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Abstract

In cancer, activation of X-box binding protein (XBP1) has a critical role in tumorigenesis and cancer progression.
Transcriptional regulatory mechanism of XBP1 in cancer development has been well known, however, regulation of
ubiquitination and degradation of XBP1 has not been elucidated yet. Here we show that Fbw7, a substrate recognition
component of the SKP1-Cullin-F-box-type E3 ligase, interacts with XBP1 in a phosphorylation-dependent manner, and
facilitates XBP1 ubiquitination and protein degradation. Moreover, Fow?7 inhibits oncogenic pathways including NF-kB,
AP1, and Myc induced by XBP1. Interestingly, XBP1 negatively regulates transcription of Fow?7 via a feedback
mechanism through NF-kB/E2F-1 axis signaling pathway, suggesting that overexpression of XBP1s may contribute to
low level of Fbw7 expression in human cancers. Therefore, a negative feedback loop between Fbw7 and XBP1
contributes to the regulation of tumor development and can be an attractive target for novel therapy in cancers.

Introduction

X-box binding protein (XBP1) plays a critical role in
regulation of endoplasmic reticulum (ER) homeostasis’,
and is also closely associated with in tumorigenesis and
progression of tumor?. XBP1s, an active form of XBP1,
can be translated from mRNA spliced by the ER stress
sensor inositol-requiring enzyme la (IREla) and regulates
multiple target genes such as genes associated with cell
proliferation and survival®. XBP1s is activated in several
cancer cells and activated XBP1s promotes breast cancer
progression and metastatic capacity®. Overexpression of
XBP1s in cancer cells induces drug resistance by reg-
ulating cell cycle and apoptosis genes®. A recent study has
reported that constitutive XBP1ls expression promotes
tumorigenesis by controlling anti-tumor immunity in
dendritic cells®. Therefore, proper regulation of XBP1
expression is important for tumor suppression.
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However, active form of XBP1, XBP1s, is unstable under
common condition. It can be degraded by proteasomes’.
Therefore, regulation of XBP1s degradation might be able
to modulate tumorigenic capacity and tumor progression.
Many researches have already demonstrated that tran-
scriptional activation of XBP1 contributes to tumor
growth®’, However, the regulation of XBP1s ubiquitina-
tion and degradation in cancer cells has not been eluci-
dated yet.

Fbw?7 is a substrate recognition component of the Skp1-
Cullin-F-box (SCF)-type E3 ligase complex and a well-
known tumor suppressor. Fbw7 exerts tumor suppressor
function by promoting the ubiquitination and degradation
of various oncoproteins including c-Myc, cyclin E,
NOTCH-1, and c-Jun'®'". Reduced Fbw?7 expression and
loss-of-function mutations have been demonstrated in
various types of human cancer, leading to chromosomal
instability and tumorigenesis'>. Our previous study has
shown that Pinl isomerase can act as an upstream
negative regulator of Fbw7 by governing Fbw7 stability
and tumor suppressor function'®. Pinl interacts with
Fbw7 in a phosphorylation-dependent manner. It pro-
motes Fbw7 self-ubiquitination and protein degradation,
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resulting in the amplification of oncogenic pathways.
Thus, Pinl-mediated inhibition of Fbw7 is a key signaling
pathway that regulates the stability of various oncopro-
teins in cancer. Our previous study has also demonstrated
that Pinl regulates XBP1 that has a critical role in cancer
signaling’. Therefore, we speculate that there are reg-
ulatory mechanisms of between XBP1 and Fbw7.

Regulation of transcriptional activation of XBP1 plays a
critical role in cancer progression and development.
However, at post-translational level, the ubiquitination or
degradation of XBP1 has not been well investigated. As
XBP1 has also putative Fbw7 consensus sequence, the
objective of this study was to determine whether Fbw7
might have a possible role in the regulation of ubiquiti-
nation and degradation of XBP1. Furthermore, we inves-
tigated the effect of XBP1 on Fbw7 regulatory
mechanisms as a feedback loop.

