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Abstract

Cobamides (Cbas) are coenzymes used by cells from all domains of life, but made de novo only 

by some bacteria and archaea. The last steps of the cobamide biosynthetic pathway activate the 

corrin ring and the lower ligand base, condense the activated intermediates, and dephosphorylate 

the product prior to the release of the biologically active coenzyme. In bacteria, a 

phosphoribosyltransferase (PRTase) enyzme activates the base into its α-mononucleotide. The 

enzyme from Salmonella enterica (SeCobT) has been extensively biochemically and structurally 

characterized. The crystal structure of the putative PRTase from the archaeum 

Methanocaldococcus jannaschii (MjCobT) is known but its function has not been validated. Here 

we report the in vivo and in vitro characterization of MjCobT. In vivo, in vitro, and phylogenetic 

data reported here show that MjCobT belongs to a new class of NaMN-dependent PRTase. We 

also show that the Synechococcus sp. WH7803 CobT protein has PRTase activity in vivo. Lastly, 

results of isothermal titration calorimetry and analytical ultracentrifugation analysis show that the 

biologically active form of MjCobT is a dimer, not a trimer, as suggested by its crystal structure.
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The activation of the lower ligand base of cobalamin is catalyzed by a new class of 

phosphoribosyltransferase found in archaea and cyanobacteria. The enzyme from the 

methanogenic archaeum Methanocaldococcus jannaschii (MjCobT) uses the same substrates but it 

is structurally different than the best studied bacterial enzyme from Salmonella enterica (SeCobT).
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INTRODUCTION

Cobamides (Cba) are cobalt-containing cyclic tetrapyrroles used by cells from all domains 

of life but are produced de novo only by some bacteria and archaea [reviewed in1]. Cbas are 

involved in enzymatic carbon skeleton rearrangements, methyl-group transfers, reductive 

dehalogenation, and elimination reactions2–6. Additionally, cobamide-dependence is 

common amongst radical SAM enzymes7. Recent work has identified a role for Cbas in 

gene regulation as photoreceptors (reviewed in8).

Structurally, Cbas are characterized by a central cobalt ion equatorially coordinated by the 

nitrogens of the pyrrole rings. Unlike other cyclic tetrapyrroles (e.g., heme, factor F430, 

bacteriochlorophylls), most Cbas contain an upper and a lower ligand. The coenzymic form 

of the Cba known as cobalamin (Cbl) has a 5’-deoxyadenosyl (Ado) group as its upper 

ligand and 5,6-dimethylbenzimidazole (DMB) as the lower ligand (Fig. 1A). In addition to 

DMB, other purines and benzimidazole homologues can serve as the lower ligand and form 

a coordination bond with the central cobalt ion9 (Fig. 1B,C). Some organisms (e.g., 
Sporomusa ovata) can also incorporate phenolics as bases into Cbas (Fig. 1D), but such 

bases cannot form coordination bonds with the cobalt ion of the ring.
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Vitamin B12 (cyanocobalamin, CNCbl) is a Cba whose upper ligand is a cyano (CN) group, 

and its lower ligand is DMB. As shown in figure 1, the diversity of bases found in Cbas is 

broad4, 9. For example, Salmonella enterica produces three Cbas with varying nucleotide 

bases: one with DMB (a.k.a. cobalamin, Cbl), one with adenine (a.k.a. pseudocobalamin, 

psCbl), and one with 2-methyladenine (a.k.a. Factor A)10–12.

Lower ligand bases require activation to an α-ribotide prior to their incorporation into the 

final product of the pathway. In Salmonella enterica, the CobT enzyme (EC 2.4.2.21), a 

nicotinate mononucleotide (NaMN):Base phosphoribosyltransferase (PRTase), activates the 

lower ligand base. The product of this reaction is the intermediate known as α-ribazole-5’-

phosphate (α-RP) (Fig. 2)13.

The last steps of AdoCba biosynthetic pathways activate the corrin ring and the lower ligand 

base, condense the activated intermediates into an AdoCba-phosphate (AdoCba-P), and, 

finally, removes the phosphate to yield the final product of the pathway (Fig. 3).

Previous in vitro studies of SeCobT showed that the enzyme has a broad range of substrate 

specificity and can activate purine and benzimidazole analogues (Fig. 1)13, 14. This lack of 

substrate specificity is shared by S. enterica CobT (SeCobT) homologues in other 

microorganisms15. At present, we know little about the function of archaeal SeCobT 

homologues. The crystal structure of the putative apo NaMN:Base PRTase from the 

methanogenic archaeum Methanocaldococcus jannaschii (ORF MJ_RS08515) has been 

reported, but evidence supporting the annotated activity has not been published.

Bioinformatics analyses of the MJ_RS08515 amino acid sequence compared with that of the 

SeCobT enzyme showed limited identity (18%) and similarity (32%) (Fig. 4). These 

enzymes also differed in their oligomeric state, with the archaeal enzyme forming trimers 

(PDB 3L0Z), according to the structure deposited into the Research Collaboratory for 

Structural Bioinformatics Protein Database (RCSB PDB) (unpublished work), while the 

bacterial enzyme forms dimers13 (PDB 1L4B).

We note that previous studies by other investigators suggested that cyanobacteria solely 

produce psCbl. Additionally, these studies showed that 121 of the 123 cyanobacterial 

genomes searched lacked cobT16, 17. In contrast to these findings, our bioinformatics 

analysis identified CobT homologues in many cyanobacterial genomes. These homologues 

were similar in amino acid sequence composition to MJ_RS08515.

The work reported here shows that M. jannaschii CobT (MjCobT) belongs to a new class of 

base-activating PRTase enzymes. We determined that MjCobT represents a new class of 

base-activating PRTase enzymes based on both structural and taxonomic differences from 

the extensively characterized SeCobT. In this study we used S. enterica as a heterologous 

complementation system to show that MjCobT has bona fide NaMN:DMB PRTase activity 

in vivo. Consistent with our in vivo results, MjCobT exhibited robust enzymatic activity in 
vitro at pH 7. We found that under the conditions used to assay MjCobT activity, the 

SeCobT enzyme also displayed strong activity. This finding was of interest, because in the 

past we had only measured strong SeCobT activity at pH 10. We identify potassium 

phosphate (KPi) as the ingredient of the reaction mixture needed by SeCobT to be active at 
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pH 7. We also report that MjCobT has broad substrate specificity and high affinity for its 

NaMN substrate. Finally, our data support the idea that MjCobT is biologically active as a 

dimer.

MATERIALS AND METHODS

Culture media and growth conditions.

