London Hybrid 

Exposure Model(33) found that personal predictions correlated best with home outdoor 

predictions among individuals spending all their time at home and for those using primarily 

active transport. In contrast to the time-location information, there was an exposure 

prediction benefit in our population to asking participants a few simple questions about their 

home characteristics and typical ventilation behavior, which predict infiltration.

A recent study conducted in central North Carolina also explored the potential for 

measurement error from variations in infiltration and time activity patterns.(27) Breen et al. 

compared exposure metrics based on personal, indoor, and outdoor monitoring; their study 

operated a central site rather than using data from a regulatory monitor. Infiltration was 

determined two ways: 1) via a sulfur tracer (as in the current study) and 2) via a mechanistic 

model. Their infiltration modeling approach differed from ours (mechanistic versus 

regression), but both approaches accounted for housing characteristics and climate 

information. As was done in our MESA Air study, Breen et al. emphasized the importance 

of including infiltration and time-activity pattern data in exposure estimates for 

epidemiologic research. However, in contrast to our study, they did not find substantial 

differences between the nearest monitor and measured outdoor concentrations. The 

increased variability between nearest monitor and measured (or predicted) outdoor 

concentrations in our study relative to the Breen et al. investigation is likely due to the larger 

geographic area represented and conditions encountered in the MESA Air study. We 

investigated PM2.5 in six cities varying in urbanicity and in relative contribution of regional 

background PM2.5 to residential concentrations. The smallest differences between nearest 

monitor and the other measures were seen in the MESA Air city of St. Paul, where 

concentrations of PM2.5 tended to be fairly homogeneous.
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The spatio-temporal model predictions used in this study were those derived from a ten-fold 

cross-validation excluding 10% of monitors in turn. This was done as a conservative 

measure to avoid creating predictions in this subset that were closer to the true exposure than 

those available in the rest of the cohort, and as such to enhance generalizability of these 

results to the remainder of the MESA Air cohort. It is possible that the omission of 10% of 

the monitoring data actually created predictions that are slightly worse than the average 

predictions in the entire cohort when non-cross-validated models are used. In this case, true 

correlations between personal exposure and all exposure metrics incorporating outdoor 

predictions might be stronger than those reported.

Sulfur is commonly used as a tracer of indoor infiltration of fine particulate matter (4, 16, 

34–37) and can be used to quantify the ambient-derived portion of personal PM2.5. The use 

of sulfur as a tracer to characterize ambient-origin particles is a strength of this study. This 

requires at least two assumptions: 1) no indoor sources of sulfur are present (e.g., smoking, 

candles, or incense) and 2) infiltration efficiencies are equivalent for sulfur and PM2.5. Using 

a sulfur tracer may actually overestimate PM2.5 infiltration, because sulfate-containing 

particles tend to be smaller than many fine particles and thus may have higher infiltration 

rates than PM2.5 as a whole.(36) If infiltration were over-estimated, the difference in scale 

between outdoor and personal exposure would be even greater than reported in this research.

The modeled infiltration factor (Finf(p)) was derived using a dataset that included participant 

data from the personal monitoring campaign.(4) To ensure that the incorporation of data 

from these participants did not overfit the estimate of infiltration for the current analysis, the 

infiltration model was refit excluding the personal monitoring participants. The resulting 

model output was very similar to the previously derived model (see Supplementary 

Materials). Therefore, the original model(4) was retained for the analyses reported in this 

paper.

Our primary analysis only included rounds of sampling with complete data for all exposure 

measurements (outdoor PM2.5, outdoor sulfur, indoor sulfur, personal sulfur, and time-

location data). However, missingness of data was greater in cities with higher and more 

variable PM2.5 concentrations, which may have influenced the estimated correlation and 

RSME. Results for participants with two sampling rounds tended to be less variable in this 

study. This observation seems explainable, because participants in New York and Los 

Angeles, where observed concentrations were the most variable, were more likely to have 

only one valid sampling round. Results of RPD calculations were similar among participants 

with one sampling round compared to those with two; as a relative metric, RPD is robust 

when comparing predictions across varying scales.

Data collected on a two-week time scale were utilized in this study; predictions used in 

epidemiological studies of the MESA Air cohort typically aggregate two-week predictions 

from the spatio-temporal model to long-term exposure predictions by averaging up to the 

annual time scale. Greater natural exposure variability occurs on the two-week scale 

compared to the annual scale, so it is challenging to quantify the magnitude of exposure 

misclassification that may occur in a long-term study based on the analysis presented in this 

paper. However, the aggregated analyses among the subset of participants with two rounds 
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of sampling in different seasons provide a surrogate for a long-term exposure, and results in 

this subset did not provide materially different conclusions compared to the non-aggregated 

analysis.

Our study focused on ambient-derived particles; we did not attempt to incorporate a model 

of indoor PM2.5 that included indoor sources. Non-smoking homes were chosen to enhance 

internal study validity. Consequently, homes with significant indoor sources of particles 

(e.g., from smoking) were not evaluated. If there are important differences between smoking 

and non-smoking homes not captured in our predictive modeling, our results may be less 

generalizable to participants who smoke or live with smokers.

