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Stereoselective synthesis of sulfur-containing
β-enaminonitrile derivatives through
electrochemical Csp3–H bond oxidative
functionalization of acetonitrile
Tian-Jun He1, Zongren Ye2, Zhuofeng Ke 2 & Jing-Mei Huang 1

Incorporation of nitrile groups into fine chemicals is of particular interest through C(sp3)–H

bonds activation of alkyl nitriles in the synthetic chemistry due to the highly efficient atom

economy. However, the direct α-functionalization of alkyl nitriles is usually limited to its

enolate chemistry. Here we report an electro-oxidative C(sp3)–H bond functionalization of

acetonitrile with aromatic/aliphatic mercaptans for the synthesis of sulfur-containing

β-enaminonitrile derivatives. These tetrasubstituted olefin products are stereoselectively

synthesized and the stereoselectivity is enhanced in the presence of a phosphine oxide

catalyst. With iodide as a redox catalyst, activation of C(sp3)–H bond to produce cyano-

methyl radicals proceeds smoothly at a decreased anodic potential, and thus highly che-

moselective formation of C–S bonds and enamines is achieved. Importantly, the process is

carried out at ambient temperature and can be easily scaled up.
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N itriles are widely found in pharmaceuticals, natural pro-
ducts, and materials1–4. Introduction of nitrile groups
onto target frameworks by C–H functionalization of C

(sp3)–H bonds of simple aliphatic nitriles is of particular interest
in the synthetic chemistry. Early research has focused on the C–H
activation of alkyl nitriles using stoichiometric amounts of tran-
sition metal salts (such as Ru, Rh, Ni, Fe, etc.)5–9. On the other
hand, the direct α-functionalization of alkyl nitriles is usually
limited to its enolate chemistry, which requires a strong base for
its formation10–15. Recently, free radical-initiated α-C–H func-
tionalization of alkyl nitriles has attracted attention (Fig. 1a)16,17.
Nevertheless, these methods require excess equivalents of strong
oxidants (peroxides), metal-based oxidants (Ag+, Mn3+), or
single-electron transfer reagents (diazonium salts). In addition, all
of these works were carried out at elevated temperatures.
Therefore, methods for the mild and environmentally friendly
activation of alkyl nitriles are still highly desirable.

Electrochemical anodic oxidation represents an attractive and
environment-friendly synthetic strategy to solve lingering pro-
blems in organic chemistry18–33. Particularly, the indirect elec-
trolysis, in which a redox catalyst is utilized as the electron
shuttle, achieves higher energy efficiency and different selectiv-
ity34–43. In continuation of our interest in the development of
electrochemical methods to organic synthesis44–47, herein, we
report the electrochemical C(sp3)–H bond oxidative functionali-
zation of acetonitrile mediated by potassium iodide to synthesize
sulfur-containing β-enaminonitrile derivatives highly efficiently
in one pot (Fig. 1b).

Results
Reaction optimization. To initiate the investigation, p-fluor-
othiophenol (1aa) and acetonitrile were chosen as the substrates
to test the reaction. Under a galvanostatic condition at 10 mA
in an undivided cell, the reaction of 1aa and acetonitrile with
10 mol% citric acid, 20 mol% 1,2-bis(diphenylphosphino)ethane
(DPPE), and 50 mol% KI gave a 96% yield of the desired product
as a pair of isomers of 2aa (Z/E= 19:1, Table 1, entry 1) and a
simple column chromatography separation could give the pure
Z-isomer. Both the yield and stereoselectivity were reduced when
the reaction was carried out in the absence of citric acid (Table 1,
entry 2). The stereoselectivity decreased to 12:1 without DPPE
(Table 1, entry 3). When the reaction was performed in the
absence of KI, no desired product was obtained, which indicated

that KI played a key role in this selective electro-oxidative reac-
tion (Table 1, entry 4). Replacing citric acid with acetic acid led to
a lower yield at 79% (Table 1, entry 5). No desired product was
detected when t-BuOK was added instead of citric acid (Table 1,
entry 6). When the temperature decreased to 10 °C, a 67% yield of
2aa was found (Table 1, entry 7). Heating the reaction mixture to
50 °C or 70 °C resulted in poor stereoselectivities (Table 1, entries
8 and 9). Inferior reaction yield and stereoselectivity were
obtained when N,N-dimethylformamide (DMF) was used as a co-
solvent (Table 1, entry 10). The influence of the electrodes was
also studied. Replacing either the Pt minigrid anode or the Pt wire
cathode by a Pt foil led to a poor result (Table 1, entries 11 and
12). The increase of the electric current caused a lower yield and
stereoselectivity (Table 1, entry 13). No desired product could be
detected when the reaction was carried out at a current lower
than 5 mA (Table 1, entry 14). Screening of acids or bases, redox
catalysts, ligands, electrolytes, and electrode materials were also
studied (See Supplementary Tables 1–5).

