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Abstract

Structural characterization of protein-protein interactions is essential for our ability to study life 

processgges at the molecular level. Computational modeling of protein complexes (protein 

docking) is important as the source of their structure, and as a way to understand the principles of 

protein interaction. Rapidly evolving comparative docking approaches utilize target/template 

similarity metrics, which are often based on the protein structure. Although the structural 

similarity, generally, yields good performance, other characteristics of the interacting proteins (e.g. 

function, biological process, localization, and such) may improve the prediction quality, especially 

in the case of weak target/template structural similarity. For the ranking of a pool of models for 

each target, we tested scoring functions that quantify similarity of Gene Ontology (GO) terms 

assigned to target and template proteins in three ontology domains - biological process, molecular 

function and cellular component (GO-score). The scoring functions were tested in docking of 

bound, unbound and modeled proteins. The results indicate that the combined structural and GO-

terms functions improve the scoring, especially in the twilight zone of structural similarity, typical 

for protein models of limited accuracy.

Keywords

protein recognition; protein-protein interactions; modeling of protein complexes; structure 
prediction

INTRODUCTION

Knowledge of the three-dimensional structure of protein-protein complexes is important for 

understanding the mechanisms of life processes. Structural modeling of protein-protein 

interactions (protein docking) can be roughly divided into free docking, where sampling of 

the binding modes is performed with no prior knowledge of similar experimentally 
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determined structures, and template-based or comparative docking, where such similar 

complexes (templates) determine the predictions.

Template-free docking methods are mostly based on complementarity of the protein surfaces 

and estimated interaction energy, but also use knowledge-based approaches such as 

statistical potentials and docking constraints.1,2 Template-based docking is generally more 

accurate,3 and requires the availability of an experimentally determined structure of a 

protein-protein complex which is similar to the target.4 To detect a template, a search against 

a diverse library of protein-protein complexes is performed according to some measure of 

the target/template similarity. The widely used structure-based TM-score,5 originally 

developed for single proteins, has shown promising results in the protein-protein docking.
4,6,7 However, the performance of the structure-only scoring drops significantly when the 

target and the template are only moderately similar (TM-score ~ 0.4 – 0.6).8

The goal of this study is to explore complementing geometric similarity in scoring of 

protein-protein models by additional terms, accounting for properties of the interacting 

proteins. We considered comprehensive hierarchical dictionary (i.e. ontology) of the GO-

terms provided by the Gene Ontology Consortium.9,10 Many bioinformatics resources 

contain and use Gene Ontology Annotations (GOA) terms in protein and gene function 

prediction,11,12 prediction and validation of protein-protein interactions,13,14 gene 

expression,15 pathway regulation16 and homology analysis.17 All GO-terms (i.e. 

annotations) are subdivided into three domains: molecular function, biological process, and 

cellular component. Most studies consider only one ontology domain – molecular function, 

because of a weaker correlation of the remaining GO types (biological process and cellular 

component) with other metrics for comparison of genes and proteins.18,19 We investigated 

all three domains of the ontology and determined that their optimal combination improves 

the scoring of the template-based protein-protein docking.

METHODS

Similarity metrics for GO terms

The GO terms in each of the three ontology domains are organized in a Directed Acyclic 

Graph. A vertex of the graph represents a term (i.e. feature, described by the term) and an 

edge is the connection between the terms. There are six types of connections between the 

GO-terms.9,10 However, we considered only the strongest, “is-a” type of connection, which 

means “parent-child” relationships, i.e. the feature represented by the child term is a subtype 

of the feature represented by the parent term. In GO ontology, a term may have multiple 

parent terms. A GO-term ta is an ancestor/parent of a GO-term t (descendant/child) if there 

is a path from t to ta. ANC(t) and DES(t) are sets of all ancestors and descendants of term t, 
respectively (a term is usually considered the ancestor and the descendant of itself, i.e. 

t ∈ ANC(t) and t ∈ DES(t)).

