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Elevated ubiquitinated proteins in 
brain and blood of individuals with 
schizophrenia
Chad A. Bousman1,2,11,12,13, Sandra Luza1,3, Serafino G. Mancuso1, Dali Kang1,4, 
Carlos M. Opazo3, Md. Shaki Mostaid   1,2, Vanessa Cropley   1, Patrick McGorry5,7, 
Cynthia Shannon Weickert1,6,8, Christos Pantelis   1,2,3,7,9, Ashley I. Bush   2,3 & 
Ian P. Everall1,2,3,9,10

Dysregulation of the ubiquitin proteasome system (UPS) has been linked to schizophrenia but it is not 
clear if this dysregulation is detectable in both brain and blood. We examined free mono-ubiquitin, 
ubiquitinated proteins, catalytic ubiquitination, and proteasome activities in frozen postmortem 
OFC tissue from 76 (38 schizophrenia, 38 control) matched individuals, as well as erythrocytes from 
181 living participants, who comprised 30 individuals with recent onset schizophrenia (mean illness 
duration = 1 year), 63 individuals with ‘treatment-resistant’ schizophrenia (mean illness duration = 17 
years), and 88 age-matched participants without major psychiatric illness. Ubiquitinated protein levels 
were elevated in postmortem OFC in schizophrenia compared to controls (p = <0.001, AUC = 74.2%). 
Similarly, individuals with ‘treatment-resistant’ schizophrenia had higher levels of ubiquitinated 
proteins in erythrocytes compared to those with recent onset schizophrenia (p < 0.001, AUC = 65.5%) 
and controls (p < 0.001, AUC = 69.4%). The results could not be better explained by changes in 
proteasome activity, demographic, medication, or tissue factors. Our results suggest that ubiquitinated 
protein formation may be abnormal in both the brain and erythrocytes of those with schizophrenia, 
particularly in the later stages or specific sub-groups of the illness. A derangement in protein 
ubiquitination may be linked to pathogenesis or neurotoxicity in schizophrenia, and its manifestation in 
the blood may have prognostic utility.

Protein homeostasis involves the regulation of protein formation (synthesis, folding, oligomerization), protein 
degradation, and peptide recycling (turnover)1. Protein turnover is controlled through two major pathways: the 
autophagosome-lysosomal system and the ubiquitin proteasome system (UPS)2, the latter tasked with identifying 
misfolded and foreign proteins.

The UPS comprises >1,500 proteins that play major roles in the proper function of a variety of basic cellular 
processes (e.g. neurotransmitter synthesis and receptor recycling, cytokine production and activation) that are 
perturbed in schizophrenia, and so may harbour potential pharmacological targets3–5. Empirically, the UPS has 
been linked to schizophrenia in genome-wide association6, microarray7–13, and protein14–17 studies in either blood 
or brain. Collectively, these studies have implicated a down-regulation of all components of the UPS in the blood 
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or brain of individuals with schizophrenia but it is not clear which component(s) within the UPS, if any, are dys-
regulated in both blood and brain. Herein, we report the results of a study that measured free mono-ubiquitin, 
ubiquitinated proteins, catalytic ubiquitination, and proteasome activities in erythrocytes and postmortem orb-
itofrontal cortex (OFC) from individuals with schizophrenia and controls. We chose to examine erythrocytes 
because in their maturation from reticulocytes they lose all organelles including autophagosomes18 and so their 
only mechanism for protein degradation is via the UPS. Our focus on the OFC stemmed from our previous lon-
gitudinal work that showed significant reductions in OFC volume among individuals who developed psychosis19 
as well as our post-mortem OFC studies suggesting marked interneuron pathology and neuroinflammation in 
schizophrenia20–22.

We hypothesized that the UPS would be dysregulated in both the OFC and erythrocytes of those with schiz-
ophrenia. In addition, we explored whether UPS markers in erythrocytes differed in those with recent-onset and 
treatment-resistant schizophrenia as this could provide a preliminary indication of whether UPS dysregulation 
best represents a marker of illness stage.