Substrate scope. With the optimized conditions defined (Table 1,
entry 1), the scope of phenylthiols/thiols was probed. As shown in
Fig. 2, the reactions of various phenylthiols/thiols proceeded
smoothly and the desired products were obtained in good to
excellent yields with good stereoselectivities in most cases. First,
the reactivity of phenylthiols with substituents on the benzene
ring was studied. In general, both electron-donating and electron-
withdrawing groups with different substitution patterns (para-,
meta-, and ortho- substitutions; mono and multi substitutions)
were tolerated in this reaction. Aryl thiols bearing fluoro, chloro,
bromo, methyl, and methoxy groups could give the desired
products in excellent yields (90–96%) and good selectivities. In
addition, other fluorine-containing phenylthiols, such as tri-
fluoromethyl phenylthiol and pentafluoro phenylthiol, were
compatible with this protocol, affording 2ad and 2f in 78 and
79% yields, respectively. Somewhat steric effects were observed
with the functional groups on the ortho-position (2bb–2be).
Interestingly, oxidatively labile functional groups, such as amino
and hydroxy, were tolerated in this transformation to produce the
corresponding products (2ae and 2c) in 24 and 47% yields,
respectively. The present method could also be applied to
diphenyl disulfide (2g).

Naphthyl and heteroaromatic thiols (2 h, 2i–2k) were effective
for this reaction. Notably, the substrate scope could also
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Fig. 1 Strategies for the formation of nitrile-containing alkyl radicals. a The formation of nitrile-containing alkyl radicals under traditional organic chemical or
photochemical conditions. b The formation of cyanomethyl radicals under electrochemical conditions
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be extended to alkyl mercaptans. The primary thiols, 2-
phenylethanethiol and 1-hexanethiol, could be transformed to
the corresponding products (2l and 2m) in 53 and 24% yields,
respectively. The secondary thiol, that is, cyclohexanethiol gave
the product (2n) in a yield of 5% only. Unfortunately, no 2o was
detected when benzyl mercaptan was used as the reactant. Finally,
it was delightful to find that diphenyl diselenide (2p) and
dimethyldiselenide (2q) could be converted effectively to the
corresponding products in excellent yields and good selectivitities.

The absolute stereochemistry of one of the products (Z)-2ba
was determined by X-ray crystallographic analysis (Fig. 2). The
stereochemistry of other products was determined on the basis of
the similarities of the polarities and the 1H NMR and 13C NMR
chemical shifts.

Next, the synthetic utility of this methodology was further
investigated. First, the gram-scale synthesis of 2aa, 2ah, and 2bb
was performed and the desired products were obtained in the yields
of 78%, 81%, and 65%, respectively. Second, 4H-1,4-benzothiazine
scaffolds were obtained by copper-catalyzed cyclization of 2bb and
the corresponding derivatives (3a and 3b) in the conversion yields
of 70–87%. Notably, 4H-1,4-benzothiazine scaffolds are widely used
in pharmaceutical chemistry due to their activities of antimicrobial,
anticancer, and so on (Fig. 3).

Discussion
Further studies were carried out to gain more insights into the
reaction mechanism. First, when a radical scavenger, TEMPO
(tetramethylpiperidine N-oxyl) or BHT (butylated hydro-
xytoluene), was added into the reaction mixture under the stan-
dard conditions, only a trace of desired product 2aa was detected
(Fig. 4a), and thus a radical nature of the transformation was
implied. On the other hand, 3-aminocrotononitrile 4 was detected
by gas chromatography–mass spectrometry (GC−MS) analysis

during the above two reaction processes. Subsequent investigation
demonstrated that the reaction started from 4 could produce the
desired product 2aa (Fig. 4b), while no 2ab was obtained from (4-
chlorophenylthio)acetonitrile 5 (Fig. 4c). Therefore, it was con-
firmed that the first step of this tandem reaction is an acetonitrile
self-condensation to produce 4.

