Skip to main content
. 2019 Feb 19;9:2235. doi: 10.1038/s41598-019-38793-3

Table 2.

Cross-validated goodness-of-fit metrics for linear classifiers.

AUC Sensitivity Specificity Accuracy Precision Recall F1-score Training size #Features
MKL-Linear 0.90(0.02) 0.86(0.03) 0.78(0.03) 0.80(0.02) 0.63(0.03) 0.86(0.03) 0.72(0.03) 80% 5
SVM-Linear 0.93(0.02) 0.93(0.03) 0.77(0.03) 0.81(0.02) 0.64(0.03) 0.93(0.02) 0.75(0.03) 80% 65
GLM-Elastic Net 0.92(0.02) 0.91(0.02) 0.76(0.02) 0.81(0.02) 0.62(0.03) 0.91(0.04) 0.74(0.03) 80% 25

Here we list the goodness-of-fit metrics (AUC, sensitivity, specificity, accuracy, precision, recall, and F1-score) obtained for the test dataset (20% of the whole dataset), using the subset of features that provided the most generalizable result, as shown in Fig. 4. Their average values and standard deviations were computed using a tenfold stratified cross-validation.