Methods
Participants.  Frozen postmortem orbitofrontal cortex (OFC) tissue from 76 (38 schizophrenia, 38 control) 
individuals was obtained from the New South Wales Brain Tissue Resource Center (Sydney, Australia). In addi-
tion, we collected erythrocytes from 181 living participants, consisting of: (i) 63 individuals with treatment-re-
sistant schizophrenia treated with clozapine, as these individuals did not respond to two or more previous trials 
of antipsychotics, had poor functioning, and persistent symptoms, they were considered ‘treatment-resistant’ 
(mean illness duration = 17 years) aligned with recent criteria23; (ii) 30 individuals with recent onset schizophre-
nia (mean illness duration = 1 year); and (iii) 88 healthy control participants. For details on tissue collection and 
processing see supplementary material.

All living participants were recruited from multiple clinical services and the community in Melbourne, 
Australia. Ascertainment and exclusions for the postmortem cohort have been published elsewhere24 and are 
described briefly in the supplementary material. Likewise, recruitment, inclusion, and exclusion details for the 
recent onset and ‘treatment-resistant’ schizophrenia cohorts have been recently described25 and are presented in 
detail within the supplementary material. Characteristics of each cohort are shown in Table 1.

All procedures were conducted in accord with principles expressed in the Declaration of Helsinki and 
informed consent was obtained when required. Ethics approval for the postmortem brain studies was approved 
and conducted under the guidelines of the Human Research Ethics Committee at the University of New South 
Wales (HREC 07261). The recent-onset psychosis cohort recruitment and procedures were approved by the 
Melbourne Health Research Ethics Committee (MHREC ID 2012.066). The chronic schizophrenia cohort 
recruitment and procedures were approved by the Melbourne Health Research Ethics Committee (MHREC ID 
2012.069).

Clinical measures.  The Structured Clinical Interview for DSM-IV Axis I Disorders26 or Mini International 
Neuropsychiatric Interview27 were used to confirm diagnosis. To measure negative symptom severity the Scale 
for the Assessment of Negative Symptoms (SANS)28 was used, and for general psychopathology and positive 
symptom severity the Expanded Brief Psychiatric Rating Scale (BPRS)29 or the Positive and Negative Syndrome 
Scale (PANSS)30 were used. BPRS scores were converted to PANSS scores as previously described31 to allow for 
consistent analysis of symptoms across cohorts. Current/last chlorpromazine equivalent dosage was calculated in 
all patients in all cohorts by following standard guidelines32,33, and clozapine plasma levels were measured from 
the treatment-resistant schizophrenia participants.

UPS assessment.  Levels of free mono-ubiquitin and ubiquitinated proteins as well as catalytic ubiquiti-
nation (i.e. E1 ubiquitin–activating enzymes, E2 conjugating enzymes, and E3 protein ligases) and proteasome 
(caspase-like, chymotrypsin-like and trypsin-like) activity were quantified in postmortem OFC and erythrocytes 
blind to diagnosis. All antibodies used in the current study are listed in Supplementary Table S1. Gels and blots 
were processed in parallel using the LI-COR Odyssey Infrared Imaging System Model 9120 and analyzed with 
image studio Lite Ver.4.0. Furthermore, to explore the potential effects of clozapine on ubiquitinated protein 
levels, mouse cortical neuronal cultures were prepared as described previously34. For details of the experimental 
procedures used for UPS assessment see supplementary material.

Statistical analyses.  Data were analysed using R 3.3.0 (R Foundation for Statistical Computing Vienna, 
Austria). To examine differences among the cohorts we used a linear regression approach. However, assumption 
testing revealed the presence of outliers and/or influential points for some of the models. Therefore, we fitted 
robust linear models and estimated the unstandardized beta (b) coefficient using an SMDM-estimator to control 
for the influence of outliers, heterogeneity35,36, and confounders (see supplementary materials for details on con-
founder analysis procedures).

We examined differences among the cohorts by first fitting a null model. This was either an intercept-only 
model or a covariate-only model if we were adjusting for confounding variables. We then fit a full model contain-
ing the cohort variable in addition to the terms in the null model. We compared the null and full models using the 
likelihood-ratio chi-squared test, with a significant test indicating that there were significant group differences 
between the cohorts.

