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The cornea has the densest sensory innervation of the body, originating primarily from neurons in the trigeminal ganglion. The basic
principles of cornea nerve patterning have been established many years ago using classic neuroanatomical methods, such as immuno-
cytochemistry and electrophysiology. Our understanding of the morphology and distribution of the sensory nerves in the skin has
considerably progressed over the past few years through the generation and analysis of a variety of genetically modified mouse lines.
Surprisingly, these lines were not used to study corneal axons. Here, we have screened a collection of transgenic and knockin mice (of both
sexes) to select lines allowing the visualization and genetic manipulation of corneal nerves. We identified multiple lines, including some
in which different types of corneal axons can be simultaneously observed with fluorescent proteins expressed in a combinatorial manner.
We also provide the first description of the morphology and arborization of single corneal axons and identify three main types of
branching pattern. We applied this genetic strategy to the analysis of corneal nerve development and plasticity. We provide direct
evidence for a progressive reduction of the density of corneal innervation during aging. We also show that the semaphorin receptor
neuropilin-1 acts cell-autonomously to control the development of corneal axons and that early axon guidance defects have long-term
consequences on corneal innervation.
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Introduction
The somatosensory system conveys a variety of stimuli, such as
pressure, temperature, and pain, transmitted to the CNS by a
myriad of sensory axons that project to most organs, including

the skin. The cornea epithelium receives sensory inputs via the
ophthalmic branch of the trigeminal nerve and is the densest
innervated tissue at the surface of the body (Rózsa and Beuerman,
1982; Marfurt et al., 1989; Müller et al., 2003; Belmonte et al.,
2015). The cornea is also innervated by autonomic axons coming
from the ciliary and superior cervical ganglia, representing only
5%–10% of the corneal axons (Marfurt and Ellis, 1993).

The properties and organization of corneal nerves have been
studied for decades with a wide range of techniques. Electrophys-
iological studies have shown that the cornea is innervated by A-�
(myelinated) and C-fiber (unmyelinated) afferents (Lele and
Weddell, 1959) comprising three functional classes: pure mechano-
nociceptors, cold sensing neurons, and polymodal nociceptors
(Belmonte et al., 1991; González-González et al., 2017) respond-
ing to various noxious stimuli (mechanical, thermal, and chem-
ical). Corneal axons have been visualized in humans and mice
using Golgi staining, axonal tracing, lectin binding (Zander and
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Significance Statement

We have screened a collection of transgenic and knockin mice and identify lines allowing the visualization and genetic manipu-
lation of corneal nerves. We provide the first description of the arborization pattern of single corneal axons. We also present
applications of this genetic strategy to the analysis of corneal nerve development and remodeling during aging
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Weddell, 1951; Marfurt, 1988; de Castro et al., 1998), as well as
noninvasive confocal laser scanning microscopy (Reichard et al.,
2014; Ehmke et al., 2016). More recently, evidence for a higher
diversity of corneal nerves has emerged through the characteriza-
tion of receptors transducing the various sensory modalities in
corneal axons, such as TRPV1 and TRPA1 (transient receptor
potential cation channels subfamilies V or A, member 1) for heat
and chemical agents (Caterina et al., 1997; Nakamura et al., 2007;
Canner et al., 2014; Alamri et al., 2015), Piezo2 for mechanical
forces (Coste et al., 2010; Bron et al., 2014; Ranade et al., 2014),
and TRPM8 (transient receptor potential cation channel subfam-
ily M member 8) for cold (Bautista et al., 2007; Parra et al., 2010;
Quallo et al., 2015). A few markers of corneal nerves have been
validated with immunolabeling procedures, such as anti-�III-
tubulin or anti-PGP95, which recognize all types of corneal ax-
ons, or anti-CGRP, which only label some specific subsets
(Marfurt et al., 2001; Murata and Masuko, 2006; Shimizu et al.,
2007; Alamri et al., 2015). However, the analysis of the respective
distribution and morphology of the different type of axons me-
diating different modalities, their development and responses to
injury has been hampered by technical problems, such as an in-
complete antibody penetration in the thickness of the cornea.

Recently, huge progress has been made in our understanding
of the sensory innervation of the hairy skin through the use of
genetically modified mouse lines expressing fluorescent proteins
or Cre recombinase, in specific subsets of axons (Abraira and
Ginty, 2013; Le Pichon and Chesler, 2014; Rutlin et al., 2014;
Zimmerman et al., 2014). Surprisingly, only two transgenic lines
have been used so far to study corneal nerves and few corneal
nerve-cre lines have been described (Yu and Rosenblatt, 2007;
Parra et al., 2010; Namavari et al., 2011; Omoto et al., 2012).
Here, we have screened a collection of transgenic and knockin
mice to identify lines allowing the visualization and genetic ma-
nipulation of corneal nerves.