Next, the formation of 4 was investigated. The pH value was
monitored and it showed that the pH value increased steadily
from 2 to 6 (see Supplementary Figure 1). Obviously, it was not a
traditional Thorpe-type self-condensation through the −CH2CN,
which usually occurs under strongly basic conditions48–50. On the
other hand, a radical trapping adduct, 6, was detected (GC−MS
analysis) by the use of 1,1-diphenylethene as the radical inhibitor,
which suggested the intermediacy of cyanomethyl radical
(Fig. 5a). Notably, the reaction did not proceed to afford the
desired product 2aa when acetonitrile was replaced by iodoace-
tonitrile (Fig. 5b). Moreover, using iodoacetonitrile instead of KI
could not generate the desired product 2aa even if acetonitrile
was used as a solvent (Fig. 5b). These results rule out the for-
mation of the intermediate ICH2CN in the early stage of the
reaction.

No desired reaction occurred in the absence of KI under the
standard conditions (Table 1, entry 4). Further studies showed
that in the absence of thiol, 4 could be obtained (Fig. 6a), while no
4 was detected without the addition of KI into the above reaction
mixture. It demonstrated that KI played a crucial role in the
formation of 4. It was observed that the production of 4 needed
the galvanic current, but the standard reaction could proceed in
the dark (Fig. 6b). Hence, the formation of 4 might have been
catalyzed by an iodine species that was generated by anodic
oxidation, instead of photoexcitation, from KI51,52. Next, to
explore the actual iodine species in the reaction, several different
stoichiometric amounts of iodine sources were employed in the
model reaction without the current. No 4 could be detected when

Table 1 Optimization of reaction conditionsa

F

SH
F

S

NH2

N

+

F

S
NH2

N

1aa (Z )-2aa (E )-2aa

Citric acid (10 mol%)
DPPE (20 mol%)

KI (50 mol%)

(5 mL)

+ H CN
Room temperature

Entry Variation from the standard conditions Yield (%)b Z/Eb

1 None 96 19:1
2 Without citric acid 44 10:1
3 Without DPPE 95 12:1
4 Without KI 0
5 Acetic acid instead of citric acid 79 13:1
6 t-BuOK instead of citric acid 0
7 10 °C 67 10:1
8 50 °C 99 12:1
9 70 °C 99 12:1
10 MeCN/DMF= 1:1 80 9:1
11c Pt foil as an anode 71 9:1
12c Pt foil as a cathode 66 9:1
13 15mA, 3 h 84 13:1
14 5mA, 8 h 0

DPPE 1,2-bis(diphenylphosphino)ethane, DMF N,N-dimethylformamide, 19F NMR fluorine-19 nuclear magnetic resonance
aStandard conditions: 1aa (0.5 mmol), citric acid (10 mol%), DPPE (20mol%), KI (50mol%), MeCN (5mL), with 0.1 M n-Bu4NClO4 as electrolyte. A Pt minigrid electrode (52 mesh, 1 × 1.5 cm2) as an
anode and a Pt wire (diameter= 0.5 mm, height= 2.0 cm) as a cathode, an undivided cell, constant current= 10 mA, 4 h, room temperature, 3.0 F mol−1

bYields and Z/E ratios were determined by 19F NMR analysis of the crude reaction mixture using fluorobenzene as the internal standard
c Pt foils (1.0 × 1.5 cm2)
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Fig. 2 Substrate scope of thiols. aStandard conditions: 1 (0.5 mmol), citric acid (10mol%), 1,2-bis(diphenylphosphino)ethane (DPPE) (20mol%), KI (50
mol%), MeCN (5mL), with 0.1 M n-Bu4NClO4 as electrolyte. A Pt minigrid electrode as an anode and a Pt wire as a cathode, an undivided cell, constant
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Fig. 3 Gram-scale synthesis and product transformations. Reaction conditions: (i) acetyl chloride, Et3N, CH2Cl2, 0 °C to reflux, 12 h, 85%; BnBr, NaH, dry N,
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I2 was applied (Fig. 6a). It has been reported that quaternary
ammonium hypoiodite [n-Bu4N]+[IO]− or iodite [n-Bu4N]
+[IO2]− could abstract a hydrogen atom from a C(sp3)−H to

produce a radical53. However, the subsequent investigations using
KI/TBHP, TBAI/TBHP, or I2/TBAOH system, which have been
reported to generate hypoiodite or iodite, gave no 4 (Fig. 6a).
Thus, we hypothesized that the active iodine radical54–58, which
was in situ generated from the anodic oxidation, was able to
abstract one hydrogen atom from acetonitrile to form the cya-
nomethyl radical.