Results
Fbw?7 interacts with XBP1 in a phosphorylation-dependent
manner

It is known that Fbw7, a substrate recognition compo-
nent of SCF-type E3 ligase complex, is involved in the
ubiquitination and degradation of target proteins'®. XBP1
has putative Fbw7 consensus sequence in amino acid
sequences. Thus, we investigated whether XBP1 might be
regulated by Fbw7. Notably, we observed an interaction
between = XBP1 and Fbw7 based on co-
immunoprecipitation (Fig. 1la, b). Furthermore, we
detected that XBP1 and Fbw?7 also interacts in endogen-
ous level (Fig. 1c). This interaction was eliminated by
dephosphorylation of XBP1 with calf intestinal alkaline
phosphatase (CIP) and A-phosphatase treatment. (Fig. 1d,
e), indicating that Fbw7 could bind to XBPl in a
phosphorylation-dependent manner while XBP1 might be
a substrate of the Fbw7 E3 ligase complex. It is known
that Fbw7 can bind to specific consensus sequences and
that Fbw7 recruitment is promoted by phosphorylation'*,
Thus, we selected a putative Fbw7-binding degron motif
on Xbp1 (Fig. 2a) and the putative degron motif on XBP1s
at Ser’'? and Ser?" is conserved in various species (Fig.
2b). After substituting those serine sites to alanine, XBP1s
wild-type and S212/217 A were co-immunoprecipitated
with FLAG-Fbw7. Interestingly, the interaction between
Fbw7 and mutant S212/217 A XBPls was decreased
compared with that between Fbw7 and wild-type XBP1s
(Fig. 2c). These results suggested that the Ser*'**!” sites
of XBP1s are important for binding to Fbw7.

Fbw7 promotes ubiquitination and degradation of XBP1
A previous study has demonstrated that the expression of
XBP1 is increased following treatment with the proteasome
inhibitor MG132°. Therefore, we hypothesized that XBP1
degradation was mediated by ubiquitination and
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proteasomes. First, we investigated whether Fbw7 expres-
sion affected the protein stability of XBP1s. Cycloheximide
(CHX) chase method was used to detect changes in XBP1s
stability. In contrast with control cells (FBW7 + / +), exo-
genous XBP1s showed higher and longer expression level in
Fbw7-deficient cells (FBW7—/—) (Fig. 3a). Furthermore,
endogenous XBPls also indicated higher and longer
expression level in Fbw7-deficient cells (FBW7—/—) than
control cells (FBW7+/+) (Fig. 3b). This suggests that
XBP1s is more stable in Fbw7-deficient cells (FBW7—/-),
and that Fbw7 can regulate XBP1s expression and destabi-
lize XBP1. Furthermore, we examined XBP1s ubiquitination
by Fbw7 expression and detected increased levels of XBP1
ubiquitination in Fbw7-expressing cells compared to that in
control vector-expressing cells (Fig. 3c). In contrast, over-
expression of inactive Fbw7 mutants did not affect XBP1
ubiquitination. Additionally, ubiquitination of XBP1 was
significantly decreased in Fbw7-depleted cells compared to
that in Fbw7 wild-type cells (Fig. 3d). These results indicated
that Fbw7 can interact with XBP1 in a phosphorylation-
dependent manner, and promotes ubiquitination of XBP1,
subsequently leading to proteasomal degradation of XBP1s.