Materials and Methods
Mouse lines
Mice of either sex were used. All lines were previously described and were
genotyped by PCR: Neuropilin1lox (Gu et al., 2003), CAG:creERT2 (Guo et

al., 2002), En1:cre (Kimmel et al., 2000), Islet1:cre (Yang et al., 2006),
Ret:creERT2 (Luo et al., 2009), Split:cre (Rutlin et al., 2014), TAG-1:cre
(Schmidt et al., 2014), Wnt1:cre (Danielian et al., 1998), CGRP:GFP
(Gong et al., 2003), MrgprD:GFP (Zylka et al., 2005), Npy2r:GFP (Li et al.,
2011), RosatdTomato (Madisen et al., 2010), TauGFP (Hippenmeyer
et al., 2005), TauSyn-GFP (Esposito et al., 2014), Thy1:Brainbow1.0 (Livet
et al., 2007), TrkB:TauGFP (Li et al., 2011), and VGlut3:GFP (Seal et al.,
2009). WT mice were from the C57BL6 background (Janvier). Com-
pound mutants were obtained by intercrossing the various lines. The day
of the vaginal plug was counted as E0.5, and the day of the birth as
postnatal day 0 (P0). All animal procedures were performed in accor-
dance with the European Community Council directive (86/609/EEC)
for the care and use of laboratory animals and approved by the Sorbonne
Université ethics committee (comité Charles Darwin).

Tamoxifen administration
Adult (2 month-old) Ret:creER;RosaTom, Ret:creER;TauGFP, Ret:creER;
RosaTom;TauGFP, Ret:creER;RosaTom;CGRP:GFP, and CAG:creERT2;Thy1-
Brainbow1.0 mice were injected intraperitoneally with a single dose
(ranging from 0.25 to 3 mg) of tamoxifen (Sigma-Aldrich, T-5648) dis-
solved in corn oil (Sigma-Aldrich, C-8267). Animals were perfused and
tissue collected 14 – 60 d later. P0 pups of CAG:creERT2;Thy1-Brainbow1.0
were subcutaneously injected with 0.3 mg of tamoxifen.

Immunohistochemistry
The primary and secondary antibodies used are listed in Table 1.

Cornea. Mice were killed, and the eyeballs were enucleated and fixed in
freshly prepared 4% PFA for 15 min. Next, the corneas were carefully
excised along the sclerocorneal rim and fixed for an additional 45 min,
followed by three washes with PBS. To block nonspecific binding, cor-
neas were placed in a 96-well plate (one cornea/well) and then incubated
with 0.2% gelatin in PBS containing 0.5% Triton X-100 (Sigma-Aldrich)
for 60 min at room temperature. The tissue was then incubated with
primary antibodies for 72 h at room temperature. After washing with
PBS, the corneas were incubated in species-specific secondary antibodies
directly conjugated to fluorophores (Table 1) for 24 h at room tempera-
ture and then washed thoroughly with 0.1 M PBS.

Corneas were examined using a fluorescent microscope (DM6000,
Leica Microsystems) equipped with a CoolSnapHQ camera (Princeton
Instruments) or a confocal microscope (FV1000, Olympus). Brightness
and contrast were adjusted using Photoshop CS6 software (Adobe,
RRID:SCR_014199).

Table 1. Primary and secondary antibodies used

Host Vendor Catalog no. (RRID no.) Concentration

Primary antibodies
Anti–�III-tubulin Rabbit Covance PRB-435P-100 (AB_291637) 1:1000
Anti-CGRP Rabbit Peninsula T-4032 (AB_2313775) 1:1000
Anti-GFP Rabbit Invitrogen A-11122 (AB_221569) 1:1000
Anti-�gal Rabbit MP Biochemicals ab6645 (AB_2313831) 1:500
IB4 Sigma L2140 (AB_2313663) 1:100
Anti-NF200 Chicken Aves Labs NF-H (AB_2313552) 1:1000
Anti-Tag-1 Goat R&D Systems AF1714 (AB_2245173) 1:1000