We considered four algorithms based on the concept of information content (IC) of term t 20 

defined as
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IC t = − log P t = − log
NDES t

Ntot
, (1)

where NDES t  is the number of elements in DES(t) in a resource (in this study, UniProtKB 

database21), and Ntot is the total number of all GO-terms in the resource. Then, the simplest 

measure of similarity between GO terms ti and t j is based on the maximum information 

content of their common ancestors22

SResnik ti, t j ≡ IC ti, t j = max IC t t ∈ ANC ti ∩ ANC(t j) (2)

A serious drawback of Eq. 2 is that SResnik ti, t j  does not depend on the location of the terms 

in the GO graph. Thus, a generic term (located close to the graph root) can have the same 

similarity score to all descendants of another generic term, which may yield misleading 

results. For example, the term “Oxidoreductase Activity” has the same similarity score 

(0.42) to the term “Isomerase Activity” as to all the descendants of the latter (Fig. 1). To 

avoid this, alternative metrics, which take into account the information content of the terms, 

were proposed by Jiang et al.23

SJiang ti, t j = 1
1 + IC ti + IC t j − 2 × IC ti, t j

. (3)

Lin24

SLin ti, t j =
2 × IC ti, t j

IC ti + IC t j
. (4)

and Schlicker et al.25

SSchliker ti, t j =
2 × IC ti, t j 1 − P t

IC ti + IC t j
. (5)

where t is a GO-term with maximum IC among common ancestors of ti and t j. Eqs. 3 – 5 

take into consideration the location of a specific GO term in the graph. Thus, the scores 

between same-level terms “Oxidoreductase Activity” and “Isomerase Activity,” and between 

different-level terms “Oxidoreductase Activity” and “Intramolecular Lyase Activity” (Fig. 1) 

would be different (0.20 vs. 0.15, 0.28 vs. 0.18, and 0.17 vs. 0.11, calculated by Eq. 3, 4, and 

5, respectively).
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GO-terms similarity metrics for proteins and protein complexes

For calculating similarity between two sets of GO terms associated with proteins pk and pl

we employed the best-match-average method26

S pk, pl =
S pk, T pl + S pl, T pk

2 , (6)

where T(p) is the set of terms associated with protein p and S pk, T pl  is calculated as

S pk, T pl = 1
NT pk

i = 1

N
T pk

S ti, T pl , (7)

where N
T pk

 is the number of terms associated with protein pk and S ti, T pl  is the 

maximum of similarity scores between term ti, associated with protein pk and all terms 

associated with the other protein pl

S ti, T pl = max S ti, t j t j ∈ T pl (8)

The similarity score of two protein complexes cm and cn consisting of proteins pm1, pm2
and pn 1, pn2 respectively, is calculated in two ways depending on the order of monomer 

superimposition in the modeling process

S11(cm, cn) =
S(pm1, pn1) + S(pm2, pn2)

2 or

S12(cm, cn) =
S(pm1, pn2) + S(pm2, pn1)

2 .
(9)

This similarity score will be henceforth referred to as the GO-score GOX
Y where X is MF, BP 

and CC (GO terms used for calculating similarity of individual proteins [Eqs. 6 – 8] based 

on molecular function, biological process and cellular component domains of the GO 

annotations, respectively); and Y = Resnik, Jiang, Lin, or Schlicker indicates different 

formulas for calculating similarities between single GO-terms (Eqs. 2, 3, 4 and 5, 

correspondingly).