All chemicals were reagent grade and were purchased from Sigma-Aldrich unless otherwise 

stated. Purchased chemicals were used without further purifications. All strains used in this 

study were grown at 37°C in no-carbon energy (NCE) minimal medium18 supplemented 

with ribose (20 mM) as a carbon and energy source. Minimal medium was also 

supplemented with MgSO4 (1 mM) and trace minerals19. When used, ampicillin, 

kanamycin, or chloramphenicol were added at 100 μg/mL, 50 μg/mL or 25 μg/mL, 

respectively. For all growth experiments, two μL of overnight cultures (12–16 h old) grown 

in nutrient broth (NB, Difco) was used to inoculate 198 μL of minimal medium with 

supplements (1% inoculum, v/v). Strains were grown in triplicate in 96-well microtiter 

plates for growth experiments. Growth was monitored using a computer-controlled BioTek 

plate reader (Model Eon). Optical density at 630 nm was measured every 30 min for a total 

time of 24 h; the microtiter dish was shaken between measurements. Data were analyzed 

using GraphPad Prism v6 software. Doubling times were calculated using the exponential 

growth equation included with the GraphPad Prism v6 software.

Strain constructions.

All strains used in in this study were derivatives of Salmonella enterica enterica sv 

Typhimurium (hereafter S. enterica) LT2 or Escherichia coli BL21. Strain genotypes are 

described in Table S1. Plasmids were introduced into S. enterica by electroporation20 and 

into E.coli by heat-shock transformation21. Deletions in S. enterica were constructed and 

resolved with pCP20 as described elsewhere22.

Plasmid constructions.

All primers used during the course of this work are described in Table S2. Restriction 

enzymes were purchased from Fermentas. BspQI restriction enzyme was purchased from 

New England BioLabs. Synechococcus sp. WH7803 cobT gene was codon optimized for 

expression in E. coli by GenScript (Fig. S1).

Plasmid pMjCobT1.

This plasmid was constructed using the polymerase incomplete primer extension (PIPE) 

method23. The Methanocaldococcus jannaschii wildtype allele of ORF MJ_RS08515 was 

amplified from M. jannaschii genomic DNA (a gift from W. B. Whitman, University of 

Georgia) using the primers Mj_1598_cobT_PIPE_f and Mj_1598_cobT_PIPE_r. Vector 

pBAD2424 was amplified using primers pBAD24-PIPE-5’ and pBAD24-PIPE-3’. Amplified 

fragments were cut with DpnI (ThermoFisher) overnight at 37°C. Fragments were mixed in 

equal volumes and transformed in chemically competent E. coli DH5a21. The completed 

plasmid contained ORF MJ_RS08515 coding sequence inserted between KpnI and SalI sites 

of pBAD24. The plasmid was used for complementation analyses and generation of 
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cobamides in S. enterica. Plasmid pMjCobT1 is 5,601 bp long and encodes resistance to 

ampicillin.

Plasmid pMjCobT2.

This plasmid was also constructed using the PIPE method as described above using primers 

Mj_1598_TEV5_PIPE_f and Mj_1598_TEV5_PIPE_r to amplify ORF MJ_RS08515 and 

primers pTEV5-PIPE-5’ and pTEV5-PIPE-3’ to amplify the pTEV5 vector25. pMjCobT2 

contained the wildtype MJ_RS08515 coding sequence inserted between NheI and XhoI sites 

of pTEV5. pMjCobT2 was used for protein overproduction. The plasmid is 6,381 bp long 

and encodes resistance to ampicillin. Transcription of MJ_RS08515 was induced by the 

addition of isopropyl-β-D-1-thiogalactopyranoside (IPTG), which triggered the synthesis of 

T7 polymerase, the enzyme responsible for the transcription of MJ_RS08515.

Plasmid pCOBT140.

The construction of this vector has been described26. The plasmid encodes S. enterica cobT
+, is ~5.6 kb long and encodes ampicillin resistance.

Plasmid pMjCobT3.

This plasmid encoded MjCobTE315A and was constructed using overlapping primers 

MjCobT_sdm_E315A_F and MjCobT_sdm_E315A_R with plasmid pMjCobT1 DNA as the 

template. Briefly, the primers indicated encoding E315A changes were used to amplify the 

ORF MJ_RS08515 on pMjCobT1. Amplified products were cut with DpnI (ThermoFisher) 

overnight at 37°C. The amplification product was then transformed in E. coli DH5a and its 

nucleotide sequence verified.

Plasmid pMjCobT4.

This plasmid encoded variant MjCobTE150A E315A and was constructed using overlapping 

primers MjCobT_sdm_E150A_F and MjCobT_sdm_E150A_R with plasmid pMjCobT3 

DNA as the template. Briefly, the primers indicated encoding E150A changes were used to 

amplify the ORF MJ_RS08515 with the E315A change on pMjCobT3. Amplified products 

were cut with DpnI (ThermoFisher) overnight at 37°C. The amplification product was then 

transformed in E. coli DH5a and its nucleotide sequence verified.

Plasmid pMjCobT5.

This plasmid encoded MjCobTE150A and was constructed using overlapping primers 

MjCobT_sdm_E150A_F and MjCobT_sdm_E150A_R with plasmid pMjCobT1 DNA as the 

template. Briefly, the primers encoding E150A changes were used to amplify the ORF 

MJ_RS08515 on pMjCobT1. Amplified products were cut with DpnI (ThermoFisher) 

overnight at 37°C. The amplification product was then transformed in E. coli DH5a and its 

nucleotide sequence verified.

Plasmid pSynCobT2.

This plasmid was constructed using the BspQI high-efficiency cloning method outlined 

elsewhere27 using primers SynCobT pCV1 F and SynCobT pCV1 R to amplify the codon 
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optimized Synechococcus sp. WH7803 CobT (SYNWH7803_RS09275). The completed 

plasmid contained codon optimized SYNWH7803_RS09275 coding sequence inserted 

between the pair of BspQI sites of pCV1. The plasmid was used for complementation 

analyses in S. enterica. Plasmid pSynCobT2 is 5,724 bp long and encodes resistance to 

ampicillin.

Cobamide extraction and high-performance liquid chromatography (HPLC) analysis.

Overnight culture of strain JE18114 (ΔmetE ΔcobT ΔcobB / pMjCobT1) and strain JE18115 

(ΔmetE ΔcobT ΔcobB / pCOBT140) grown in nutrient broth (NB) supplemented with 

ampicillin (100 μg/mL), kanamycin (50 μg/mL), and chloramphenicol (25 μg/mL) was used 

to inoculate NCE minimal medium supplemented with ribose (20 mM) as a carbon and 

energy source. Minimal medium also contained trace minerals, magnesium sulfate (1 mM), 

ampicillin (100 μg/mL) arabinose (500 μM), and dicyanocobinamide [(CN)2Cbi] (300 nM). 