This study provides important evidence that personal ambient-origin exposure levels are 

substantially lower than outdoor predictions, among an older general population sample with 

little occupational exposure. This finding has significant implications for air pollution 

regulation, where current regulatory practice is based on measured outdoor concentrations. 

The results of our study imply that the outdoor predictions commonly used in epidemiology 

studies overestimate the true ambient-origin personal exposure. This, in turn, may 

underestimate health effect parameters. On a per unit scale, the true hazard ratio associated 

with ambient PM2.5 exposure may be larger than typically reported in the epidemiological 

literature, but formal measurement error analysis is required to estimate the bias.

Conclusions

In conclusion, this paper advances the understanding of exposure misclassification in 

epidemiological research of fine particulate air pollution, using systematic evaluation of 

personal monitoring measurements compared with multiple exposure metrics generated by a 

combination of state-of-the-art air monitoring data and spatio-temporal modeling. We found 

that among a sample from a cohort of older individuals who spend much of their time at 

home, estimated individual-level exposure which incorporates modeled infiltration improves 

exposure prediction over outdoor predictions measurements.
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Figure 1. 
Exposure metrics (n=91 total 2-week rounds, including 31 participants with 2 rounds (62 

rounds) and 29 participants with 1 round of sampling). All metrics are ambient origin PM2.5, 

not total PM2.5.
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Figure 2. 
Comparison between reference method ((Sulfur2.5-pers/ Sulfur2.5-out) * PM2.5-out(m)) and 

each of four exposure metrics: 1) Average concentration at nearest regulatory monitor, 2) 

outdoor (PM2.5-out(p)), 3) indoor (PM2.5-in(p)), and 4) individually-weighted, ambient derived 

(PM2.5-out(p) * tout-MAQ)) + Finf(p) * PM2.5-out(p) * (1 - tout-MAQ)) for 91 rounds of 2-week 

sampling. All metrics are ambient origin PM2.5, not total PM2.5.

Notes: Predicted outdoor PM2.5 is expected to be higher than personal exposure due to the 

attenuation by infiltration and time spent indoors. The 1-1 line (black) and best fit line (gray) 

are shown for reference.
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Table 1.

Summary of exposure metrics with abbreviations used throughout the article.

Description Abbreviation Calculation/Source

1. Measurement-based personal ambient-
derived PM2.5 (Reference Approach) PM2.5-pers(m) (Sulfur2.5-pers / Sulfur2.5-out) * PM2.5-out(m)

2. Measured outdoor PM2.5 PM2.5-out(m) Measured

3. Predicted outdoor PM2.5 PM2.5-out(p) Modeled

4. Nearest monitor outdoor PM2.5 PM2.5-out(nm) Measured by regulatory agencies

5. Measurement-based indoor ambient-
derived PM2.5

PM2.5-in(m) Finf(m) * PM2.5-out(m)

6. Prediction-based indoor ambient-derived
PM2.5

PM2.5-in(p) Finf(p) * PM2.5-out(p)

7. Measurement-based, individually weighted
ambient-derived PM2.5

PM2.5-pers(m-alt) PM2.5-out(m) * tout-TLD + Finf(m) * PM2.5-out(m) * tin-TLD

8. Prediction-based, individually weighted
ambient-derived PM2.5

PM2.5-pers(p) PM2.5-out(p) * tout-MAQ + Finf(p) * PM2.5-out(p) * tin-MAQ

Notes: pers: personal; out: outdoor; in: indoor; m: measured; p: predicted; nm: nearest monitor; t: time; TLD: time-location diary; MAQ: MESA 
Air Questionnaire; Finf(p): Measured Infiltration Efficiency, Sulfur2.5-in / Sulfur2.5-out; Finf(p): Modeled Infiltration Efficiency, described by 

Allen et al.(4)
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Table 2.

Summary of exposure metric comparisons.

Primary Metric Comparison Metric Goal for Comparison is to Understand Differences Between:

1. PM2.5-pers(m) 2. PM2.5-out(m) personal and outdoor, measured concurrently

1. PM2.5-pers(m) 3. PM2.5-out(p) personal and predicted outdoor

1. PM2.5-pers(m) 4. PM2.5-out(nm) personal and predicted outdoor using a simplified approach

1. PM2.5-pers(m) 5. PM2.5-in(m) personal and ambient-derived infiltrated indoor

1. PM2.5-pers(m) 6. PM2.5-in(p) personal and predicted ambient-derived infiltrated indoor

1. PM2.5-pers(m) 7. PM2.5-pers(m-alt)
two measurement-based approaches for estimating personal
exposures

1. PM2.5-pers(m) 8. PM2.5-pers(p) personal and predicted time-weighted indoor and outdoor

7. PM2.5-pers(m-alt) 8. PM2.5-pers(p) measured and predicted time-weighted indoor and outdoor

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2019 February 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miller et al. Page 19

Table 3.