Secondary antibodies
Anti-rabbit DyLight 488 Donkey Jackson ImmunoResearch Laboratories 711-485-152 (AB_2492289) 1:500
Anti-rabbit Cy-3 Donkey Jackson ImmunoResearch Laboratories 711-166-152 (AB_2313568) 1:500
Anti-rabbit Cy-5 Donkey Jackson ImmunoResearch Laboratories 711-175-152 (AB_2340607) 1:500
Anti-rabbit Alexa Fluor 488 Donkey Invitrogen A-21206 (AB_141708) 1:500
Anti-rabbit Alexa Fluor 594 Donkey Invitrogen A-21207 (AB_141637) 1:500
Anti-rabbit Alexa Fluor 647 Donkey Invitrogen A-31573 (AB_2536183) 1:500
Anti-goat Alexa Fluor 488 Bovine Jackson ImmunoResearch Laboratories 805-545-180 (AB_2340883) 1:500
Anti-goat Cy-3 Bovine Jackson ImmunoResearch Laboratories 805-165-180 (AB_2340880) 1:500
Anti-goat Alexa Fluor 647 Bovine Jackson ImmunoResearch Laboratories 805-605-180 (AB_2340885) 1:500
Anti-chicken Alexa Fluor 488 Donkey Jackson ImmunoResearch Laboratories 703-545-155 (AB_2340375) 1:500
Anti-chicken Cy-3 Donkey Jackson ImmunoResearch Laboratories 703-165-155 (AB_2340363) 1:500
Anti-chicken Cy-5 Donkey Jackson ImmunoResearch Laboratories 703-175-155 (AB_2340365) 1:500
Alexa 488-conjugated Streptavidin Thermo Fisher Scientific S11223 (AB_2336881) 1:500
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Trigeminal ganglia. Adult mice were anesthetized with ketamine (50
mg/kg) and xylazine (10 mg/kg) intraperitoneally and perfused using 4%
PFA in 0.1 M PB, pH 7.4. The crania was opened, and both left and right
trigeminal ganglia were removed and fixed in freshly prepared 4% PFA
for 1 h, followed by three washes with 0.1 M PBS. Samples were cryopro-
tected in a solution of 10% sucrose in 0.12 M phosphate buffer, pH 7.2,
frozen in isopentane at �50°C, and then cut at 20 �m with a cryostat
(Leica Microsystems). Immunohistochemistry was performed on cryo-
stat sections after blocking in 0.2% gelatin in PBS containing 0.25%
Triton X-100 (Sigma-Aldrich). Sections were then incubated overnight
at room temperature with the primary antibodies (Table 1). After wash-
ing with PBS, the sections were incubated at room temperature in
species-specific secondary antibodies directly conjugated to fluoro-
phores for 2 h and then washed thoroughly with 0.1 M PBS. Nuclei were
counterstained using DAPI (1:1000; Thermo Fisher Scientific). Sections
were examined using a fluorescent microscope (DM6000, Leica Micro-
systems) equipped with a CoolSnapHQ camera (Princeton Instru-
ments), a confocal microscope (FV1000, Olympus), or a slide scanner
(Nanozoomer, Hamamatsu). Brightness and contrast were adjusted us-
ing Photoshop CS6 software (Adobe).

Confocal microscope acquisition
Imaging. Cornea image stacks were acquired with an FV1000 laser-
scanning confocal microscope (Olympus). The objectives used were an
Olympus UPLSAPO 4� NA 0.16 WD 13, UPLSAPO 10� NA 0.4 WD 3.1,
XLUMPPLFL 10� NA 0.6 WD 3.1, UPLSAPO 20� NA 0.85 WD 0.20,
UPLFLN 40� NA 1.30 WD 0.20, PLAPON 60� SC NA 1.40 WD 0.12, or
UPLSAPO 100� NA 1.4 WD 0.13.

DAPI, eCFP, AlexaFluor-594 (or RFP), AlexaFluor-647, and
AlexaFluor-488 (or eGFP), eYFP were excited using 405, 440, 559, and
635 nm laser diodes lines and 488 –515 nm argon ion laser lines, respec-
tively. Controls of the microscope and image acquisition were conducted
with Fluoview software version 4.2 (Olympus). Image acquisition was
conducted at a resolution of 1024 � 1024 pixels, with a scan rate of 8 –10
�s/pixel, with or without zoom. Images were acquired sequentially, line
by line, to reduce excitation and emission crosstalk; step size was defined
according to the Nyquist-Shannon sampling theorem. Exposure settings
that minimized oversaturated pixels in the final images were used. When
acquiring images to be stitched, the MATL module from Fluoview soft-
ware was used to program 10% overlap between each tile. Montage was
then processed using Fluoview software or ImageJ stitching plugins (Pre-
ibisch et al., 2009).

Image processing. To change orientation and to obtain a sagittal view of
the stacks, a resampling was processed using the reslice option of ImageJ
software. Twelve-bit images were processed with ImageJ (RRID:
SCR_003070) or FIJI (RRID:SCR_002285). Z sections were projected on
a single plane using maximum intensity under Z-project function. Im-
ages were finally converted into 24 bits RGB color mode, and figures were
then assembled by using Photoshop CS6 (Adobe). To improve contrast,
a negative image of the fluorescent axons was sometimes generated using
Photoshop (Adobe) or Imaris software (version 8.4.1, Bitplane). In this
case, axons appeared in black on a white background.

For 3D rendering, images were generated using Imaris. Stack images
were first converted to imaris file format (.ims) using ImarisFileCon-
verter, and 3D reconstruction was performed using the “volume render-
ing” function. To facilitate image processing, images were converted to
an 8-bit format. Optical slices were obtained using the “orthoslicer” tool.
3D pictures were generated using the “snapshot” tools.