Where indicated, DMB, adenine, 5-methoxybenzimidazole (5-MeO-Bza), or 5-

hydroxybenzimidazole (5-HO-Bza) was provided at a final concentration of 200 μM. 

Cultures (250 mL) were grown for >20 h at 37°C in an Innova 44R gyratory incubator (New 

Brunswick Scientific) shaking at 180 rpm. Cells were harvested by centrifugation at 4°C for 

15 min at 6,000 × g using an Avanti J20-XPI refrigerated centrifuge (Beckman) equipped 

with JLA-8.1000 rotor. Pelleted cells were re-suspended in ammonium acetate buffer (100 

mM, pH 4.5) containing KCN (10 mM), and stored at −20 °C. Cobamides were extracted 

using methods described elsewhere28, 29. Cell suspensions were thawed on ice and 

subsequently incubated at 70°C with shaking at 180 rpm in an Innova 44R gyratory 

incubator (New Brunswick Scientific) for 2 h. After incubation, cell suspensions were 

centrifuged in an Avanti J-251 equipped with a JA 25.25 rotor (Beckman) at 43,000 × g for 

40 min at 4°C. Clarified cell-free extract was filtered through a syringe filter unit (0.45 μm) 

and mixed with Amberlite XAD4 resin (Rohm-Haas). Cell-free extract and resin mixtures 

were incubated at 37°C with shaking at 180 rpm in an Innova 43 gyratory incubator (New 

Brunswick Scientific) for 16 h. After allowing the resin to settle, free liquid was removed, 

taking care not to disturb the resin. Resin was washed thrice with four bed volumes of 

deionized water (Millipore) allowing the resin to settle for 20 min between washes. After the 

final wash, two bed volumes of methanol (100%) were added to the resin and the solution 

incubated 16 h at room temperature. After incubation, methanol was removed from the resin, 

collected in a microfuge tube and subjected to vacuum centrifugation in an Eppendorf 

Vacufuge Plus set at 60 °C until dry. Dried pellets were re-suspended in a 1:4 ratio of buffer 

B [KH2PO4 (100 mM), KCN (10 mM), pH 8 + 50% (v/v) acetonitrile] and buffer C 

[KH2PO4 (100 mM), KCN (10 mM), pH 6.5] in preparation for separation by HPLC. Cbas 

were resolved by RP-HPLC using a Shimadzu Prominence UFLC SPD-M30A equipped 

with a Phenomenex Syngergi 4μ hydro-RP80A 150 × 4.6 mm LC column as described30, 31 

with some modifications as outlined in26. Cbas were detected at 367 nm and 525 nm.

Mass spectrometry of corrinoids.

Corrinoids with retention times of 12, 13, and 16 min were collected, desalted using C18 

SepPaks (Waters) and dried under vacuum centrifugation. The molecular mass of each 

corrinoid was determined by MALDI-TOF mass spectrometry at the PAMS facility of the 

University of Georgia.
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Protein purification.

Wild-type MjCobT protein was overproduced from plasmid pMjCobT2 in strain JE6663 (E. 
coli C41) in 2-L cultures of Terrific Broth32. Protein synthesis was induced by the addition 

of IPTG at a final concentration of 500 μM in mid-log phase cultures (OD600 ~0.6) growing 

at 37°C with shaking at 180 rpm in an Innova44 (New Brunswick Scientific) gyratory 

incubator. After induction, cultures were grown for 17 h at 30°C with shaking at 180 rpm. 

Cultures were harvested by centrifugation at 4°C for 15 min at 6,000 × g in an Avanti J20-

XPI refrigerated centrifuge equipped with JLA-8.1000 rotor. Pelleted cells were stored at 

−80°C until used. Frozen cells were thawed on ice and re-suspended in Tris-HCl buffer (25 

mM, pH 7.5) containing NaCl (0.5 M) and imidazole (20 mM) at a rate of 20% cell weight 

to buffer volume. Lysozyme (1μg/mL) and DNaseI (25μg/mL) were added to the cell 

suspension and incubated on ice for 10 min. Cells were lysed by cell press in a cell disruptor 

(Constant Systems) set at 1.72e8 Pa. Phenylmethylsulfonyl fluoride (PMSF) was added to 

the cell lysate at a final concentration of 0.5 mM. The cell lysate was incubated for 30 min at 

70°C to precipitate E. coli proteins. Cell debris and precipitated proteins were removed by 

centrifugation at room temperature for 30 min at 40,000 × g in an Avanti J-251 centrifuge 

(Beckman/Coulter) equipped with a JA 25.25 rotor. Clarified extract was filtered using a 

0.45-μm syringe filter unit and applied to a 4-mL HisPur nickel-nitrilotriacetic acid (Ni-

NTA) affinity column (ThermoFisher Scientific). The column was washed with 10 column 

volumes of Tris-HCl buffer (25 mM, pH 7.5) containing NaCl ((0.5 M) and imidazole (20 

mM) and six column volumes of Tris-HC buffer (25 mM, pH 7.5) containing NaCl (0.5 M)) 

and imidazole (40 mM). H6-MjCobT was eluted with six column volumes of Tris-HCl buffer 

(25 mM, pH 7.5) containing NaCl (0.5 M) and imidazole (0.5 M). Fractions were collected 

throughout the wash and elution steps and H6-MjCobT purification was monitored by SDS-

PAGE gel compared to Precision Plus Protein Standards (BioRad). Fractions containing H6-

MjCobT were pooled and dialyzed against Tris-HCl buffer (25 mM, pH 7.5) containing 

NaCl (0.5 M) to remove imidazole. N-terminally tagged, recombinant tobacco etch virus 

protease (H7-rTEV) was purified as described elsewhere33 and mixed with H6-MjCobT at a 

ratio of 1:10 H6-MjCobT:H7-rTEV. The mixture was incubated at 34°C for 3 h to remove the 

H6 tag on MjCobT. Cleaved MjCobT was purified away from the tag and H7-rTEV using the 

Ni-NTA affinity purification method outlined above and tag-less protein was dialyzed 

against Tris-HCl buffer (25 mM, pH 7.5) in steps with decreasing concentrations of NaCl 

down to 150 mM. Purified MjCobT was flash frozen in liquid nitrogen and stored at −80°C 

until used. Protein concentration was measured using a NanoDrop 1000 spectrophotometer 

(Thermo Scientific) using the molecular mass of 37600 Da and ε280 of 20400 M−1 cm−1 as 

determined by ProtParam33.

Analytical ultracentrifugation.