Docking, scoring and quality assessment

The template-based docking protocol previously developed in our lab6,27 performs a 

systematic search for templates in the set of 4,950 binary complexes.28 In each complex, the 
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target proteins pm 1 and pm2 were structurally aligned to the template proteins pn 1 and pn2 by 

TM-align29 and the quality of the alignments was assessed by TM-score.5 Following our 

previous study,4 only models generated from alignment pairs with both TM-scores > 0.4 

were kept for the further evaluation. Identical target/template pairs (both TM-scores > 0.95) 

were removed. The models were ranked by the minimum of the two TM-scores

TM = min TM‐score A1 , TM‐score A2 , (10)

where A1 and A2 are either alignments of pm1 on pn1, and pm2 on pn2, correspondingly, or 

pm1 on pn2, and pm2 on pn1, correspondingly. Thus, a single protein-protein template may 

yield two models of complexes with different TM values. The total number of models for a 

target protein-protein complex depended on the number of available templates, according to 

the above criteria.

For further re-ranking of the protein-protein models, we used the GO-score from Eq. 9 

corresponding to the order of aligned monomers in Eq. 10. The models were re-ranked by 

the GO-scores only (calculated by Eqs. 2 – 5 for MF, BP and CC domains), and by two 

combinations of GO- and TM-scores (only GO-scores from Schlicker Eq. 5 were used)

f lin TM,GO = t × TM + a × GOMF + b × GOBP + c × GOCC (11)

(henceforth referred to as the linear function LIN) and

f pc TM,GO = TM × a × GOMF + b × GOBP + c × GOCC (12)

(product-combined function PC).

Prediction was assessed by RMSD of ligand Cα atoms (L-RMSD), with optimally aligned 

receptors (receptor and ligand are the larger and the smaller protein in the complex, 

respectively). A prediction was considered near-native if L-RMSD ≤ 10 Å.30,31

Performance of a scoring function f was estimated by calculating the area under precision-

recall curve AUC,32 with precision P and recall R defined as

P =
Ncor( f > f th)

Ncor( f > f th) + Ninc( f > f th) , R =
Ncor( f > f th)

Ncor
, (13)

where Ncor( f > f th) and Ninc( f > f th) are the number of correct and incorrect models in the 

prediction pool with the value of a scoring function f larger than a threshold f th, and Ncor is 

the total number of correct models in the prediction pool. Each point in the precision-recall 
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plots corresponds to a certain threshold, and the entire curve covers f th values in the full 

range 0.0 to 1.0.

Datasets

The performance of the scoring functions (11) and (12) was evaluated on the structure 

alignment predictions4 obtained for three protein sets from the DOCKGROUND resource,33 

using template library of 4,950 full-structure binary complexes.28

(1) Bound set consisted of 587 protein-protein complexes purged at 30% sequence 

identity. Calculations of the GO-scores (9) were performed for 108,915 target-

template pairs corresponding to 507 targets, for which the minimum of the two 

TM scores was > 0.4 (see above). The GO terms were extracted from the 

UniProtKB database21 using UniProt IDs of proteins from PDB.34 The 

individual GOBP
Y , GOMF

Y  and GOCC
Y  scores were calculated for 73,347 pairs 

corresponding to 477 targets (these pairs will be referred to as BP bound set), 

75,966 pairs of 466 targets (MF bound set), and 54,857 pairs for 456 targets (CC 

bound set), respectively. The GO scores for all three ontology domains could be 

calculated for 46,613 target-template pairs of 426 targets (3-domain bound set).

(2) Unbound set comprised unbound structures for 223 binary complexes, extracted 

from the DOCKGROUND benchmark set 4.35 The set is used to evaluate docking/

scoring methodology on experimentally determined unbound protein structures. 

In this set, the GO-scores for all three ontology domains could be calculated for 

3,029 target-template pairs of 152 targets (3-domain unbound set).

(3) Model set consisted of the X-ray structures and six models with predefined Cα 

RMSD from the native structure (1, 2, …, 6 Å) for each protein in 165 protein-

protein complexes (DOCKGROUND model set 236). The set is used to evaluate 

docking/scoring methodology on protein models of limited accuracy. The GO-

scores for all three ontology domains could be calculated at all structure 

accuracy levels for 48,015 target-template pairs of 131 targets (3-domain model 

set).