Fbw7 downregulates the function of XBP1 inducing
tumorigenesis

Given the important role of Fbw7 in regulating ubi-
quitination and degradation of XBP1s known to have a
critical role in tumorigenesis, we determined whether
Fbw7 might affect the cellular function and oncogenic
signaling pathways of XBPls. Our previous study has
shown that constitutive activation of XBP1 facilitates
several oncogenic signaling pathways including Myc, AP1,
and NF-kB activities’ Thus, we evaluated the effects of
Fbw7 expression on the increased oncogenic signaling
pathways by XBP1s using three luciferase reporters (Myc,
AP1, and NF-«B). Activities of these three reporters were
increased in XBPls-expressing cells. However, these
increased levels of Myc, AP1, and NF-kB were sig-
nificantly decreased by Fbw7 expression in a dose-
dependent manner (Fig. 4a—c). Consistent with the
oncogenic function of XBP1, HCT116 cells expressing
XBP1s showed a significantly larger focus size as well as
increased number of colonies (Fig. 4d, e). Interestingly,
depletion of Fbw7 significantly increased the focus num-
ber and size, displaying a higher induction effect in
XBP1s-overexpressing cells (Fig. 4d, e). Expression of
XBP1s in HCT116 cells affected foci formation, similar to
that in Fbw7-depleted cells without XBP1s expression
(Fig. 4d, e). Migration assay also supported that XBP1s
regulation by Fbw7 affects tumorigenic capacity (Fig. 4f,
g). In the absence of Fbw7, XBPls-expressing HCT116
cells significantly promote cancer cell migration com-
pared to HCT116 Fbw7 + / + cells expressing XBP1s (Fig.
4f, g). Cell proliferation assay data also supported that
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Fig. 1 Fbw7 interacts with XBP1s in phosphorylation-dependent manner. a Co-immunoprecipitation (Co-IP) of transiently expressed XBP1s and
FLAG-Fbw7. HEK293FT cells were co-transfected with XBP1s and FLAG-Fbw7. Immunoprecipitation was detected with anti-FLAG. b Co-
immunoprecipitation (Co-IP) of transiently expressed XBP1s and FLAG-Fbw7. HEK293FT cells were co-transfected with XBP1s and FLAG-Fbw7.
Immunoprecipitation was detected with anti-XBP1. ¢ Immunoprecipitation of tunicamycin induced endogenous XBP1s and Fbw7. HEK293FT cells
were treated 1 pg/ml tunicamycin 24 h. Immunoprecipitation was detected with anti-XBP1. d XBP1s interacts with Fbw?7 in a phosphorylation-
dependent manner. Transient expressing XBP1s and/or FLAG-Fbw?7 lysates were treated with calf intestinal alkaline phosphatase (CIP), and subjected
to co-immunoprecipitation. e Transient expressing XBP1 and/or FLAG-Fbw7 lysates were treated with A-phosphatase, and subjected to co-
immunoprecipitation. All western blot analyses were carried out with anti-XBP1and anti-FLAG antibodies. Actin was used for an internal control
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increased XBP1s expression elevates cell proliferation in
Fbw7 deficient condition (Fig. 4h). These results together
demonstrate that tumorigenic pathways and cellular
function of XBP1 are regulated by Fbw7 by reducing the
cell transformation capacity of XBP1.

XBP1s downregulates Fbw7 transcription through NF-kB
and E2F-1 pathway as a negative feedback mechanism

In addition, we tested the effect of XBP1ls on endo-
genous or exogenous Fbw7 expression. Various con-
centrations of XBP1s expression plasmid in HCT116 cells
were transfected with FLAG-Fbw7 vector to evaluate the
expression of exogenous Fbw7 (Fig. 5a—c). Level of exo-
genous Fbw7 mRNA was not affected by XBP1s. How-
ever, the level of endogenous Fbw7 mRNA level was
decreased by XBPls expression in a dose-dependent
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manner (Fig. 5d—f). Results of western blot indicated that
XBP1s expression had a similar effect on Fbw7 expression
(Fig. 5g, h). Expression of endogenous XBP1s induced by
Tunicamycin also downregulates endogenous Fbw7
mRNA expression (Fig. 5i). These results suggest that
XBP1s can downregulate endogenous Fbw7 at the tran-
scriptional level, thereby resulting in the reduction of
Fbw?7 protein expression.

We next examined how XBP1s regulated Fbw7 endo-
genous mRNA level in cells. It has been reported that NF-
KB (p50) can downregulate the transcription of Fbw7 by
inhibiting E2F-1 transcription factor which activates Fbw7
mRNA transcription'®. Therefore, we hypothesized that
XBP1s can decrease the Fbw?7 transcription level by ele-
vating NF-kB activation (nuclear localization of p50).
Thus, we tested whether XBP1s affects NF-kB activation
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Fig. 2 $212/217 site of XBP1 is the direct binding site of Fow7. a Schematic model of the Serine-Proline (SP) sites replaced by alanine. The basic
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Alignment of XBP1s sequence Ser212-Pro site in a variety of species. ¢ Transient expressing wild-type (WT) and mutant XBP1s were co-
immunoprecipitated with FLAG-Fbw7. HEK293FT cells were co-transfected with XPB1s and FLAG-Fbw7. XBP1s serine 212 and 217 sites were mutated
to alanine. Immunoprecipitation was carried out with anti-FLAG. Anti-XBP1 and anti-FLAG were used for immunoblotting. Data are expressed as
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(nuclear localization of p50) and E2F-1 expression. Sur-
prisingly, we found that the amount of p50 localized into
nucleus from cytosol was increased in XBPls over-
expressing cells (Fig. 6a, b). Immunocytochemistry data
also showed increased localization of p50 into nucleus in
XBP1s over-expressing cells (Fig. 6¢, d). Furthermore,
XBP1s expression downregulated E2F-1 expression and
E2F-1 luciferase reporter activity upon activation of Fbw7
promoter (Fig. 6e, f). These data suggest that XBP1s can
downregulate transcription of Fbw7 through NF-kB/E2F-
1 regulatory pathway (Fig. 6g).