We also conducted post hoc pairwise comparisons between the cohort groups, adjusted for multiple testing 
using the Benjamini-Hochberg (B-H) procedure, and computed Hedge’s g effect size based on the group means 
and standard errors adjusted for outliers and confounders, when the likelihood-ratio chi-squared test was sig-
nificant. The robustbase37 package was used for the robust regression modelling, the car38 package was used for 
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the likelihood-ratio chi-squared test, and the lsmeans39 package to calculate the adjusted group means, standard 
errors, and post hoc pairwise comparisons. To estimate clinical applicability, we also calculated the area under 
the receiver-operator curve (AUC), which is also known as the “common language effect size” or the “probability 
of superiority”40. This effect size gives the probability that a person picked at random from the comparison group 
will have a higher score than a person picked at random from the reference group41.

Results
Ubiquitinated protein levels are elevated in brain and erythrocytes in schizophrenia.  In postmortem  
OFC we detected ubiquitinated protein levels that were 25.5% higher in those with schizophrenia compared to 
controls (pB-H = <0.001, Hedge’s g = 0.91, AUC = 74.2%) (Fig. 1A,C, Supplementary Table S2). Likewise, eryth-
rocytes from individuals with treatment-resistant schizophrenia had 33.1% and 34.5% higher levels of ubiq-
uitinated proteins compared to those from individuals with recent onset schizophrenia (pB-H < 0.001, g = 0.56, 
AUC = 65.5%) and healthy controls (pB-H < 0.001, g = 0.72, AUC = 69.4%) (Fig. 1B,D, Supplementary Table S3). 
However, total protein by OFC tissue weight did not differ between the schizophrenia and control groups 
(p = 0.336, g = 0.24) (Supplementary Fig. S1, Supplementary Table S4).

These findings could not be better explained by current/last daily chlorpromazine equivalent dose in the 
recent-onset (p = 0.616), treatment-resistant (p = 0.908), or postmortem (p = 0.723) schizophrenia cohorts. 
Furthermore, clozapine plasma levels were not associated with ubiquitinated protein levels within the 
treatment-resistant schizophrenia cohort (p = 0.977) nor did we detect an effect of clozapine on ubiquitinated 
protein levels in mouse primary cortical neurons (1day: p = 0.362; 7 days: p = 0.127, Fig. S2). We also did not 
detect sex, age of illness onset, duration of illness, smoking status, or cannabis use effects on erythrocyte or OFC 
ubiquitinated protein levels nor was there an association between OFC ubiquitinated protein levels and postmor-
tem interval or brain hemisphere. Associations were noted between OFC ubiquitinated protein levels and age 
(b = 0.008, SE = 0.001, p = 0.015) and pH (b = 0.008, SE = 0.001, p = 0.015), although inclusion of these factors in 
our linear regression models did not change our results. Within the treatment-resistant cohort, we also found that 
increased ubiquitinated protein levels were associated with an increase in general psychopathology (PANSS total: 
b = 0.018, SE = 0.007, p = 0.017, pB-H = 0.10) and negative symptom severity (SANS total: b = 0.013, SE = 0.006, 
p = 0.026, pB-H = 0.10).

Endogenous ubiquitination activity is lower in erythrocytes but not brain in schizophrenia.  To 
gauge the general status of the UPS machinery in red cells and brain tissues in schizophrenia, we employed a 
global polyubiquitination assay (termed “ubiquitination activity”) where the production of polyubiquitin chains 
from the net effects of the endogenous UPS machinery is assessed by incubating labeled mono-ubiquitin sub-
strate with tissue lysates (as assay we term “ubiquitination ativity”). This activity was decreased in erythrocytes 
from individuals with treatment-resistant schizophrenia compared to healthy controls (pB-H =< 0.001, g = 0.56, 
AUC = 65.5%) but was not changed in individuals with recent-onset schizophrenia (Fig. 2B,D). Ubiquitination 
ativity was also significantly lower in erythrocytes from the cohort with treatment-resistant schizophrenia com-
pared to recent-onset schizophrenia (pB-H =< 0.001, g = 0.62, AUC = 66.9%; Fig. 2B,D). There was no difference 
in ubiquitination ativity within the postmortem brain cohorts (pB-H = 0.368, g = 0.28) (Fig. 2A,C).