RESULTS AND DISCUSSIONS

Similarity metrics for GO terms

The value of GOX
Y score depends on how the similarity between single GO terms is 

calculated. We explored four methods, using the concept of the information content (Eqs. 2–

5). To choose a method for the docking, for each target in the 3-domain bound set, the 

templates were ranked by the GOX
Y values calculated separately for the MF, BP and CC 

domains of the GO terms using Eqs. 2–5. The evaluation of the predictions in terms of AUC 

(Eq. 13) for each GOX
Y variant (Fig. 2) showed that Resnik (Eq. 2) and Schlicker (Eq. 5) 

formulas yield better docking results than Jiang (Eq. 3) and Lin (Eq. 4). For the largest 

domain - molecular function, the Schlicker formula gives slightly better results than the 

Resnik formula. Thus, only the GO score by Schlicker Eq. 5 will be used for the rest of the 
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paper (without index Y in the notation GOX
Y). Since GO annotations are independent of the 

structure, Eq. 5 will be also used to calculate GOX
Y in unbound and model sets.

Electronic GO annotations

Many GO terms are assigned by automated prediction tools based on sequence37,38 or 

structure.39 Earlier studies assigned low credibility to the electronically annotated GO-terms 

(with the IEA evidence code), and did not recommend their use.19 However, more recently, 

the quality of the electronic annotations significantly improved, and the computationally 

inferred GO terms have been considered reliable.20,40 To elucidate the effect of the 

electronic function annotation on docking, we ranked target-template pairs in the MF, BP 

and CC sets (see Methods) by the GO scores calculated with and without electronically 

annotated GO terms. The comparison of the results by AUC is shown in Figure 3. Exclusion 

of the electronically annotated terms lead to significant drop in the annotation coverage, 

whereas the decrease in the docking performance is insignificant. Thus, all GO scores 

presented below were calculated with the electronically annotated GO terms.

GO-scores complement structural similarity in scoring of protein-protein models

The GO-scores and the TM-score are only weakly correlated. Figure 4 shows target-template 

comparison data for the 3-domain bound set (Pearson correlation coefficient r = 0.26 for BP, 

r = 0.31 for MF, r = 0.20 for CC ontology domains). The results for BP, MF and CC bound 

sets are similar. Correlation of the target-template GO-scores with the quality of the resulting 

predictions (Fig. 5) is weak for the full range of values (r close to zero) because of the 

randomness of the generated models (reflected in the wide range of their L-RMSD values). 

However, importantly, they show a pattern similar to that of the target-template TM-score vs. 

L-RMSD where target-template comparisons with higher score values converge to the low 

values of L-RMSD (high accuracy of docking). Better performance of the GOMF score 

compared to the TM in terms of cumulative fraction of near-native models (Fig. 5 bottom 

panel) and AUC (Fig. 6) is counterweighted by a smaller number of target-template pairs for 

which the ranking by GOMF can be performed. For target-template pairs with minimum TM-

score > 0.4, 70% had GO terms in the molecular function domain. However, with the 

progress on protein annotation, this percentage should grow in the future.

Proteins can participate in various biological processes and reside in different parts of the 

cell, but have similar activity based on similarity of the structure. Indeed, a significant 

number of the near-native models in the 3-domain bound set have templates with a high 

value (more than the average value for the set) of the minimum TM-score, and low values 

(less than the average value for the set) of the GO scores (6.6, 6.4 and 7.4 % for the GOMF, 

GOBP, and GOCC scores, respectively). Consequently, the template ranking by the GOCC 

score alone yield worse docking performance than the ranking by the TM- and GOMF and 

GOBP scores (Figs. 5, 6).