Automated tracking of cornea nerves. The Imaris filament tracer tool
was used to draw and isolate unique axons on confocal images. Filaments
were first rendered by manually selecting a dendrite starting point; the
filaments were then traced and volume rendered using the AutoDepth
algorithm and represented as cylinders (2 �m/filament). Following this
tracing step, cornea nerve morphology was observed, tracing comptabi-
lized, and different type of nerve terminals were classified.

3DISCO tissue clearing and 3D light sheet microscopy
Embryos. Whole embryos were fixed by immersion in 4% PFA overnight
at 4°C. Samples were first incubated at room temperature on a rotating

shaker in a solution (PBSGT) of PBS 1� containing 0.2% gelatin (Pro-
labo), 0.5% Triton X-100 (Sigma-Aldrich), and 0.01% thimerosal
(Sigma-Aldrich) for 3 h. Samples were next transferred to PBSGT con-
taining the primary antibody (goat anti-Tag-1; 1:500; R&D Systems) and
placed at 37 C°, with rotation at 100 rpm, for 3 d. This was followed by six
washes of 30 min in PBSGT 0.5% at room temperature. Next, samples
were incubated in secondary antibodies diluted in PBSGT 0.5% (Table 1)
overnight at room temperature. After six washes of 30 min in PBSGT
0.5%, samples were stored at 4°C in PBS until clearing.

3DISCO clearing. For tissue clearing, a modified 3DISCO protocol was
used (Belle et al., 2014). First, embryos were fixed by immersion in 4%
PFA in 0.12 M PB, pH 7.4 (PFA) overnight at 4°C. All incubation steps
were performed in dark conditions at room temperature in a fume hood,
on a tube rotator (SB3, Stuart) at 14 rpm, using a 15 ml centrifuge tube
(TPP, Dutscher). Samples were first dehydrated in ascending concentra-
tions (50%, 80%, and 100%) of tetrahydrofuran (anhydrous, containing
250 ppm butylated hydroxytoluene inhibitor, Sigma-Aldrich) diluted in
H2O. The initial 50% tetrahydrofuran bath was done overnight while the
80% and 100% tetrahydrofuran incubations were left for 1.5 h each.
Samples next underwent a delipidation step of 30 min in dichlorometh-
ane (Sigma-Aldrich) followed by an overnight clearing step in dibenzyl
ether (Sigma-Aldrich). The next day, samples were stored in individual
light-absorbing glass vials (Rotilabo, Carl Roth) at room temperature.

3D imaging. Acquisitions were performed using a light sheet fluo-
rescence microsope (Ultramicroscope I, LaVision BioTec) with the
InspectorPro software (LaVision BioTec). The light sheet was generated
by a laser (640 nm wavelength, Coherent Sapphire Laser, LaVision Bio-
Tec) and focused using two cylindrical lenses. Two adjustable protective
lenses were applied for small and large working distances. A binocular
stereomicroscope (MXV10, Olympus) with a 2� objective (MVPLAPO,
Olympus) was used at 2.5� and 3.2�. Samples were placed in an imaging
reservoir made of 100% quartz (LaVision BioTec) filled with dibenzyl
ether and illuminated from the side by the laser light. A PCO Edge
SCMOS CCD camera (2560 � 2160 pixel size, LaVision BioTec) was
used to acquire images. The step size between each image was fixed at 1
and 2 �m. All tiff images are generated in 16 bits.

Experimental design and statistical analysis
Statistical analyses of the mean and variance were performed with Prism
7 (GraphPad Software; RRID:SCR_002798). Mice of either sex were used
throughout the studies. Results are presented as mean � SD for contin-
uous variables and as proportions (%) for categoric variables. The
Kruskal–Wallis test and the Mann–Whitney test were used to compare
continuous data as appropriate. The nerve fiber length was calculated as
the total length nerve fibers and branches on a maximal projection of the
ultramicroscope image. Quantification was performed using NeuronJ
(RRID:SCR_002074), a semiautomated nerve analysis plug-in program
of ImageJ. Fiber density was quantified by measuring pixel density in a
cornea field of 300 �m � 300 �m (corresponding to a 40� objective)
using ImageJ. In some cases, the epithelium and stroma were isolated
using the orthoslicer tool of ImageJ, and next the density of corneal axons
in each layer was quantified. The central zone was defined by a radius of
0.5 mm starting at the apex, and the peripheral zone with a radius of 0.5
mm beginning at the limbus. The structure of the cornea in Tag1:Cre;
Npn1lox mice was studied using DAPI counterstaining. We used the cell
counter tool and the measurement tool (ImageJ) to quantify the num-
ber of superficial epithelial cells, basal epithelial cells, and keratocytes
and corneal thickness. Differences were considered significant when
p � 0.05.