Cyclic voltammetry studies (see Supplementary Figure 2)
showed that KI (Fig. 7, curve b) exhibited two pairs of typical
redox waves, with the oxidation peaks at 0.46 V (Ox1) and 0.80 V
(Ox2) vs. SCE. After acetonitrile was introduced, obvious catalytic
currents were detected; the peak currents of Ox1 and Ox2 dra-
matically increased from 84 to 134 and 92 to 168 μA, respectively
(Fig. 7, curve c). Therefore, it was suggested that KI was employed
as a redox catalyst in this indirect electrolysis process.

On the basis of these above results, a plausible mechanism was
proposed (Fig. 8). The reaction sequence began with the in situ
generation of an iodine radical on the anode and the iodine
radical abstracted one hydrogen atom from acetonitrile to form
the cyanomethyl radical 7. Addition of 7 to another molecule of
acetonitrile furnished intermediate 859. The α-imine radical
intermediate 10 was obtained by a 1,3-hydrogen transfer60–63 of
iminyl radical 8. Meanwhile, thiol 1aa could be oxidized by the
redox catalyst or by the anode directly to afford a sulfur radical
12, which underwent dimerization to generate a disulfide 1364–66.
Thus, radical intermediate 10 could substitute with the disulfide
13 or couple with the sulfur radical 12 directly to produce imine
11, which could tautomerize to give the desired product 2aa in
the presence of the acid catalyst. However, another pathway
cannot be ruled out. Tautomerization of 10 to the corresponding

–0.5 0.0 0.5 1.0 1.5

0.0

0.1

0.2

I (
m

A
)

Potential (V vs. SCE)

c: KI + MeCN

b: KI

a: Blank

Fig. 7 Cyclic voltammograms of 0.1M n-Bu4NClO4 solution in N,N-
dimethylformamide (DMF) at room temperature. a None; b KI (50mmol L−1);
c KI (50mmol L−1)+MeCN (1mL). The voltammogram was obtained with Pt
wire as an auxiliary electrode and a saturated calomel electrode (SCE) as a
reference electrode. The scan rate was 0.1 V s−1 on a platinum disk electrode
(d= 2mm)
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Fig. 8 Proposed mechanism. Proposed reaction mechanism involves indirect anode oxidation of acetonitrile to cyanomethyl radical 7, addition to
acetonitrile, 1,3-H transfer to produce 10, reaction of 10 with 12 or 13, and tautomerization to furnish the final product 2aa
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enamine radical 9 was followed by the substitution with the
disulfide 13 or the coupling with the sulfur radical 12 directly to
form the desired product 2aa. Concomitantly, cathodic reduction
of protons led to the release of H2.

It was observed that the selectivity increased when DPPE was
added. Studies showed that DPPE was in situ oxidized to 1,2-
ethylene bis(diphenylphosphine oxide) on the anode (see Sup-
plementary Discussion). Pre-oxidation of DPPE on the anode
before the main reaction occurred the same yield and selectivity.
We further carried out a density functional theory (DFT) calcu-
lations to provide insights into the mechanism (Fig. 9). DFT
results indicate that imine type radical intermediates (10 or 10′)
are more stable than the enamine type radicals (9 or 9′). The