Characteristic

Clinical Cohorts Postmortem brain cohort

1. 
Control

2. Recent 
onset 3. TRS Omnibus 1 vs 2 1 vs 3 2 vs 3 Control Schizophrenia Omnibus

n = 88 n = 30 n = 63 p p p p n = 38 n = 38 p

Age, mean (sd) years 35 (12) 21 (2) 40 (10) <0.001 <0.001 <0.001 <0.001 52 (15) 52 (14) 0.824

Sex, % (n) female 35 (31) 24 (7) 22 (14) 0.207 — — — 26 (10) 34 (13) 0.618

Ethnicity, % (n) Caucasian 83 (73) 77 (23) 87 (53) 0.084 — — — 97 (37) 97 (37) 1

Current Smoker, % (n) 28 (19) 26 (18) 46 (32) <0.001 0.880 0.016 0.061 24 (9) 61 (23) 0.002

Current alcohol user, % (n) 93 (82) 67 (20) 92 (58) <0.001 0.001 0.516 0.003 47 (18) 53 (20) 0.646

Current cannabis user, % (n) 13 (11) 41 (12) 19 (12) 0.005 <0.001 0.246 0.024 — —

Age of onset, mean (sd) years — 19 (2) 22 (6) 0.001 — — — — 24 (7) —

Duration of illness, mean (sd) years — 1 (1) 17 (8) <0.001 — — — — 28 (14) —

SANS Total, mean (sd) — 24 (13) 41 (17) <0.001

General psychopathology (PANSS Total), mean (sd) — 57 (16) 62 (14) 0.206 — — — — — —

Positive symptoms (PANSS subset), mean (sd) 6 (3) 9 (6) <0.001 — — — — — —

CPZ equivalents, mean (sd) dose — 338 (312) 953 (439) <0.001 — — — — 677 (506) —

Clozapine plasma, mean (sd) µg/L — — 417 (240) — — — — — — —

pH, mean (sd) — — — — — — — 6.7 (0.3) 6.6 (0.3) 0.366

PMI, mean (sd) hours — — — — — — — 26 (12) 282 (14) 0.705

Hemisphere, % (n) left — — — — — — — 34 (13) 53 (20) 0.165

Table 1.  Clinical and postmortem brain cohort characteristics. CPZ, chlorpromazine; PANNS, positive and 
negative syndrome scale; PMI, post-mortem interval; SANS, scale for the assessment of negative symptoms; 
TRS, treatment-resistant schizophrenia.
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We neither detected effects of sex, age of illness onset, duration of illness, smoking status, or cannabis use on 
erythrocyte or OFC ubiquitination activities, nor were there associations with chlorpromazine equivalent dose, 
postmortem interval, pH, or brain hemisphere in OFC tissue. Erythrocyte ubiquitination activity was positively 
correlated with age (b = 0.02, SE = 0.008, p = 0.020) and chlorpromazine equivalent dose (b = 0.02, SE = 0.008, 
p = 0.020) but adjustment for these factors in our regression model did not affect our main findings. Finally, 
ubiquitination activity was not associated with ubiquitinated protein levels in erythrocyte (b = 0.04, SE = 0.04, 
p = 0.292) or OFC (b = −0.15, SE = 0.10, p = 0.130).

Brain and erythrocyte levels of free ubiquitin and proteasome activity do not differ in schizophrenia.  
Levels of free mono-ubiquitin and proteasome activity (chymotrypsin-like, trypsin-like and caspase-like) 
did not differ between healthy controls and those with schizophrenia in either the erythrocytes or OFC tissue 
(Supplementary Tables S2 and S3 and Supplementary Fig. S3). No effects of sex, age of illness onset, duration of 
illness, smoking status, cannabis use, or medication were found on erythrocyte or OFC ubiquitination activity, 
neither were there effects of postmortem interval or pH on OFC ubiquitination activity. However, increases in age 
were significantly associated with lower erythrocyte proteasome caspase-like (b = −0.03, SE = 0.003, p < 0.001), 
lower chymotrypsin-like (b = −0.003, SE = 0.001, p < 0.001), and higher trypsin-like (b = 0.01, SE = 0.001, 
p < 0.001) activities. In addition, OFC caspase-like (+37%, p = 0.012, g = 0.55) and chymotrypsin-like (+45%, 
p = 0.018, g = 0.59) activities were greater in the left compared to the right hemisphere among controls. Neither 
free ubiquitin levels nor proteasome activity were correlated with symptom severity.