Thus, we suggest that the best use of GO-scores in comparative protein docking is as a 

complement to the target-template structural similarity. In a number of cases, the GO-score 

can act as a factor for choosing the appropriate template, especially when several target-
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template pairs have small differences in their TM values. For example, the MF bound set 

contains 187 cases with difference in the TM values < 0.01 (both TM-scores > 0.7) and the 

difference in the GOMF values > 0.3. As an illustration, a target complex Proto-oncogene c-

Fos and its JUN/AP-1 transcription factor (1fos chains E and F) has two templates with the 

difference in TM values < 1%, but significantly different GOMF: (i) DNA repair protein 

XRCC4 (1ik9 chains A and B) with TM = 0.768 and GOMF = 0.30, and (ii) transcription 

factor MafB (2wty chains A and B) with TM = 0.760 and GOMF = 0.82. The former 

template yielded incorrect prediction with L-RMSD 41.2 Å and rank 17 by TM, whereas the 

latter template produced near-native prediction with L-RMSD 6.9 Å and TM rank 20 (Fig. 

7).

Scoring function optimization and analysis

The combined scoring functions consist of weighted linear combination of the GO scores in 

three ontology domains and the TM-score (LIN function, Eq. 11), or the product of TM-

score and weighted linear combination of the GO scores (PC function, Eq. 12). The main 

reason for choosing PC was that it is better in separating models with high and low values of 

the TM- and GO-scores. The coefficients with the maximum AUC were determined by the 

Differential Evolution heuristic algorithm41 for the 3-domain set (Table I). The coefficients 

obtained using other datasets (e.g., 5,532 protein pairs with GO annotations in all three 

domains from the DOCKGROUND template set28) did not differ significantly from the 

coefficients obtained on the 3-domain bound set (Table I).

In terms of AUC, LIN and PC performed similarly in scoring of the predictions, in terms of 

AUC, both significantly surpassing scoring by the TM alone (Fig. 8). However, that 

significant AUC difference between TM and the combined functions in the 3-domain bound 

set was caused primarily by seven targets with simple structural motifs. These targets have a 

large number of predictions built on templates with similar motifs, and thus nearly 

undistinguishable high TM values. However, the mutual orientation of these motifs varies 

from template to template, decreasing the precision (Eq. 13). At the same time, biological 

processes, functions and cellular localizations of such proteins can be different. Thus, adding 

GO-scores purges incorrect models from the precision calculations at higher function 

cutoffs. For example, target 2qdq (talin dimerization domain) consists of two interacting α-

helices. Thus, it has a very large number (2,898) of predictions based on templates with such 

helices. Without these targets AUC for the TM function increases to 0.52.

Nevertheless, performance of all three functions was different in distinguishing the near-

native models. LIN had larger recall values than PC and TM, which lead to greater coverage 

of the near-native predictions by LIN at given cutoffs. On the other hand, PC had 

significantly larger precision values than LIN and TM (Fig. 8). Similar observations were 

made on other datasets used in this study. Thus, we chose the PC function for the higher 

precision identification of more reliable templates.

Large improvement in ranking (> 10 positions) by PC was obtained for 30 targets (29 targets 

by LIN). For example, low L-RMSD = 9.4 Å prediction of the target ADP-ribosylation 

factor 1 and its binding protein GGA1 (1j2j chains AB) based on moderately structurally 

similar (TM = 0.52) template complex AtVSP9a and AtRABF2b (2efd chains AB) had rank 

Hadarovich et al. Page 8

Proteins. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



125 by TM. The low TM-score is due to a large difference in sizes of the aligned chains 

(Fig. 9A). However, the target and the template are similar in all three ontology domains 

(GOMF = 0.49, GOBP = 0.45 and GOCC = 0.45) yielding rank 6 by PC. More structural 

examples with spectacular ranking improvement, in which the structural similarity is limited 

either by different sizes of targets and templates or by simple and thus ubiquitous structural 

nature of the proteins, are in Fig. 9B, C.

Whereas the overall docking success rate - the fraction of targets, for which the top 

prediction is a near-native one - for crystallographically determined structures did not 

increase compared to TM, the combined scoring improved the ranking reliability by 

significantly increasing the fraction of the near-native matches in the prediction pool (Fig. 