Discussion

Accumulating researches have revealed that ER-stress
plays a critical role on growth and survival of tumor
cells'®. XBP1 is one of the most important ER-stress
related gene that are involved in tumorigenesis and
metastasis of tumor cells'”. Especially, it has been
reported that the active form of XBP1 derived from spli-
cing of XBP1 mRNA is associated with cancer develop-
ment”. However, ubiquitination or degradation of XBP1s
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at the post-translational level has not been elucidated yet.
Here we reported that XBP1s can be regulated by ubi-
quitination and proteasomal degradation via Fbw7 E3
ubiquitin ligase complex. We founded that Fbw7 interacts
with XBP1 directly in a phosphorylation-dependent
manner and elevates its ubiquitination and subsequent
degradation. As a result, Fbw7 inhibited the ability of
XBP1s that increases the activities of NF-xB, AP1, and
Myc signaling pathways. AP-1 and Myc are known tran-
scription factors and oncoproteins'®'®, Activation of NF-
kB controls stress responses in cancer cells®® and cytokine
induction in immune cells'>*'. Therefore, modulation of
AP1, Myc, and NF-«B activation through Fbw7-XBPl1s
axis pathway might affect the progression of cancers and
immune response from various stress in humans.

In a previous study, we have reported that Pinl interacts
with Fbw7 in a phosphorylation-dependent manner and
promotes Fbw7 self-ubiquitination and protein degrada-
tion, indicating that Fbw7 protein destruction and tumor
suppressor function are negatively regulated by Pinl1'?,
Our previous study has also demonstrated that there is a



Chae et al. Oncogenesis (2019)8:12

Page 5 of 10 12

Fbw7 +/+ Fbw7 -/-

0 1 2 4 0 1 2 4 CHX(h)

52— WP e e

= 120-
< - Fbw7-/-
£ 1007 e = Fbw7 ++
Eg 80- kokk
£ o
3
= 204
-}
“ 0 . , .
0 ! 2 4 CHX(h
C Flag-Fbw7 - - + -
Flag-Fbw7Mt - - - +
His-Ub - + + +
XBPls + + + +
IP: Ni-NTA 16— Ubiquitinated
XBP1s
97 —
T e -

S T
“ _‘ Actin

Lysate

against XBP1 and actin

B Tunicamycin
Fbw7 +/+ Fbw7 -/-
0 1 2 4 0 1 2 4 CHX(h)
XBP1s
Actin
3 1207 -~ Fbw7-/-
£ 1007 worx = Fbw7 +/+
:g 80 EETY
2 o -
T 0]
T 207
/M
0 T T T T
0 1 2 4 CHX(h)
+ + + Tunicamycin
D
Fbw7+/+  Fbw7-/-
His-Ub - + + - + +
XBPls + + + + + +
) Ubiquitinated
IP: Ni-NTA XBP1s
Lysate

Fig. 3 Fbw7 regulates XBP1s ubiquitination. a Deficient of Fbw?7 leads to increased exogenous XBP1 expression. HCT116 Fbw7—/— cells or

HCT116 control cells were transfected with plLenti 6.3 XBP1. Cycloheximide (CHX) at 80 ug/ml was used to treat HCT116 cells at the indicated time
points. Western blotting was carried out with the indicated antibodies. b Deficient of Fbw?7 leads to increased endogenous XBP1 expression. HCT116
Fbw7—/— cells or HCT116 control cells were treated with tunicamycin (TM) which is well-known ER stress inducer. ¢ HCT116 Fbw7—/— cells were
transfected with Flag-Fow7 WT (wild type), Mt (mutant), XBP1s, and/or His-tagged ubiquitin (His-Ub) or vector control as indicated. Cells were then
lysed in a buffer containing 6 M urea. WCL whole cell lysate. Ubiquitin-conjugated proteins were captured with nickel-agarose beads and subjected
to immunoblot analysis with the indicated antibodies. d WT of Fbw7—/— HCT116 cells were transfected with His-tagged ubiquitin and/or XBP1s
expressing vector. Ubiquitin-conjugated proteins were captured with nickel-agarose beads and subjected to immunoblot analysis with antibodies