Discussion
We found significantly elevated levels of ubiquitinated proteins in the OFC and erythrocytes from individuals 
with treatment-resistant schizophrenia compared to controls, but a similar elevation was not detected in eryth-
rocytes among those with recent-onset schizophrenia (Fig. 3). Our findings suggest that elevated ubiquitinated 
proteins are found later in the disease course, which might be consistent with increased protein denaturation as 
a consequence of chronic illness or of prolonged antipsychotic treatment. However, we failed to find evidence for 

Figure 1.  Elevated ubiquitinated proteins in erythrocytes and orbitofrontal cortex among those with 
schizophrenia. Example Western blots showing the quantified bands from 15–250 kD, indicating ubiquitinated 
proteins in orbitofrontal cortex (A) and erythrocytes (B). S, schizophrenia; C, control. All samples were 
normalized to the internal control (purified ubiquitin) to account for gel-to-gel variability. Ubiquitinated protein 
levels normalized to GAPDH in orbitofrontal cortex among those with schizophrenia (mean = 1.31, se = 0.08) and 
controls (mean = 0.94, se = 0.08) (C) as well as erythrocytes from those with treatment-resistant schizophrenia 
(mean = 1.48, standard error [se] = 0.09), recent onset schizophrenia (mean = 0.93, se = 0.12), and healthy controls 
(mean = 0.95, se = 0.07) (D). **p < 0.01, ***p < 0.001, NC = negative control, PC = positive control. Western 
blot images shown are cropped to show the proteins of interest. The western blots were derived under the same 
experimental conditions; the original full-length western blot images are shown in Supplementary Fig. S4.

https://doi.org/10.1038/s41598-019-38490-1


www.nature.com/scientificreports/

5Scientific Reports |          (2019) 9:2307  | https://doi.org/10.1038/s41598-019-38490-1

an association of elevated ubiquitination with duration of illness, aligning with previous results16, and we did not 
detect any indication of medication effects within any of our cohorts or in vitro experiments. We then examined 
the effects of age, as aging is associated with a decrease in proteasome function, which in turn can increase ubiq-
uitinated protein levels42. We found a positive correlation between age and ubiquitinated proteins in the OFC 
tissue but age alone does not account for our diagnostic increase in ubiquitination as our postmortem cases and 
controls were tightly matched on age. We did find the expected negative correlation between age and proteasome 
activity in erythrocytes, but did not detect a diagnostic difference in proteasome activity in either erythrocytes or 
OFC in schizophrenia compared to controls. Thus, while replicating the expected changes in the ubiquitination 
and proteasome systems with age, neither age nor proteasome dysfunction appear to be likely explanations for the 
observed elevation in ubiquitinated proteins in those with treatment-resistant schizophrenia.

Our results are at variance with previous postmortem results from the superior temporal gyrus of patients 
with schizophrenia who were ≈20 years older than our cohort, which described decreased protein levels of 19 S 
and 11 S proteasome regulatory particles in schizophrenia17. That report also found a decrease in both ubiquiti-
nated proteins and ubiquitination enzymes in the superior temporal gyrus, which they attributed to a compen-
satory response to the proteasome’s diminished capacity for degrading ubiquitinated proteins16. Our findings 
provide only partial support for this explanation in that we found a decrease in ubiquitination activity in eryth-
rocytes of those with schizophrenia but this was not recapitulated in the OFC. One potential explanation for the 
discordance is that the OFC is affected differently to superior temporal cortex. An alternative explanation is that 
in erythrocytes the only mechanism for protein degradation is via the UPS18, whereas in the OFC and other brain 
tissue protein degradation can also occur via the autophagosome-lysosomal system.

An elevation in ubiquitinated proteins in the presence of a normally functioning proteasome could also be 
attributed to abnormal deubiquitination43,44. Although we did not measure deubiquitination activity in the cur-
rent study, three previous gene expression studies have implicated down-regulated expression of deubiquitinating 
enzymes in postmortem hippocampal neurons7 and prefrontal cortex tissue9,10 from those with schizophrenia. 
The deubiquitinating enzyme, UCHL1, was reported as down-regulated across these studies and in a phency-
clidine rat model of schizophrenia45,46. However, brain lysates from Gracile axonal dystrophy mice, which lack 
UCHL1, do not show an accumulation of ubiquitinated proteins47, indicating a limited role, if any, in the elevation 