10). Even for structurally nearly identical target-template pairs (TM > 0.8), 56% of the 

predictions in the 3-domain set were incorrect. Combined scoring purged a significant 

number of the incorrect predictions from this range. After that, the fraction of near-native 

predictions increased to 88% with PC > 0.8 (83% for LIN). For the less structurally similar 

target-template pairs, the difference was even larger. Less than 1% of the predictions with 

weak structural similarity to the template (0.4 ≤ TM < 0.6) were the near-native ones. This 

percentage grew dramatically to 52% for the same interval of PC values (46% for LIN). A 

similarly significant increase in reliability of the ranking by the combined scoring functions 

was observed on the 3-domain unbound set as well.

In structural reconstruction of protein interaction networks, most structures of the individual 

proteins have to be modeled rather than determined experimentally.42 The accuracy of 

protein modeling, especially the high-throughput one, needed for large protein networks, is 

lower than that of the high-resolution experimental approaches. Thus, in docking of such 

models, the structural similarity to templates would be generally smaller than in docking of 

the experimentally determined structures. Since the GO-scores are not affected by structural 

variations, one may expect that they can be especially useful in scoring of the model-model 

docking. The performance of LIN and PC scoring functions was tested on predictions for the 

DOCKGROUND model-model benchmark set 2.36 The docking success rate improved starting 

from ~ 4 Å model accuracy (Fig. 11). The ranking reliability significantly increased 

compared to the structural comparison in the gray area of structural similarity (Fig. 12). The 

results show that the combined structural and GO-terms functions improve the scoring, 

especially in the twilight zone of structural similarity, typical for protein models of limited 

accuracy.

CONCLUDING REMARKS

To improve the scoring of comparative protein-protein models, we propose complementing 

the target-template structural similarity by scoring based on the similarity of GO terms. The 

combined scoring functions were benchmarked using 4,950 templates from the DOCKGROUND 

resource. The non-redundant protein-protein target sets were: (i) 587 co-crystallized 

complexes, non-redundant at 30% sequence identity; (ii) 223 experimentally determined 

unbound complexes; and (iii) 165 complexes with six models for each structure, generated 

with predefined Cα RMSD from the native structure 1, 2, …, 6 Å. The combined scoring 

function separated the near-native and incorrect predictions significantly better than the 
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scoring based solely on the structure alignment, especially in the twilight zone of the 

structural similarity. The improvement held even if the GO terms were assigned only in one 

of the ontology domains (i.e. molecular function), which is essential for practical 

applications, since many proteins lack annotation in all three domains. Thus, using GO 

terms in comparative protein docking increases the probability of selecting the correct match 

from the pool of predictions in the real-case scenario when the structure of the native 

complex is unknown. Since the GO-score is independent of the quality of the protein 

structures, an important application of this methodology is docking of protein models where 

target-template structural similarity is reduced due to inherent inaccuracies of the models. 

The results showed that the relative importance of the combined scoring function increases 

with the decrease of the protein models’ accuracy. The proposed approach to discriminate 

incorrect docking solutions should become more potent as more proteins get high-quality 

GO annotation describing their specific features (i.e. more distant from the root of the GO-

terms graph).
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Figure 1. Schematic representation of a fragment of GO-term graph in the molecular function 
domain.
Probabilities P(t) and information contents IC(t) of the terms were calculated using Eq. 1. 