MjCobT was dialyzed against 50 mM Na/K phosphate (pH 7.5) and 100 mM NaCl and 

diluted to a final concentration of 1 mg/ml. Quantification was performed on an Agilent 

8453 UV/vis and used an ε280 of 20400 M−1 cm−1 as determined by ProtParam34. The 

protein sample was loaded with the dialysis buffer to a final concentration of 1 mg/ml before 

being loaded into cells with 12 mm double-sector Epon centerpieces. The loaded cells were 

allowed to equilibrate in the rotor for 1 h at 20 °C. Sedimentation velocity data were 

collected at 50,000 rpm at 20 °C in an Optima XLA analytical ultracentrifuge. Data were 
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recorded at 280 nm in radial step sizes of 0.003 cm. SEDNTERP35 was used to calculate the 

partial specific volume of MjCobT (0.756018 mL/g) as well as363535 the density (1.0093 

g/mL) and viscosity coefficient (0.010291) of the buffer. SEDFIT37 was used to analyze the 

raw sedimentation data. Data were modeled as a continuous sedimentation coefficient 

distribution [c(s)], and were fit using the baseline, meniscus, frictional coefficient, and 

systematic time-invariant and radial-invariant noise. Fit data for the experiment had a root 

mean square deviations of (r.m.s.d) < 0.004 AU. The theoretical sedimentation coefficient (s) 

values were calculated from the atomic coordinates of MjCobT(PDB ID 3L0Z) using 

HYDROPRO2038.

In vitro NaMN:DMB phosphoribosyltransferase assay.

NaMN:DMB PRTase activity was assayed as described elsewhere with minor changes to the 

reaction conditions detailed in each of the following sections13. Asterisks shown represent 

the following p-values: * denotes a p-value <0.05, ** denotes a p-value <0.01, *** denotes a 

p-value <0.001.

Specific activity measurements.

To determine the specific activity of MjCobT, the protein was diluted in potassium 

phosphate buffer (0.25 M, pH 8.0). Reaction mixtures contained phosphate buffer (0.25 M, 

pH 8.0), DMB (1.5 nmol), [2-14C]-DMB (0.5 nmol) and MjCobT (190 ng) in a final volume 

of 20 μL. NaMN was provided in the following amounts: 20, 15, 10, and 5 nmoles. 

Reactions mixtures were incubated at 37°C. Samples were removed after 0, 3, 5, 10, and 15 

min incubations and immediately spotted (5 μL) onto a silica gel thin-layer chromatography 

(TLC) plate (Whatman PE SIL G/UV). TLCs were developed for 1.5 h in a TLC chamber 

pre-equilibrated with a 3:2 (v/v) chloroform:methanol mobile phase. After drying in a fume 

hood, plates were exposed to a phosphor screen for 18 h. Distribution of radioactivity on 

TLC plates was visualized using a Typhoon Trio+ Variable Mode Imager (GE Life Sciences) 

with ImageQuant v5.2. Pixel density of TLC plates was analyzed using 1D gel analysis in 

TotalLab TL100 (Nonlinear Dynamics) and the resulting data were analyzed using Prism v6 

(GraphPad). Each reaction was performed in triplicate.

Effect of pH on MjCobT activity.

Reactions were conducted as outlined above with NaMN (1 mM) and buffer (25 mM) at the 

following pHs: sodium malate, pH 5, sodium succinate, pH 5.5, 4- morpholineethansulfonic 

acid (MES) pH 6, Bis-Tris pH 6.5, imidazole pH 7, Tris-HCl, pH 7, Tris-HCl pH 8, 

potassium phosphate pH 8, Tris-HCl pH 9, 2-(cyclohexylamino)ethanesulfonic acid (CHES) 

pH 9, CHES pH 9.5, glycine pH 10, and glycine pH 10.5. Reaction mixtures were incubated 

for 15 min at 37°C.

Effect of ionic strength on MjCobT activity.

Varying concentrations of salt tested as outlined above with NaMN (1 mM) and either 

potassium chloride or sodium chloride at the following concentrations: 0.1, 0.2, 0.3, 0.4 and 

0.5 M. Reaction mixtures were incubated for 15 min at 37 °C.
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Effect of temperature on MjCobT activity.

MjCobT activity as a function of incubation temperature was tested as outlined above with 

NaMN (1 mM). Reactions were incubated for 10 min at 40, 50, 70, or 80°C.

Effect of phosphate on MjCobT activity.

MjCobT activity as a function of phosphate concentration was measured as described above 

with NaMN (1 mM) and phosphate at either 0.025, 0.05, 0.075, 0.1, 0.2 or 0.4 M phosphate 

salts adjusted to pH 7.0. Reaction mixtures were incubated for 15 min at 80°C. Equivalent 

reactions were prepared with sodium salts of sulfate, vanadate, selenate, or molybate in lieu 

of potassium phosphate for comparison.

Determination of kinetic parameters.

Pseudo-first order kinetic data were obtained at a range of NaMN concentrations (0.075 to 1 

mM) with a saturating concentration of DMB (100 μM). The data were fit to the Michaelis-

Menten equation to determine the Km and maximum velocity (Vmax):

v =
Vmax[S]
Km + [S]

The turnover constant (kcat) was obtained with the following equation where E represents 

enzyme concentration:

kcat =
Vmax

E

Catalytic efficiency was determined by the following: kcat/Km.

Isothermal titration calorimetry.

Binding assays of MjCobT and NaMN substrate were performed using a Nano ITC 

isothermal titration calorimeter (TA instruments). MjCobT was dialyzed against Tris-HCl 

buffer (25 mM, pH 7.5) containing NaCl (150 mM); NaMN was solubilized in the final 

protein dialysate. Samples were degassed for 20 min at 25°C before use. MjCobT protein 

was present in the sample cell at 33 μM under constant stirring at 350 rpm, and NaMN was 

present in the injection syringe at 1 mM. Every 5 min, injections (2.4 μL) were made into 

the sample cell and heat released was recorded. Experiments were conducted at 25°C. Data 

were analyzed using NanoAnalyze software (TA instruments).

Phylogenetic analysis.

We searched for MjCobT homologues using NCBI BLASTP with CobT query sequences 

from M. jannaschii (accession: WP_064496984.1), S. enterica (accession: NP_460961.1), P. 
denitrificans (accession: WP_015478315.1), and B. megaterium (accession: 

YP_003563500.1)39. Query sequences were used to search cyanobacteria (taxid: 1117), 

thaumarchaeota (taxid: 651137), methanogens class I (taxid: 2283794), and methanogens 

class II (taxid: 224756). Results with a minimum 85% query coverage and e-value cutoff of 
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<10−40 were included in the supplementary tables. Results were screened using the NCBI 

conserved domain database (CDD) to confirm DMB-PRT_CobT superfamily (accession: 

cl11435, PSSM Id: 325029) placement40. The percent identity and percent positives are also 

provided. Results from “uncultured marine thaumarchaeotes” were omitted from the tables.