Figure 2.  Decreased endogenous ubiquitination activity in erythrocytes but not orbitofrontal cortex 
among those with schizophrenia. Example Western blots showing the quantified bands from 15–250 
kD, indicating endogenous ubiquitination activity in orbitofrontal cortex (A) and erythrocytes (B). All 
samples were normalized to the internal control (biotinylated ubiquitin) to account for gel-to-gel variability. 
Ubiquitination activity in orbitofrontal cortex among those with schizophrenia (mean = 1.13, se = 0.07) 
and controls (mean = 0.99, se = 0.07) (C) as well as among those with treatment-resistant schizophrenia 
(mean = 0.68, standard error [se] = 0.05), recent onset schizophrenia (mean = 1.14, se = 0.08), and healthy 
controls (mean = 0.99, se = 0.04) (D). *p < 0.01, NC = negative control, PC = positive control. Western blots 
images shown are cropped to show the proteins of interest. The western blots were derived under the same 
experimental conditions; the original full-length western blot images are shown in Supplementary Fig. S5.
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of ubiquitinated proteins in the current study. Nevertheless, the majority of known deubiquitinating enzymes are 
poorly characterized48 and, as such, further investigations of these enzymes, particularly those with tentative links 
to schizophrenia such as, USP213, USP910 and USP149, are warranted.

Collectively, our results and those reported in the current literature do not point to a clear mechanism by 
which ubiquitinated proteins are increased in schizophrenia. However, we could not readily attribute this to 
abnormal proteasome function or an increase in ubiquitination activity. A decrease in deubiquitination activity 
remains unlikely given that free mono-ubiquitin levels were similar across all cohorts. Alternatively, the mecha-
nism could be external to the UPS, such as oxidative stress. The UPS is involved in the degradation of damaged 
proteins generated by oxidative stress, which leads to increased levels of ubiquitinated proteins49. Oxidative stress 
is increased in schizophrenia50–54 and thought to be one of the mediators of neuroprogression, grey matter loss, 
and subsequent cognitive and functional impairment in the disorder55. Altered protein trafficking and turnover 
associated with oxidation-induced ubiquitination abnormalities in brain tissue may, in turn, contribute to neuro-
toxicity and functional impairment.

In addition to no clear mechanism, our results are unable to determine the likely outcomes of elevated ubiquit-
ination in schizophrenia due to our global measurement of ubiquitination. In fact, previous work has shown that 
ubiquitination of a protein can result in an array of cellular effects (e.g. proteasomal degradation, modulation of 
signaling pathways, modification of protein function) depending on the length (i.e. mono or poly) and residue site 
(e.g. K48, K63) of the ubiquitin chains56. Thus, the elevation in ubiquitinated proteins we observed in the current 
study could reflect any one or more of these cellular outcomes. However, previous postmortem findings by Rubio  
et al.16 showed elevated levels of K63-linked and decreased levels of K48-linked poly-ubiquitinated proteins in schiz-
ophrenia relative to controls, implicating signaling pathway modulation, NF-kB activation, and/or DNA repair, 
rather than proteasomal degradation, may be perturbed in schizophrenia56. Nevertheless, additional work to discern 
whether the elevated levels of ubiquitinated proteins in schizophrenia are primarily mono- or poly-ubiquitinated as 
well as the distribution of the various ubiquitin chain types is  necessary for firm conclusions to be drawn.

In summary, we found elevated ubiquitinated proteins in erythrocytes and postmortem OFC tissue from 
individuals with schizophrenia. The explanation for and effects of this elevation are not clear. However, our 
results taken together with previous findings suggest that ubiquitination may be abnormal in both the brain 
and blood of those with schizophrenia, perhaps more clearly in the later stages or in specific subgroups (such as 
treatment-resistant) of the illness. Therefore, we propose that the accumulation of ubiquitinated proteins may 
correspond to a pathological marker that characterizes the latest stages of schizophrenia and may be linked to the 
accumulation of other proteins, such as DISC1, that has been found accumulated in the brain insoluble fractions 
of individuals with schizophrenia57. Thus, the observed ubiquitinopathy in this report may represent a conver-
gence between protein misassembly and aggregation that has been suggested to explain the causes of chronic 
mental illness57. Follow-up studies to further refine the mechanism by which this abnormality in ubiquitination 
arises, or whether the erythrocyte abnormality may serve as a biomarker, are warranted.
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