Participant characteristics and number of measurements among participants with a complete set of valid 

metrics for at least one round of air monitoring.

W-S NY Baltimore St. Paul Chicago LA Total

N 10 8 13 12 7 10 60

Age (years)
a 64

[58-74]
72

[63-86]
67

[54-81]
62

[54-75]
68

[56-76]
65

[54-77]
66

[54-86]

Female
a 9 (90%) 3 (40%) 5 (40%) 7 (60%) 1 (14%) 6 (60%) 31 (52%)

White
a 7 (70%) 5 (63%) 10 (77%) 10 (83%) 5 (71%) 4 (40%) 41 (68%)

Chinese
a 0 0 0 0 0 1 (10%) 1 (2%)

Black
a 3 (30%) 2 (25%) 3 (23%) 0 2 (29%) 1 (10%) 11 (18%)

Hispanic
a 0 1 (13%) 0 2 (17%) 0 4 (40%) 7 (12%)

Year Home 1964 1948 1964 1964 1960 1964 1956

Built
b [1937-1998] [1925-1970] [1938-1994] [1887-1985] [1915-1965] [1945-2004] [1887-2004]

Percent of Time in Microenvironments

Home Indoor 72%
[50-97]

79%
[70-89]

73%
[54-94]

74%
[54-90]

74%
[49-95]

81%
[63-92]

75%
[49-97]

Home Total
(In and Out)

75%
[51-98]

86%
[71-100]

74%
[58-95]

77%
[59-91]

75%
[51-95]

86%
[63-99]

79%
[51-100]

Indoor Total
(Home and Other)

90%
[84-97]

85%
[72-92]

89%
[78-96]

88%
[66-96]

89%
[69-99]

89%
[81-95]

88%
[66-99]

In Vehicle 5%
[1-9]

5%
[0-18]

6%
[2-17]

6%
[1-27]

4%
[1-14]

3%
[0-8]

5%
[0-27]

Home Type

Single Family 10 (100%) 5 (63%) 11 (85%) 8 (67%) 4 (57%) 8 (80%) 45 (75%)

Apartment or
Condo 0 2 (25%) 1 (8%) 0 2 (29%) 2 (20%) 7 (12%)

Rowhouse,
Du-/Triplex 0 1 (13%) 1 (8%) 4 (33%) 1 (14%) 0 8 (13%)

Sampling Month (n = 91)

December-
February 3 (3%) 1 (1%) 4 (4%) 4 (4%) 1 (1%) 4 (4%) 17 (19%)

March – May 4 (4%) 2 (2%) 9 (10%) 8 (9%) 3 (3%) 2 (2%) 28 (31%)

June – August 6 (7%) 6 (7%) 6 (7%) 5 (5%) 5 (5%) 1 (1%) 29 (32%)

September –
November 2 (2%) 2 (2%) 4 (4%) 2 (2%) 2 (2%) 5 (5%) 17 (19%)

a.
Mean and range are provided for age and percent of time spent in microenvironments. Median and range are provided for year home built; all 

other statistics are provided as count (%).

b.
Approximately 50% of participants did not provide information on the age of the building.
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Table 4.

Pearson correlations between exposure metrics. Correlations are those among all measurements (n = 91 rounds 

of 2-week sampling).

1. PM2.5-

pers(m)

2. PM2.5-

out(m)

3. PM2.5-

out(p)

4. PM2.5-

out(nm)

5. PM2.5-

in(m)

6. PM2.5-

in(p)

7. PM2.5-

pers(m-alt)

2. PM2.5-out(m) 0.69 1.00

3. PM2.5-out(p) 0.63 0.80 1.00

4. PM2.5-out(nm) 0.43 0.70 0.87 1.00

5. PM2.5-in(m) 0.88 0.76 0.55 0.42 1.00

6. PM2.5-in(p) 0.81 0.62 0.77 0.63 0.76 1.00

7. PM2.5-pers(m-alt) 0.88 0.79 0.58 0.46 0.99 0.77 1.00

8. PM2.5-pers(p) 0.80 0.64 0.79 0.65 0.76 1.00 0.77

Notes: Primary comparisons are shaded (see Table 2).
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Table 5.

Relative percent difference (RPD, |X-Y|/mean(X, Y)) between metrics among all 2-week measurements (n = 

91).

1. PM2.5-

pers(m)

2. PM2.5-

out(m)

3. PM2.5-

out(p)

4. PM2.5-

out(nm)

5. PM2.5-

in(m)

6. PM2.5-

in(p)

7. PM2.5-

pers(m-alt)

2. PM2.5-out(m) 59%

3. PM2.5-out(p) 55% 11%

4. PM2.5-out(nm) 59% 17% 14%

5. PM2.5-in(m) 18% 61% 59% 62%

6. PM2.5-in(p) 21% 60% 56% 60% 27%

7. PM2.5-pers(m-alt) 17% 53% 50% 54% 12% 25%

8. PM2.5-pers(p) 22% 55% 50% 54% 27% 6% 24%

Notes: Primary comparisons are shaded
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