Results
A unique collection of transgenic lines for visualizing
corneal nerves
CGRP:GFP line
In the cornea of rodents, most peptidergic nociceptive C-fibers
are immunoreactive for CGRP and almost two-thirds of trigem-
inal neurons are CGRP� (Jones and Marfurt, 1991; Ivanusic et
al., 2013; He and Bazan, 2016). However, a comprehensive map
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Figure 1. Visualization of corneal peptidergic axons in CGRP:GFP mice. All panels (except D and F ) are maximal intensity z-projection confocal stacks from whole-mount corneas. A, Schematic of
the CGRP:GFP BAC transgenic construct. GFP was inserted downstream the promoter of the Calca gene, which encodes CGRP. B–G, Images from adult CGRP:GFP mice. B, Flat mount view of a
whole-mount cornea, showing GFP expression in corneal nerves. C, Cornea immunolabeled with anti-GFP with DAPI counterstaining (blue). There is a perfect overlap (merge) between the
endogenous GFP fluorescence (green) and the anti-GFP immunoreactivity (red). D, A reslice of the cornea (54-�m-thick optical section) showing the location of the GFP axons in the stroma,
sub-basal plexus, and epithelium. E, Cornea immunolabeled with anti-CGRP (red). All CGRP axons are also GFP �. F, Cryostat section of the trigeminal ganglion stained with IB4 (blue) and
immunolabeled for �III-tubulin (red). GFP neurons only represent a subset of �III-Tub � trigeminal neurons. G, Cornea immunolabeled with anti-�III-tubulin (red). Typical corneal axon leashes of
almost parallel GFP � axons (green) are seen. GFP is only expressed in a subset of corneal nerves. H, At P0, the endogenous GFP expression is weaker than after anti-GFP immunostaining (magenta).
All corneal axons in this domain can be seen with anti-�III-tubulin immunostaining (white, right). I, GFP � axons in the P10 cornea immuno-labeled for �III-tubulin.
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of CGRP innervation in the mouse cornea was only recently gen-
erated using whole-mount immunostaining (Alamri et al., 2015;
He and Bazan, 2016). To try visualizing CGRP� axons without
immunostaining, we used a BAC transgenic (Fig. 1A; see Materi-
als and Methods), which was previously shown to label C-fibers
and a few A�-low threshold mechanoreceptors (LTMRs) in the
mouse hairy skin (Bai et al., 2015). Whole-mount corneas were
dissected, flat-mounted, and imaged with a confocal microscope

revealing a dense network of GFP� axons covering the cornea
(Fig. 1B; n � 30). We next performed whole-mount immunola-
beling of some corneas (n � 3) with anti-GFP antibodies to
determine whether the endogenous GFP fluorescence signal
faithfully reflected the population of axons expressing the re-
porter. Secondary antibodies coupled to Alexa-Cy3 were used to
distinguish endogenous fluorescence from GFP immunostain-
ing. Confocal imaging showed that direct GFP fluorescence sig-

Figure 2. Visualization of corneal axons in Wnt1:cre mice. All panels (except F and I ) are maximal intensity z-projection confocal stacks from adult whole-mount corneas. A, Schematic description
of the mouse lines. In Wnt1:cre knockin mice, Cre recombinase was placed downstream of the Wnt1 promoter. Rosa Tom: the tdTomato coding sequence was inserted in the Rosa locus downstream
of a lox-STOP-lox cassette. In TauGFP mice, a lox-STOP-lox cassette preceding a myristoylated GFP sequence, followed by an Internal ribosome entry site (IRES) cDNA and the lacZ sequence with a
nuclear localization signal (nls), was inserted by homologous recombination in the Tau locus. B, Islets of corneal cells express Tomato (red) in Wnt1:cre;RosaTom mice. C, D, The dense network of GFP �

corneal axons in Wnt1:cre;TauGFP mice. The apical vortex is shown in D. Inset, Terminal intraepithelial branches. E, Cornea immunolabeled with anti-�III-tubulin antibodies (red). GFP and
�III-tubulin nicely overlap. F, Cryostat section of the trigeminal ganglion at the level of the ophthalmic V1 division stained DAPI (blue) and immunolabeled for �-galactosidase (red). GFP �

trigeminal neurons express �-gal in their nucleus. G, Description of the mouse lines. Wnt1:cre (see above). In TauSyn-GFP mice, a lox-STOP-lox cassette preceding a cDNA encoding Synaptophysin fused
to GFP, followed by an Internal ribosome entry site (IRES) cDNA and the lacZ sequence with a nuclear localization signal (nls) was inserted by homologous recombination in the Tau locus. H, Beaded
appearance of the GFP signal in Wnt1cre;TauSynGFP mice. I, A reslice of the cornea with DAPI counterstaining (blue).
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Figure 3. Visualization of corneal axons in TAG-1:cre and En1:cre adult mice. B–E, I–K, Maximal intensity z-projection confocal stacks from adult whole-mount corneas. F, G, L, M, Confocal
images of cryostat sections of trigeminal ganglia. A, Description of the mouse lines. RosaTom and TauGFP (see Fig. 2). In the TAG-1-cre BAC transgenic construct, Cre recombinase was inserted
downstream the promoter of the Tag-1/Cntn2 gene in an artificial chromosome. B, Tomato is highly expressed by corneal cells in TAG-1:cre;RosaTom mice. C, D, The dense network of GFP � corneal
axons in TAG-1:cre;TauGFP mice. The apical vortex is shown in D. E, Cornea immunolabeled with anti-�III-tubulin antibodies (red). GFP and �III-tubulin perfectly overlap. (Figure legend continues.)
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nal perfectly matched the GFP immunostaining (Fig. 1C).
Reslicing of the image stacks using ImageJ (see Materials and
Methods) allowed following corneal nerves and axons in the
stroma, sub-basal plexus to their arborizations and endings in the
cornea epithelium (Fig. 1D). Whole-mount immunostaining for
CGRP (n � 3 corneas) showed that all CGRP� axons coex-
pressed GFP (Fig. 1E). Some GFP� axons did not appear to be
CGRP�, but this was probably due to the incomplete penetration
of the anti-CGRP antibodies. Next, the trigeminal ganglia of
CGRP:GFP mice (n � 5) was cut with a cryostat and immuno-
stained with anti-�III-tubulin, a pan-neuronal marker. As ex-
pected, this showed that only a subset of trigeminal neurons
express GFP (36 � 2.4%) (Fig. 1F).

Accordingly, in corneas immunolabeled for �III-tubulin, the
GFP� axons only represented a fraction of the �III-tubulin�

axons (Fig. 1G). CGRP� fibers represent 64% of the �III-
tubulin� fibers in the center of the cornea (94,060 � 14,684
pixels CGRP� vs 146,351 � 27,062 pixels �III�) and 56% of the
�III-tubulin� fibers in the periphery of the cornea (69,314 �
13,702 pixels CGRP� vs 123,187 � 14,238 pixels �III�).

Finally, we found that CGRP� axons were significantly fewer
in the periphery than in the center of the cornea (p � 0.04;
Mann–Whitney test) and represented approximately two-thirds
of adult corneal axons consistently with previous studies (He and
Bazan, 2016).

To determine whether the CGRP:GFP line could be used to
study the development of corneal peptidergic axons, corneas
from P0 and P10 CGRP:GFP mice were collected and double-
immunostained for �III-tubulin and GFP (n � 5 and n � 8,
respectively). At P0, GFP� axons could be directly observed, but
they were more numerous and more strongly labeled after anti-
GFP immunostaining (Fig. 1H), suggesting that transgene ex-
pression is weaker at birth than in adults. However, at P10, the
endogenous GFP signal in corneal nerves appeared as intense as
in adults (Fig. 1I). Both at P0 and P10, GFP� axons coexpressed
�III-tubulin, but they only represented a fraction of the corneal
axons (Fig. 1H, I). Together, these data suggest that the dense
network of nociceptive peptidergic C-fibers can be fully imaged
using the CGRP:GFP line.

Wnt1:cre line
Genetic fate-mapping studies have demonstrated that sensory
neurons in the trigeminal ganglia derive from the trigeminal pla-
code and from neural crest cell progenitors in the dorsal neural
tube (Steventon et al., 2014), expressing the Wnt1 transcription
factor (Evans and Gage, 2005). The Wnt1:cre line was previously
used to permanently label neural crest cell derivatives (Danielian
et al., 1998; Gage et al., 2005). To try visualizing trigeminal neu-
ron projections to the cornea, we crossed Wnt1:cre mice (Dan-
ielian et al., 1998) to two reporter lines (Fig. 2A). First, we use the
Rosa26:tdTomato line (RosaTom) in which the red fluorescent pro-
tein Tomato is expressed upon Cre recombinase activity (Ma-
disen et al., 2010). In corneas from Wnt1:cre;RosaTom mice (n �

2), numerous patches and islets of Tomato� cells were observed
throughout the cornea (Fig. 2B). This is in agreement with earlier
work indicating that most corneal cells have a neural crest cell
origin. Fluorescent axons were not observed in the cornea. Sec-
ond, we used the Tau-lox-Stop-lox-mGFP-IRES-nls-lacZ mice
(TauGFP) in which Cre-mediated recombination leads to the per-
manent expression of a myristoylated GFP in axons and of
�-galactosidase (�-gal) in nuclei (Hippenmeyer et al., 2005), but
only in cells expressing the Tau protein, such as neurons and
oligodendrocytes (Hippenmeyer et al., 2005; Young et al., 2013).
Confocal imaging of whole-mount corneas (n � 30) from Wnt1:
cre;TauGFP mice revealed a dense meshwork of GFP-positive ax-
ons (Fig. 2C), including large axonal bundles in the stroma,
typical axonal leashes oriented in a centripetal direction, and fine
intraepithelial branches (Fig. 2D). We also observed an almost
perfect overlap between the GFP fluorescence and the �-III tu-
bulin immunolabeling (n � 3), suggesting that the vast majority
of corneal nerves were labeled in Wnt1:cre;TauGFP mice. This
conclusion was further supported by the analysis of trigeminal
ganglia sections in which neuronal nuclei (visualized with DAPI)
also expressed �-gal (Fig. 2F). We also used another reporter line
Tau-lox-Stop-lox-Syn-GFP-IRES-nls-lacZpA mice (TauSyn-GFP)
(Pecho-Vrieseling et al., 2009), in which Cre recombination re-
sults in the expression at presynaptic terminals of a fusion protein
between the synaptic vesicle protein Synaptophysin and GFP
(Fig. 2G). As in Wnt1:cre;TauGFP mice, a strong GFP expression
was detected in the corneal nerves of Wnt1:cre;TauSyn-GFP mice
(Fig. 2H, I). The concentration of the GFP at vesicular release
sites (or varicosities) resulted in a beaded appearance of the GFP
signal in the subepithelial plexus and the epithelium (n � 10).

These results show that the combination of Wnt1:cre and
TauGFP and TauSyn-GFP lines probably allows visualization of the
entire population of corneal nerves, most likely including auto-
nomic axons, which also belong to the Wnt1/neural crest cell
lineage (Espinosa-Medina et al., 2014).

TAG-1:cre line
TAG-1 (also known as Contactin-2) is a cell-adhesion molecule
of the immunoglobulin superfamily (Furley et al., 1990). TAG-1
is expressed by various types of cells, including sensory neurons
in the peripheral nervous system, retinal ganglion cells, oligoden-
drocytes, and Schwann cells (Furley et al., 1990; Traka et al., 2002;
Chatzopoulou et al., 2008). Therefore, we thought that the re-
cently described TAG-1:cre BAC transgenic line (Schmidt et al.,
2014) could be used to visualize trigeminal projections (Fig. 3A).
In TAG-1:cre;RosaTom mice, a strong Tomato expression was in-
duced in cornea cells (Fig. 3B) as observed in the Wnt1:cre;
RosaTom mice. However, at P0, Tomato expression in TAG-1:cre;
RosaTom was restricted to a few cells in the periphery of the cornea
(data not shown). This suggests that TAG-1 expression in the
neural crest cell progeny is not limited to Schwann cells but ex-
tend to the cornea. To bypass this problem, we again relied on the
TauGFP line and found that most corneal axons strongly ex-
pressed GFP in the TAG-1:cre;TauGFP line (Fig. 3C,D; n � 30), as
confirmed by their coexpression of �III-tubulin (Fig. 3E; n � 3).
In trigeminal ganglion sections (n � 3) from TAG-1:cre;TauGFP

mice, �gal and GFP were coexpressed (Fig. 3F) and found in both
Neurofilament 200-positive myelinated non-nociceptive axons
and Neurofilament 200-negative nociceptive axons (Namavari et
al., 2011). The presence of Neurofilament 200� axons in the
mouse cornea has already been reported (Chucair-Elliott et al.,
2015).

4

(Figure legend continued.) F, G, In the trigeminal ganglion, GFP � neurons express �-gal in
their nucleus (F). All GFP � neurons are also �III-tubulin �, and some are also NF200 � (G).
H, Description of the mouse lines. RosaTom and TauGFP (see Fig. 2). In En1:cre knockin mice, the
first exon of the engrailed-1 gene was replaced by the Cre sequence using homologous recom-
bination. I, Tomato is highly expressed by a large fraction of corneal cells in En1:cre;RosaTom

mice. J, K, GFP � corneal axons in En1:cre;TauGFP mice. The apical vortex is shown in K. L, M, In
the trigeminal ganglion, all IB4 � and all �III-immunoreactive neurons are GFP � (L). GFP is
also expressed in the CGRP � and NF200 � populations (M).
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Figure 4. Visualization of corneal axons in Islet1:cre adult mice. B, C, G, H, Maximal intensity z-projection confocal stacks from adult whole-mount corneas. A, Description of the mouse lines.
RosaTom (see Fig. 2). In Islet1:cre knockin mice, the coding sequence of Cre was inserted in the isl1 gene by homologous recombination. B, C, In Islet1:cre;RosaTom mice, all corneal axons express
Tomato (red). �III-tubulin-immunoreactive axons (green) are also Tomato � (see merge). D, E, Confocal images of cryostat sections of trigeminal ganglia. D, Colocalization of the GFP signal (green)
and �III-Tub immunoreactivity (red) in trigeminal neurons. E, All CGRP � neurons (cyan) coexpress Tomato. F, Description of the mouse lines. Islet1:cre (see above). CGRP:GFP (see Fig. 1). RosaTom