The number of descendants is shown in parentheses.
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Figure 2. Evaluation of different scoring functions.
The evaluation was performed in terms of the area under precision-recall curve AUC, 

calculated according to Eq. 13. The target complexes were generated using templates ranked 

by the GO-score obtained by different methods for calculating similarity of single GO terms 

(Eqs. 2 – 5). The horizontal line corresponds to the AUC value for the TM scoring function 

(Eq. 10). The results are shown separately for the molecular function (MF), biological 

process (BP), and cellular component (CC) Gene Ontology domains. The results are 

obtained on the 3-domain bound set.
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Figure 3. The effect of electronic function annotation on docking.
Annotation coverage and area under precision-recall curve AUC for the docking in the BP, 

MF and CC bound sets with and without electronically annotated GO terms.
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Figure 4. Target-template TM-scores vs. GO-scores.
The GO-scores were calculated using GO terms from biological process (BP), molecular 

function (MF), and cellular component (CC) ontology domains. The data is obtained on the 

3-domain bound set.
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Figure 5. Target-template TM- and GO-scores vs. docking accuracy.
BP is biological process, MF is molecular function, and CC is cellular component. Ligand 

RMSD is between Cα atoms of predicted and native structure. Target-template comparisons 

with higher score values converge to the low values of L-RMSD (correct binding mode 

prediction). Bottom panel shows the cumulative fraction of the correct binding mode 

predictions (L-RMSD < 10 Å) for target-template scores larger than a threshold. Data 

obtained on the 3-domain bound set.
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Figure 6. 
Area under precision-recall curve AUC for predictions in 3-domain bound set for different 

scoring functions.
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Figure 7. Example of target-template pairs with small difference in TM values.
Target is red and blue, and template is cyan and yellow. (A) The native structure of target 

1fos. (B) Chains EF of the target aligned with chains AB of template 1ik9. (C) The same 

chains aligned with chains AB of template 2wty.
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Figure 8. Evaluation of scoring by precision-recall.
The precision-recall curves and corresponding area under the curve AUC (Eq. 13) are for 

docking in the 3-domain set, scored by TM, PC and LIN functions. The recall and precision 

values for different thresholds of the scoring functions are shown by symbols (see legend in 

the Figure). TM, LIN and PC were calculated by Eqs. 10, 11 and 12, respectively. The 

coefficients for LIN and PC are in Table I.

Hadarovich et al. Page 20

Proteins. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. Examples of target-template pairs for which PC function yielded significant 
improvement of the near-native prediction ranking.
Target is red and blue, and template is cyan and yellow. (A) Target 1j2j chains AB, template 

2efd AB, near-native rank improvement from 125 to 6; (B) target 1fos EF, template 1llm 

CD, near-native rank improvement from 88 to 4; (C) target 1i8l AC, template1i85 BD, near-

native rank improvement from 19 to 1.
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Figure 10. Fraction of near-native predictions in bound and unbound sets.
Data is shown separately for intervals of the scoring function in the 3-domain bound (open 

bars) and unbound (hatched bars) sets.
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Figure 11. Docking success rate for top 1 prediction with different scoring functions.
For the model dataset, data are shown for the reference structures (0 Å) and the model 

structures with levels of accuracy 1 – 6 Å. The success rate is a fraction of 587, 223, and 165 

targets in bound, unbound and model datasets, respectively, in which the top prediction has 

L-RMSD ≤ 10 Å.
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Figure 12. Fraction of near-native predictions in the model set.
Data is shown for separate intervals of the scoring function (A) 0.4 – 0.6, (B) 0.6 – 0.8, and 

(C) 0.8 – 1.0, corresponding to crystallographically determined structures (0 Å) and the 

levels of model accuracy 1 – 6 Å. The PC value at 6 Å accuracy level is absent because there 

were no near-native models in this function range.
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Table I.
Coefficients for scoring functions.

The values were obtained by maximizing the area under precision-recall curve AUC (Eq. 14) generated on 3-

domain bound set. For comparison, the values obtained on the DOCKGROUND template set are in parentheses.

Function
Optimal coefficients

AUC
a b c t

LIN, Eq. 11 0.24 (0.22) 0.18 (0.12) 0.08 (0.08) 0.5 (0.58) 0.54

PC, Eq. 12 0.47 (0.49) 0.34 (0.36) 0.19 (0.15) – 0.54
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