The phylogenetic tree (Fig. 14) was constructed using SeaView software41. CobT 

homologue sequences from the following organisms were used to generate a MUSCLE 

alignment: M. jannaschii, M. thermoautotrophicus, S. acidocaldarius, P. denitrificans, S. 
enterica, S. ovata (ArsAB), Synechococcus sp. WH7803, G. kilaueensis, L. rosea, Anabaena 
sp. PCC 7108, Nostoc sp. PCC 7524, Synechocystis sp. PCC 7509, T. erythraeum, L. 
aestuarii, H. rivularis, P. minor, C. watsonii, S. meliloti and M. aeruginosa. The tree was 

then constructed using the PhyML algorithm (100 bootstraps) with BLOSUM 62 as the 

model. The tree was modified for publication using the FigTree1.4.3 program available 

online (http://tree.bio.ed.ac.uk/software/figtree/).

RESULTS & DISCUSSION

In vivo evidence that M. jannaschii CobT (MjCobT) is a functional enzyme.

We used an in vivo approach to determine whether MjCobT had NaMN:DMB 

phoshoribosyltransferase (PRTase) activity. For this purpose, we introduced a plasmid 

encoding M. jannaschii cobT+ into a S. enterica ΔcobT strain to try to restore AdoCbl 

synthesis in the absence of SeCobT function. ORF MJ_RS08515 (referred to as M. 
jannaschii cobT+) was placed under the control of an arabinose-inducible promoter in 

plasmid pBAD2424 to yield pMjCobT1, which was moved into strain JE12893 (ΔcobT1379 
ΔcobB1374) yielding strain JE18114 (Table S1).

Strain JE12893 failed to grow without exogenous Cbl (Fig. 5, triangles), but grew when Cbl 

was present in the medium (Fig. 5, diamonds). Ectopic expression of M. janaschii cobT+ 

allowed strain JE18114 to grow when Cbi was present in the medium (Fig. 5, inverted 

triangles). This result indicated that MjCobT had SeCobT-like activity. Strain JE18115 

(ΔcobT ΔcobB / pCOBT140) served as positive control for CobT function (Fig. 5, squares).

MjCobT activates diverse bases to their corresponding α-ribotides.

To gain insights into the substrate specificity of MjCobT, guided biosynthesis experiments 

were performed. For this purpose, Cbas were extracted from S. enterica ΔcobT ΔcobB / 

pMjCobT (strain JE18114) after growth in culture medium supplemented with Cbi alone or 

Cbi plus varying bases (i.e., 5,6-dimethylbenzimidazole (DMB), adenine, 5-

methoxybenzimidazole, or 5-hydroxybenzimidazole). Reverse-phase, high-performance 

liquid chromatography (RP-HPLC) and MALDI-TOF mass spectrometry analyses of 

extracted Cbas showed that all the bases tested were incorporated into the final product (Fig. 

6), indicating that MjCobT activated each base to its corresponding α-ribotide. Notably, 

when no base was provided, MjCobT activated endogenous adenine and the final product 

was psCbl. As a positive control, the same analyses were performed with Cbas extracted 

from the S. enterica ΔcobT ΔcobB / pSeCobT (strain JE18115) (data not shown).
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In vitro optimization of conditions for MjCobT NaMN:DMB PRTase activity.

NaMN:DMB PRTase activity was measured using thin layer chromatography (TLC) and 

[2-14C]-DMB substrate as described elsewhere42.

Effect of pH on the reaction.—To determine optimal buffer and pH for MjCobT 

activity, activity level was assessed using multiple buffers over a range of pH (Fig. 7). 

MjCobT showed greatest activity at pH 10, similar to SeCobT42. Given that the internal pH 

of S. enterica is not 10, the buffer system with the highest activity within a physiologically 

relevant pH range was used for subsequent analyses. Subsequent experiments were 

performed with KPi buffer pH 8.

Phosphate positively affects MjCobT activity.—Given the precedent of positive 

effects of phosphate on the activity of another Cba biosynthetic enzyme from a 

hyperthermophile43, we varied the phosphate concentration in the reaction mixture to 

investigate the effect of phosphate on MjCobT activity. We varied the concentration of KPi 

in the reaction mixture (25–400 mM) and observed a modest increase in the amount of α-RP 

synthesized over a period of 15 min, from 1.0 to 1.8 nmol α-RP. To determine whether 

observed effect of activity was specific to phosphate, an equivalent experiment was 

performed with sulfate (Fig 8). The amount of DMB converted to α-RP by MjCobT was 

measured after incubation of enzyme (250 nM) with substrates at 80°C for 15 min in the 

presence of sulfate, phosphate or neither. In the absence of either sulfate or phosphate the 

enzyme converted 0.8 nmol of DMB (40% of the initial amount) to α-RP. To assess the 

effect of other oxyanions on the activity of MjCobT compared to phosphate, an equivalent 

experiment was performed with sodium salts of vanadate, selenate, or molybdate. Compared 

to phosphate (25 mM), none of the oxyanions tested stimulated MjCobT activity, even when 

tested at 50 mM or 100 mM (Fig. 8).

Effect of ionic strength.—To determine the effect of salts on the activity of MjCobT, 

varying concentrations of sodium chloride and potassium chloride were tested (100–500 

mM). Altering the ionic strength of the reaction system showed no significant change in the 

activity of MjCobT with either salt (data not shown).

Enzyme activity as a function of temperature.—We also probed the effect of 

temperature on the activity of MjCobT. As expected for an enzyme from a 

hyperthermophile, the activity of MjCobT increased as a function of temperature, exhibiting 

the highest activity (~4-fold increase from 37°C) at 80°C (data not shown).

Enzyme activity as a function of NaMN.—As shown in figure 9A, the amount of 

MjCobT-generated α-RP is displayed as a function of time for each concentration of NaMN 

tested. The specific activity of MjCobT at each level of NaMN is shown in Figure 9B. 

MjCobT shows NaMN:DMB PRTase activity at a physiological pH, where SeCobT activity 

was previously undetectable42.
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Effect of salting out agents.—To assess the effect of crowding agents on the activity of 

MjCobT, varying amounts of ammonium sulfate (75–750 mM) were added to the reaction, 

but no significant changes in activity were observed (data not shown).

Pseudo-first order kinetics analysis of MjCobT.