negative feedback mechanism between Pinl and XBPls
through p53°. A recent study has suggested that NF-kB
p50 downregulates fbw7 mRNA level by inhibiting E2F-1-
mediated promoter activation'”. In the present study, we
found that overexpression of XBP1s downregulates tran-
scriptional level of Fbw7 through NF-kB and E2F-1
pathway. Collectively, our results provide a new Pinl-
Fbw7-XBP1 signal network including Fbw7-mediated
blockage of XBPls ability to enhance AP1, Myc, and
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NF-kB activities and a negative feedback mechanism
between Fbw7 and XBP1s during tumorigenesis (Fig. 7).

It has been reported that function of Fbw7 serves as a
tumor suppressor through negative regulation of onco-
proteins in human cancers®>. Multiple oncoproteins tar-
geted by Fbw7 are undergoing proteasomal degradation
through ubiquitination'®. Therefore, dysregulation of
proteolysis by Fbw7 for oncogenic proteins induces pro-
motion of various cancers. Non-functional Fbw7
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Fig. 4 Fow7 reduces the function of XBP1s activating oncogenic signals. a HCT116 cells were co-transfected with the Myc-luc reporter, XBP1s
expressing vector, and Flag-Fbw?7 expressing vector and then analyzed for luciferase activity at 48 h after transfection. b HCT116 cells were co-
transfected with the AP1-luc reporter, XBP1s expressing vector, and Flag-Fbw7 expressing vector and then analyzed for luciferase activity after 48 h. c
HCT116 cells were co-transfected with the NF-kB -luc reporter, XBP1s expressing vector, and Flag-Fbw?7 expressing vector and then analyzed for
luciferase activity after 48 h. d At 10 days after seeding HCT116 control/XBP1 overexpressing/Fow?7 knock down/both XBP1 overexpressing and Fow?7
knock down cells, they were stained with 5% crystal violet. @ Number and size of colonies from three independent experiments. f Scratched HCT116
XBP1-overexpressing cells or HCT116 XBP1-overexpressing cells with Fbw7-null were observed until 48 h using incucyte. g Statistical analysis of
relative wound density. h Proliferation rate of HCT116 XBP1-overexpressing cells or HCT116 XBP1-overexpressing cells with Fow7-null were detected

with Incucyte until 96 h. Data are expressed as means + SD (n = 3). *p < 0.05, **p < 0.01, and ***p < 0.001

mutations and low expression of Fbw7 have been shown
in many human tumors including bladder, endometrial,
and colorectal cancers®. Due to the critical role of Fbw7
as a tumor suppressor, investigation of regulatory
mechanisms related to Fbw7 is still receiving attention.
Here we suggested that XBP1 is one of the regulatory
substrate of Fbw7. Besides providing the molecular
mechanisms for Fbw7-mediated regulation of XBPls
degradation, we showed that upregulation of Fbw?7
decreased the ability of XBP1s to enhance cell transfor-
mation whereas depletion of Fbw7 increased XBPls
ability. Interestingly, overexpression of XBPls down-
regulated the expression of Fbw7 known to have a critical
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role in suppressing growth and survival of tumor cells.
These results implicated that Fbw7 is one of the upstream
regulatory proteins for XBPls signaling. This further
suggest that overexpression of XBP1s may contribute to
low level of Fbw7 expression, and low level of Fbw7 or
dysfunction of Fbw7 by mutation may contribute to high
level of XBP1 expression in human cancers.

In the present study, we demonstrated that a reciprocal
regulatory mechanism between XBP1 and Fbw7. Our data
provide the molecular mechanism of the Fbw7-XBP1 axis
that can be used to propose the new pathway about
tumorigenesis. We already presented the regulatory
mechanisms between Fbw7 and Pinl or XBP1 and Pinl.
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This study suggests a new pathway between XBP1 and
Fbw7. Therefore, XBP1, Pinl, and Fbw7 might be closely
connected to regulate tumorigenesis. Our findings suggest
that the XBP1 and Fbw7 axis might be an attractive target
to develop for cancer therapy.