imine radical would interact with DPPE oxide to form complexes
C3–C5, among which C3 is the most stable one with the calcu-
lated formation energies of –1.9 kcal mol−1. The complex C3 can
stabilize the yielded radical and facilitate the C–S bond formation
in Z configuration. It should be noted that the enamine type
products (2aa) are more stable than imine types (11 and 11′).
Therefore, the formed imine products would tautomerize to give
the desired product 2aa, in which the (Z)-2aa is more stable than
the (E)-2aa by 1.9 kcal mol−1. The predicted Z:E is around 25:1,
which is in excellent agreement with our experimental observa-
tion (19:1). Considering the relative stability between (Z)-2aa and
(E)-2aa, the reaction should be thermodynamic control. DFT
results suggest the important role of DPPE oxide in stabilizing the
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Fig. 9 Density functional theory (DFT) study of the key intermediates and the calculated structures (Å, red) for complex C3. DFT study shows imine radical
10 can be coordinated with 1,2-bis(diphenylphosphino)ethane (DPPE) oxide to form complex C3 via hydrogen bonding. The result suggests the important
role of DPPE oxide in stabilizing the imine radical 10, facilitating the formation of Z product and its tautomerization to final product (Z)-2aa
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imine radical 10, facilitating the formation of Z product and its
tautomerization to final product (Z)-2aa.

In conclusion, we have developed a radical-initiated C(sp3)–H
bond oxidative functionalization of acetonitrile through a KI-
mediated indirect anodic oxidation. A wide range of aromatic/
aliphatic mercaptans bearing various functional groups could
participate in the reactions with acetonitrile to afford sulfur-
containing β-enaminonitrile derivatives with concomitant gen-
eration of (Z)-tetrasustituated olefins. The high chemoselectivities
and good stereoselectivities of the reactions could be achieved
under metal-free, external chemical oxidant-free conditions.
Further investigations into the mechanistic details and synthetic
applications are currently underway in our laboratory.

Methods
Representative procedure for the synthesis of 2aa. Into a round bottom flask
was added thiol 1aa (0.5mmol, 1.0 equiv), KI (50mol%), citric acid (10mol%), and
DPPE (20mol%). MeCN (5mL) with n-Bu4NClO4 (0.1M) as an electrolyte was then
added. The resulting solution was electrolyzed with a Pt minigrid electrode (52 mesh,
1 × 1.5 cm2) as anode and a Pt wire (diameter= 0.5 mm, height= 2.0 cm) as cathode,
under a constant current (10mA) in an undivided cell at room temperature for 4 h.
After electrolysis, the mixture was quenched by water and extracted with ethyl acetate
(3 × 10mL). The combined organic layer was washed with brine (10mL) and dried
over Na2SO4. The ratio of (Z)-2aa and (E)-2aa was determined by 19F NMR (Z/E
ratio= 19:1) of the crude mixture. 19F NMR (377MHz, CDCl3) δ −115.97 (major),
−116.73 (minor). The mixture of (Z)-2aa and (E)-2aa was obtained by a column
chromatography separation of the crude mixture on silica gel (petroleum ether/ethyl
acetate= 2:1), colorless oil, 100.0mg, 96%. And, a further column chromatography
separation could give the pure Z-isomer.

Procedure for the scale-up synthesis of 2aa. Into a round bottom flask was
added KI (50 mol%), citric acid (10 mol%), and DPPE (20 mol%). MeCN (60 mL)
with n-Bu4NClO4 (0.1 M) as an electrolyte was added. Thiol 1aa (6 mmol,
1.0 equiv) was then introduced. The resulting solution was electrolyzed with a Pt
minigrid electrode (52 mesh, 1 × 1.5 cm2) as anode and a Pt wire (diameter= 0.5
mm, height= 2.0 cm) as cathode, under a constant current (10 mA) in an undi-
vided cell at room temperature. After 50 h, the mixture was quenched by water and
extracted with ethyl acetate (3 × 30 mL). The combined organic layer was washed
with brine (20 mL) and dried over Na2SO4, filtered, and concentrated in vacuo. The
mixture of (Z)-2aa and (E)-2aa was obtained by a column chromatography
separation of the crude mixture on silica gel (petroleum ether/ethyl acetate= 2:1),
colorless oil, 0.97 g, 78%, Z/E ratio= 19:1.

Data availability
The X-ray crystallographic coordinates for structures reported in this article have been
deposited at the Cambridge Crystallographic Data Center (CCDC), under deposition
number CCDC 1849256 ((Z)-2ba). The data can be obtained free of charge from The
Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/data_request/cif.
For full characterization data including NMR spectra of new compounds and experimental
details, see the Supplemental Information. Any further relevant data are available from the
authors upon reasonable request.
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