Kinetic parameters for the reaction catalyzed by MjCobT were obtained with NaMN when 

DMB was provided at saturating levels (100μM). The rate of the reaction as a function of 

NaMN concentration is shown in figure 10 with the corresponding summary of apparent 

kinetic parameters shown in the inset. Kinetic parameters of MjCobT for DMB were not 

obtained because of the limit of product detection of the assay. The plot in figure 10 is 

missing points below 50 μM NaMN because below that concentration product formation 

was not detectable. Of note, the apparent Km of MjCobT for NaMN was 5-fold lower than 

that of SeCobT44.

Biologically active MjCobT is a dimer.

The oligomeric state of MjCobT was determined by analytical ultracentrifugation. MjCobT 

protein used for this analysis was 99% homogenous (Fig. 11A). Sedimentation velocity 

analysis showed that 27 μM MjCobT existed primarily as a 4.4 S (81.3%) species that was 

consistent with the expected size of a dimer (Fig. 11B). Examining the crystal structure with 

PISA identified a dimeric assembly with a reasonable buried interface (940 Å2) and a 

favorable P-value of 0.164, which is good evidence of a specific, stable dimer interface45 

(Fig. 11C). The identified dimer gives a predicted sedimentation value of 4.4 S, which 

matches the experimentally observed species. Additional evidence supporting our 

identification of the dimer can be seen in the crystal structure of the distant homologue, 

CobT from Pyrococcus horikoshii (PDB 3U4G), which contains the same dimeric assembly 

despite a sequence identity of 37% (Fig. 11C).

The sedimentation distribution also revealed a small amount of a 6.5 S species (12.7%), 

which was consistent with a predicted tetramer (6.7 S) formed from the association of two of 

the dimers. We believe that this species is most likely caused by aggregation of the protein, 

with the 0.2 difference in S value being the result of the aggregate forming a less compact 

structure than the modeled tetramer. Finally, there was a minor peak representing 3.8% of 

the distribution at 0.75S. Based on the small size, this is likely a minor contaminant in the 

sample.

MjCobT has a high affinity for NaMN substrate.

Isothermal titration calorimetry (ITC) was used to determine the affinity of MjCobT for the 

NaMN substrate. The calculated dissociation constant (Kd) of the MjCobT/NaMN complex 

was 3.2 μM, indicating a high affinity for the substrate (Fig. 12). Given the low 

concentration of NaMN in the cell46, a high affinity for NaMN would be consistent with our 

expectations. ITC experiments aimed at determining the Kd of MjCobT for DMB were not 

performed due to incompatibility of the solvent used to solubilize DMB (DMSO) with the 

ITC instrument. The molar ratio of ~2 was consistent with two active sites per MjCobT 

dimer.
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MjCobT residues E150 and E315 are necessary for function.

In SeCobT, residues E174 and E317 are required for activity47. To investigate whether the 

equivalent residues in MjCobT, i.e., E150 and E315 (Fig. 4) were needed for activity, these 

residues were changed to alanine and the activity of the resulting variants was assessed in 
vivo. Concentration sweeps of DMB or adenine in the growth medium were performed to 

determine the minimum concentration of base necessary to confer growth of strains 

expressing variant proteins. Data from these experiments are shown in Table 1. In the 

presence of DMB (50 μM) the strain that synthesized variant MjCobTE150A had a doubling 

time similar to that of the strain that synthesized wild-type MjCobT (Table 1). The strain that 

synthesized variant MjCobTE150A failed to grow when adenine (1 mM) substituted for DMB 

in the medium. At present it is unclear whether the MjCobTE150A variant could not use 

adenine as substrate because it cannot bind it or because it is catalytically inactive. ITC 

experiments aimed at answering the question of binding could not be performed due to 

incompatibility of the solvent needed to keep adenine in solution.

In contrast, the MjCobTE315A variant restored growth with 10-fold less DMB (5 μM) in the 

medium, suggesting that the E315A substitution did not negatively affect enzyme activity as 

much as the E150A substitution. Unlike MjCobTE150A, MjCobTE315A did support psCbl 

synthesis, even when the concentration of adenine in the medium was reduced to 0.5 mM 

(Table 1).

The strain that synthesized the double variant MjCobTE150A,E315A failed to synthesize 

AdoCbl or psCbl when inoculated into medium containing DMB or adenine, suggesting that 

in spite of their structural differences, SeCobT and MjCobT likely catalyze the reaction via 

similar mechanisms. It was previously suggested that in archaeal orthologues, an acidic 

residue at the position equivalent to SeCobT E174 might be necessary and sufficient for 

activity47.

This idea was based on analyses of structural alignments which showed a valine residue in 

place of SeCobT E317 in two archaeal orthologues, one of them being MjCobT. Here we 

show that the MjCobT E315 is in fact, the equivalent to SeCobT E317 and both acidic 

residues in the active site are necessary for function in vivo.

MjCobT homologues are commonly found in methanogenic archaea.

Using MjCobT as a query sequence, we identified many homologues in both class I and 

class II methanogens (Table S3). Homologues identified in class I methanogens showed a 

high level of identity and similarity to MjCobT, while class II methanogens showed a more 

divergent homologue. On the basis of phylogenetic analysis, MjCobT is likely representative 

of the class of NaMN:DMB phosphoribosyltransferases found in class I methanogenic 

archaea.

The cobT+ allele of the cyanobacterium Synechococcus sp. restores AdoCba biosynthesis 
in a CobT-deficient S. enterica strain when DMB is provided.

To determine whether Synechococcus sp. CobT had NaMN:Base PRTase activity in vivo, we 

introduced a plasmid encoding Synechococcus sp. WH7803 cobT+ into a S. enterica ΔcobT 
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strain to attempt to restore AdoCbl synthesis in the absence of SeCobT function. ORF 

SYNWH7803_RS09275 (i.e., Synecococcus cobT+) placed under the control of an 

arabinose-inducible promoter in plasmid pCV127 was moved into strain JE12893 (ΔcobT 
ΔcobB) yielding strain JE24636 (ΔcobT ΔcobB / pSynCobT2) (Table S1). Strain JE12893 

failed to grow without exogenous CNCbl (Fig. 13, inverted triangles), but grew when CNCbl 

was present in the medium (Fig. 13, diamonds). Ectopic expression of Synechococcus sp. 
cobT+ allowed strain JE24636 to grow when (CN)2Cbi and DMB were present in the 

medium. Strain JE24636 failed to grow when only (CN)2Cbi was provided. This result 

indicated Synechococcus sp. CobT supported SeCobT-like activity in vivo when DMB was 

provided (Fig. 13, triangles). Previously, cyanobacterial species were shown to solely 

produce psCbl. Our findings indicate Synechococcus sp. CobT can activate DMB, ultimately 

yielding AdoCbl. Strain JE18115 (ΔcobT ΔcobB / pCOBT140) served as positive control for 

CobT function (Fig. 13, squares).