Materials and methods
Materials

Cell culture medium and 1% penicillin/streptomycin
were purchased from Welgene (Daegu, Korea). Fetal
bovine serum (FBS) was purchase from Thermo Fisher
Scientific (Waltham, MA, USA) and Atlas biologicals
(Fort Collins, CO, USA). CHX, CIP and anti-FLAG-
coated magnetic beads were purchased from Sigma (St.
Louis, MO, USA). All vectors for cloning and transfection,
Lipofectamine 3000, and blasticidin were purchased from
Invitrogen (Carlsbad, CA, USA).
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Cell culture and treatment

The HEK (human embryonic kindey)-293FT cell line
and HCT116 human colon carcinoma cell line were cul-
tured in DMEM (Dulbecco’s modified Eagle’s medium)
containing 10% FBS and 1% penicillin/streptomycin. All
cells were incubated at 37 °C in a humidified 5% CO,
incubator (SANYO, Osaka, Japan). Cell suspensions were
treated with 80 uM CIP for 30 min at 37 °C. Cells were
transfected transiently with expression plasmids for the
protein stability assay. To block the new protein synthesis,
cycloheximide was added. Cells were treated with 1 pg/ml
tunicamycin for 24-h at 37 °C.

Cloning and generation of stable cell line

Coding sequence of XBP1ls was amplified by reverse
transcription (RT)-PCR with LA Taq polymerase (TaKaRa
Bio, Kusatsu, Japan). Amplified XBP1s cDNA was cloned
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Schematic model of regulatory pathway of between XBP1s and Fbw?7

into the pCR8/GW/TOPO vector (Invitrogen) to generate
pCR8-XBP1. Subsequently, the pCR8-XBP1 vector was
subcloned into the pLenti 6.3/V5-DEST vector to gen-
erate 6.3 XBP1. All stable cell lines were generated by
transfecting 6.3 XBP1 plasmid into HCT116 and HCT116
Fbw7 knock down cell. XBP-transduced cells were incu-
bated for 72 h and then selected with blasticidin (Sigma)
for 1 week. Gene mutation was performed by point
mutagenesis service (Bioneer, Daejeon, Korea).

Immnuoprecipitation and Immnuoblotting

Relevant proteins were transiently expressed in HEK-
293FT cells, followed by cell lysis in a buffer as described
previously***>.  After cell lysis, anti-FLAG-coated
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magnetic beads (Sigma) or anti-His-tagged agarose
beads (Qiagen, Hilden, Germany) were added, followed by
further incubation at 4 °C for 2h. The precipitated pro-
teins were washed in the same lysis buffer and subjected
to immunoblotting with anti-FLAG (1:2000; F3165, RRID:
AB_259529) (Sigma), anti-XBP1 (1:2000; 619501, RRID:
AB_319507) (Biolegend, San Diego, CA, USA) and anti-f3-
actin (1:4000; #8457, RRID: AB_10950489) (Cell Signal-
ing, Danvers, MA, USA). Cells were also harvested at the
indicated time points, and whole-cell-lysates were ana-
lyzed by immunoblotting with anti-XBP1 (Biolegend),
anti-Fbw?7 (1:2000; SC-293423), anti-p50 (NF-kB) (1:2000;
SC-8414, RRID: AB_628015), anti-E2F-1 (1:2000; SC-251,
RRID: AB_627476) (Santa Cruz Biotechnology, Dallas,
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TX, USA), anti-B-actin (Cell Signaling), and anti-Lamin B
(1:2000; PA 50043) (AB Frontier, Seoul, Korea) antibodies.