Phylogenetic analysis suggests that CobT in cyanobacteria has an archaeal origin.

Previous studies have suggested that the majority of cyanobacterial genomes lack cobT and 

that none of the sequenced Synechococcus genomes encode cobT17. When searching for 

homologues using CobT from S. enterica, P. denitrificans, and B. megaterium, our findings 

were consistent with the data reported by Helliwell et. al (Table S4). With the identification 

of the archaeal cobT from M. jannaschii, we found numerous cobT homologues in the 

genomes of cyanobacteria, including Synechococcus (Table S5). The report by Helliwell et. 
al. showed that Synechococcus solely produced psCbl even when provided with DMB 

(1μM) to “guide” the biosynthesis of cobalamin. The sole synthesis of psCbl by 

Synechococcus may be attributed to a lack of DMB transport and may not indicate the 

exclusive production of psCbl. Our bioinformatics findings in combination with the 

complementation of Cbl-dependent growth by a Synechococcus CobT homologue suggest 

that cyanobacteria can activate DMB via the canonical NaMN:DMB phosphoribosyltransfer 

mechanism. These findings also suggest that cyanobacteria can produce Cbl in addition to 

psCbl.

Our phylogenetic analysis shows that the CobT homologues found in archaea and 

cyanobacteria cluster into a distinct clade separate from the homologues found in Firmicutes 
and proteobacteria (Fig 14). Within this clade, the majority of the cyanobacterial CobT 

homologues cluster tightly within a major clade and are distinctly separate from the archaeal 

CobTs which form another major clade. This likely suggests that the cyanobacterial CobTs 

are of archaeal origin and significantly differ from the CobTs found in Firmicutes and 

Proteobacteria. This difference is likely why previous studies did not identify CobT 

homologues in cyanobacteria.

Previous work has implicated thaumarchaeota as major Cbl producers in marine 

environments16. Previously reported genome analyses performed showed the absence of 

cobT from all thaumarchaeota and suggested that an alternative pathway for DMB activation 

existed in these microorganisms. Our identification of archaeal MjCobT prompted the search 

for homologues in thaumarchaeota. We found that cobT is commonly found in 

thaumarchaeotal genomes (Table S6). Given the prevalence of cobT in thaumarchaeotal 
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genomes and the previously reported production of cobalamin, it is likely that 

thaumarchaeota activate DMB using a NaMN:DMB phosphoribosyltransferase enzyme.

CONCLUDING REMARKS

This study reports a new class of NaMN:DMB phosphoribosyltransferases (CobT) enzymes 

involved in cobamide biosynthesis in archaea and in cyanobacteria, but not in bacteria. 

Structurally, there are significant differences between MjCobT and SeCobT, most notably 

the absence of the small domain in MjCobT which is essential in forming the active site of 

SeCobT. MjCobT groups with both the CobT homologues found in archaea and 

cyanobacteria and this group is highly divergent from the CobT homolgues found in 

bacteria. MjCobT sequence identity compared to SeCobT is too low to be detected by NCBI 

BLASTp. Additionally, we see a greater degree of amino acid sequence similarity between 

MjCobT and the cyanobacterial and archaeal CobT homologues than we see compared to 

bacterial CobT. Given this information, we feel MjCobT represents a class of NaMN:DMB 

phosphoribosyltransferase that is significantly different from bacterial CobT. In addition, 

this work corrects information regarding the oligomeric state of the PRTase from 

Methanocaldococcus jannaschii (PDB 3L0Z), whose crystal structure suggests it is a trimer. 

Our data indicate that in solution, the biologically active MjCobT enzyme is dimeric.
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Figure 1. Adenosylcobamide (AdoCba) structure and nucleotide base diversity.
A. The nucleotide loop is boxed. B. Purines and purine analogues found in Cbas: [1], purine; 

[2]. hypoxanthine; [3], adenine; [4], 2-methyladenine; [5], 2-methylmercaptoadenine; [6], 2-

methylsulfinyladenine; [7], 2-methylsulfonyladenine; [8], guanine. C. Benzimidazole and its 

analogues: [1], benzimidazole; [2], 5-methylbenzimidazole; [3], 5,6-dimethylbenzimidazole; 

[4], 5-hydroxybenzimidazole; [5], 5-methoxybenzimidazole; [6], 5-methoxy-6-

methylbenzimidazole; [7], naphthimidazole. D. Phenolics: [1], phenol; [2], p-cresol.
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Figure 2. Base Activation by CobT.
The activation of 5,6-dimethylbenzimidazole (DMB) to its α-ribotide by CobT PRTase is 

shown. NaMN, nicotinate mononucleotide, Na, nicotinic acid, α-RP, alpha-ribazole-

phosphate, CobT: NaMN:DMB phosboribosyltransferase (EC 2.4.2.21)
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Figure 3. Late steps of coenzyme B12 biosynthesis.
This figure schematizes the two branches of the nucleotide loop assembly (NLA) pathway 

that yields coenzyme B12 in S. enterica. This bacterium can assimilate exogenous, 

incomplete corrinoids such as cobinamide (Cbi) converting it to AdoCbi and activating it to 

AdoCbi-GDP via AdoCbi-P using the bifunctional kinase/guanylyltransferase (CobU) 

enzyme. The base shown in this scheme is 5,6-dimethylbenzimidazole (DMB), which is 

activated to its α-ribotide by the CobT PRTase (shown inside the box). Condensation of the 

activated intermediates followed by dephosphorylation yields biologically active coenzyme 

B12.
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Figure 4. Protein sequence similarities and identities among MjCobT, SeCobT, and 
Synechococcus CobT.
The alignment was generated using Clustal Omega and visualized with ESPript 3.0 web-

based program. Alpha helices and beta sheets for MjCobT (PDB 3L0Z) and SeCobT (PDB 

1L4B) obtained from the reported crystal apo structures are shown. The structure of 

Synechococcus CobT has not been reported.
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Figure 5. MjCobT supports AdoCbl-dependent growth of S. enterica.
Strains were grown in minimal NCE medium supplemented with ribose (20 mM) as carbon 

and energy source. (CN)2Cbi (15 nM) was added to all cultures, except to the culture 

growing in the presence of CNCbl (diamonds). DMB (150 μM) was added to all cultures 

except for the culture to which CNCbl was added (diamonds).
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Figure 6. MjCobT can activate different bases.
The figure shows RP-HPLC tracings (panels A-E) and MALDI-TOF mass spectra (panels F-

J) of α-ribotides synthesized by MjCobT under conditions described under Materials and 
Methods. The substrates used were: 5,6-dimethylbenzymidazole (panels B, G), adenine 

(panels C, H), 5-hydroxybenzimidazole (panels D, I), and 5-methoxybenzimidazole (panels 

(E, J).
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Figure 7. Effect of pH on MjCobT activity.
Conditions for the PRTase reaction are described under Materials and Methods. Product 

formation is displayed as a function of pH. Error bars represent the standard error of the 

mean. Asterisks represent significance determined by unpaired T test compared to pH 7. The 

following buffers were tested in order of appearance: sodium malate (pH 5), sodium 

succinate (pH 5.5), MES (pH 6), 2-[Bis(2-hydroxyethyl)amino]-2-

(hydroxymethyl)propane-1,3-diol (Bis-Tris, pH 6.5), imidazole (pH 7), phosphate (pH 8), 2-

amino-2-(hydroxymethyl)-1,3-propanediol chloride (Tris-HCl pH 7, 8, 9), N-cyclohexyl-2-

aminoethanesulfonic acid (CHES pH 9, 9.5), and glycine (pH 10, 10.5).
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Figure 8. Phosphate positively affects MjCobT activity, vanadate, selenate, molybdate and sulfate 
do not.
Conditions for the PRTase reaction are described under Materials and Methods. Product 

formation is shown for each oxyanion provided at 50 mM and 100 mM compared to 25 mM 

phosphate. Error bars represent the standard error of the mean. Asterisks show significance 

determined by unpaired T test compared to phosphate condition.
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Figure 9. MjCobT activates 5,6- dimethylbenzimidazole to α-ribazole- phosphate (α-RP).
Conditions for the PRTase reaction are described under Materials and Methods. In panel A, 

product formation is shown as a function of time across varying NaMN concentrations. 

Product formation was quantified as a function of time. Error bars represent standard error 

of the mean. Asterisks shown significance determined by unpaired T test comparing time 0 

to time 15. Panel B shows average specific activities with standard deviations for each 

concentration of NaMN tested.
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Figure 10. Pseudo-first order kinetics of the MjCobT reaction as a function of NaMN.
In all reaction mixtures DMB was present at saturating levels (100 μM). Details of the 

protocol used can be found under Materials and Methods. Apparent kinetic parameters are 

shown in the inset.
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Figure 11. Oligomeric state and purity of MyOobT.
A. SDS-PAGE behavior of MjCobT compared to BioRad Precision Plus Protein Standards. 

Based on the data shown in panel B, MjCobT was estimated to be >99% homogeneous. B. 

Sedimentation velocity c(s) distribution of MjCobT at pH7.5 showing three species at 0.75 

S, 4.42 S, and 6.51 S C. Cartoon model of the MjCobT dimer (cyan) identified in the crystal 

structure (PDB ID 3L0Z) superimposed onto the homologous CobT from Pyrococcus 
horikoshii dimer in grey (PDB ID 3U4G).
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Figure 12. ITC analysis of NaMN binding to MjCobT.
Sample preparation for ITC analysis is described in detailed under Materials and Methods. 

Twenty 2.4-μL injections of 1 mM NaMN spaced every 5 min were made during the course 

of the experiment. The top panel shows the heat released per injection. The interaction 

between MjCobT and NaMN is shown as enthalpy per mol of NaMN injected as a function 

of the molar ratio of protein to ligand (bottom panel). The binding isotherm was obtained 

from the integrals of the peaks. Shown in the inset are the best-fit values for the dissociation 

constant (Kd), stoichiometry (n), enthalpic change (ΔH), and entropic change (ΔS).
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Figure 13. Synechococcus CobT supports AdoCbl-dependent growth of S. enterica in the absence 
of cobT and cobB.
S. enterica strains were grown in minimal medium supplemented with ribose (20 mM). 

(CN)2Cbi (15 nM) and DMB (150 μM) were added to all cultures except to the one to which 

CNCbl was added (diamonds). Synechococcus CobT (triangles) and SeCobT (squares) were 

expressed in trans in a ΔcobT ΔcobB S. enterica strain. A cobT+ cobB+ S. enterica strain 

(circles) served as positive control. A S. enterica strain deficient in CobT and CobB activity 

served as negative control (inverted triangles).
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Figure 14. Cyanobacterial CobT homologues are of archaeal origin.
Phylogenetic relationship of CobT homologues from diverse archaea and bacteria are shown. 

The tree was built based on a MUSCLE alignment using PhyML algorithm with 

BLOSUM62 model (100 bootstraps). Bootstrap values are presented in bold at the nodes and 

branch times are shown to 2 significant figures. Branch times below 0.2 were omitted from 

the tree. Organism highlighting is as follows: cyanobacteria in blue, archaea in orange, 

proteobacteria in purple, and Firmicutes in green.
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Table 1.

Doubling times (h) of a S. enterica cobT cobB strain harboring plasmids encoding MjCobT proteins

Variant (plasmid) Cbi (15 nM) Cbi + DMB Cbi + Ade Cbl (100 nM)

Vector (pBAD24) NG NG NG 1.2 ± 0.01[3 h lag]

MjCobTWT

(pMjCobT1)
1.6 ± 0.01 [3 h
lag]

1.4 ± 0.01, [3 h lag]
(10 nM)

1.5 ± 0.01, [3 h lag]
(10 nM)

1.2 ± 0.01, [3 h lag]

MjCobTE150A

(pMjCobT5)
NG 2.0 ± 0.02, [3 h lag]

(50 μM)
3.4 ± 0.12, [20 h lag]
(1 μM)

NG (1mM) 1.5 ± 0.01, [4 h lag]

MjCobTE315A

(pMjCobT3)
NG 1.6 ± 0.01, [3 h lag]

(5 μM)
2.0 ± 0.19[19 h lag]
(50 nM)

2.2 ± 0.03, [6 h lag]
(0.5 mM)

1.8 ± 0.03, [4 h lag]

MjCobTE150A E315A

(pMjCobT4)
NG NG NG 1.9 ± 0.17, [4 h lag]

Cells were grown in NCE minimal medium supplemented with ribose (20mM) as the sole carbon and energy source. Doubling times are shown in 
hours with the standard error of the mean. Lag times are shown in brackets. Concentrations of added ring precursor or base are shown in 
parenthesis. NG, no growth; Cbi, dicyanocobinamide [(CN)2Cbi]; DMB, 5,6-dimethylbenzimidazole; Cbl, cyanocobalamin (CNCbl, vitamin B12); 

Ade, adenine
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