RNA isolation and RT-PCR/qRT-PCR

Total RNA was isolated from HCT116 cells using TRI-
solution (Invitrogen). cDNA was synthesized from total
RNA with reverse transcription premix (Bioneer). PCR
was performed using PCR premix (Bioneer). The follow-
ing PCR primers were used: 5-XBPl, 5'-AAA
CAGAGTAGCAGCGCAGA-3’ and 3'-XBP1, 5'-
TCCTTCTGCGTAGACCTCTGGGAG-3'; and 5" Fbw?7,
5-CCTAAAGAGTTGGCACTCTA-3' and 3'-Fbw7, 5'-
ACTCCACCTGTATGTCCCAC-3’; and 5-GAPDH, 5'-
ACCACAGTCCATGCCATCAC-3' and 3'-GAPDH, 5'-
TCCACCACCCTGTTGCTGTA-3'. In case of Real-time
PCR, the synthesized cDNA was amplified with quanti-
tative real-time PCR (StepOnePlus Real-Time PCR sys-
tem, Thermo) using FastStart SYBR green Master mix
(Roche, Basel, Switzerland) and primers. Transcript level
of every gene were normalized with GAPDH and ROX
dye was used for experiment control. GAPDH was used as
reference gene. The results were presented relative to
control using the ddCt method. The following qPCR
primers were used: 5'-XBP1, 5-CCCTCCAGAACA
TCTCCCCAT-3’" and 3'-XBP1, 5'-ACATGACTGGGTC
CAAGTTGT-3; and 5'Fbw7, 5-GGCCAAAATGATT
CCCAGCAA-3" and 3'Fbw7, 5-ACTGGAGTTCGTGA
CACTGTTA-3'".
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Focus formation

Stable HCT116 Con, HCT116 XBP1, HCT116 Fbw7—/—,
and HCT116 XBP1 Fbw7—/— cell lines were used for focus
formation assay as described previously*. In Brief, 500 cells
were seeded into 6-well plates. At 10 days after seeding, cells
were washed twice times with PBS, fixed with 4% paraf-
ormaldehyde (Sigma) and stained with 0.1% Crystal Violet
(Sigma) at room temperature for 1 h. Measuring colony sizes
and numbers were carried out by using Image ] program.

Scratch wound cell migration assay and cell proliferation

Cells were plated in 96-well ImageLock™ tissue culture
plate (Essen BioScience, Ann Arbor, MI, USA) at a density
of 4 x 10* viable cells per well and grown in medium. After
24 h, the WoundMaker™ and wounding procedure to create
precise and reproducible wounds in all wells of the 96-well
ImageLock™ plate. After wounding, aspirate the media from
each well and PBS wash each well. After washing, add
100 ml of 1% FBS contained media each well. Remove any
bubbles from the assay plate. Place assay plate into the
IncuCyte ZOOM® (BioTek, Winooski, VT, USA). Schedule
repeat scanning every 2-3 h for 48 h. Cells (500) were see-
ded in 96-well plates and cultured in DMEM with 10% (v/v)
normal FBS for 3 days for measure cell proliferation. The
plates were scanned in the IncuCyte imager (Essen
Bioscience), and the data were analyzed by the IncuCyte
software. Results are representative of three independent
experiments.

Luciferase assay

NEF-kB-Luc, Myc-Luc, AP1-Luc, and E2F-Luc reporter
plasmids (Promega, Madison, WI, USA) were transfected
into cells using Lipofectamine 3000 for the luciferase
assay. DNA sample was mixed with 100 ng of CMV-Ren
plasmid (Promega) as an internal control and co-
trnasfected into cells in 6-well plates. Luciferase assay
were performed at 48 h after transfection using Luciferase
Assay Reagent kit (Promega) and a Synergy NEO (BioTek,
Winooski, VT, USA). Values obtained were normalized to
Renilla luciferase activity.

Nuclear/cytosol isolation and immnuocytochemistry
Nuclear and cytosol fractions were prepared using a
Nuclear and Cytoplasmic Isolation kit (Thermo Scientific).
All cells used for immunocytochemistry were fixed with 4%
paraformaldehyde (Sigma) and permeabilized with 0.25%
Trition X-100 in phosphate-buffered saline containing 1%
bovine serum albumin. Fixed cells were incubated with an
anti p50 (NF-kB) (1:500; SC-8414, RRID: AB_628015)
antibody (Santa Cruz Biotechnology) at 4°C overnight.
After that, cells were incubated with Alexa 488 goat anti-
mouse secondary antibody (Thermo Scientific) at 4°C
overnight. Images were obtained using an LSM-710 con-
focal microscope (Carl Zeiss, Oberkochen, Germany).
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Statistical analysis

Prism Software (GraphPad Prism version 5.0, La Jolla,
CA, USA) was used for all statistical analyses. Data are
presented as mean + SD of at least three independent
experiments (# > 3). Dunnett’s multiple comparison test
was performed for comparisons among groups. A p-value
of <0.05 was considered statistically significant. It is
indicated by an asterisk in graphs. P-values <0.01
and 0.001 are indicated by two and three asterisks,
respectively.
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