(see Fig. 2). G, GFP and Tomato expression in whole-mount cornea from an Islet1:cre;RosaTom;CGRP:GFP mouse. H, High magnification showing that Tomato (red) is expressed both by peptidergic
(GFP �, green) and nonpeptidergic (GFP �) axons. I, A reslice of the cornea (54-�m-thick optical section) showing the location of the fluorescent axons. Yellow represents GFP �/Tomato �

peptidergic nociceptor axons. Red represents nonpetidergic nociceptor axons.
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En1:Cre line
We next continued to test other Cre lines that, unlike the Wnt1:
cre and Tag-1:cre lines, could drive transgene expression in a
small subset of trigeminal neurons and therefore result in a sparse
labeling of corneal axons.

The engrailed-1 (En1) transcription factor controls the devel-
opment of some neural crest cell derivatives, including the tri-
geminal placode (Zhong et al., 2010; Deckelbaum et al., 2012).
Therefore, we crossed, En1:cre mice (Kimmel et al., 2000) with
RosaTom (n � 2) and TauGFP (n � 3) lines (Fig. 3H). The results
were similar to the two other Cre lines: strong expression of To-
mato in cornea cells (Fig. 3I) and strong GFP expression in cor-
neal nerves (Fig. 3 J,K). In the trigeminal ganglia, almost all

neurons were GFP� (Fig. 3L), as shown by �III-tubulin immu-
nostaining (n � 3), and they comprised nonpeptidergic (binding
IB4; Fig. 3L) and peptidergic (CGRP�; Fig. 3M) C-fibers.

Islet1 line
Next, we tested the Islet1:cre line (Fig. 4A) as in mice; this tran-
scription factor controls the formation of the trigeminal ganglia
and autonomic ganglia (Sun et al., 2008; Coppola et al., 2010).
Islet1 appears to be expressed most, if not all, trigeminal neurons
(Sun et al., 2008; Coppola et al., 2010; Meng et al., 2011). Inter-
estingly, all corneal nerves were found to highly express Tomato
in Islet1:cre;RosaTom corneas (Fig. 4B; n � 10) as supported by
anti-�III-tubulin immunostaining (Fig. 4C). This was also the

Figure 5. Visualization of corneal axons in Ret:cre ER adult mice. B–I, Maximal intensity z-projection confocal stacks from adult whole-mount corneas. A, Description of the mouse lines RosaTom

and TauGFP (see Fig. 2). In Ret:creER knockin mice, the coding sequence of creERT2 was inserted in the first exon of the Ret gene by homologous recombination. B, In the absence of tamoxifen, no GFP
signal is detected in the cornea of Ret:creER;TauGFPmice. C–E, The number of GFP � axons increases with the dose of tamoxifen injected (0.25 mg-1 mg). Corneas were collected 14 d (D14) or 60 d
(D60) after injection. F, Immunostaining for anti-�III-tubulin shows that GFP is only expressed in a fraction of �III-Tub � corneal axons. G–I, Corneas from Ret:creER;RosaTom mice injected with
increasing doses of tamoxifen injected (0.25–3 mg). At the lowest dose (G), many Tomato � corneal cells are seen and mask Tomato � axons. H, I, At higher doses, highly fluorescent cells are seen
in the limbal region, and more Tomato � axons are observed.
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case in the trigeminal ganglia where all CGRP� and �III-tubulin
neurons appeared to express Tomato (n � 3) (Fig. 4D,E). There-
fore, this genetic combination drives the expression of a red flu-
orescent protein in most, if not all, corneal nerves, suggesting that
the corresponding neurons either derive from Islet1� neural
crest and placode progenitors or express islet1 when their fate is
established. This observation led us to combine the CGRP:GFP
and Islet1:cre;RosaTom lines (Fig. 4F). Strikingly, in the compound
line, two populations of corneal axons, coexpressing GFP and
Tomato or only expressing Tomato, could be visualized by con-
focal microscopy (n � 5) (Fig. 4H, I).

Ret:cre ER line
Although all the above lines will be extremely useful to study
corneal innervation, they do not reveal the morphology and
branching pattern of individual trigeminal axons. To address this
problem, we tested the Ret:creER knockin line (Luo et al., 2009).
The Ret receptor tyrosine kinase controls the development of
mechanoreceptor neurons (Luo et al., 2009) and is broadly ex-
pressed in trigeminal neurons (Coppola et al., 2010), and Ret
neurons can be divided into two main groups (Luo et al., 2009).
Most Ret� neurons are peptidergic nociceptors (CGRP�), and a
few parts are nonpeptidergic nociceptors. Among this two pop-
ulations of Ret� neurons, some have large-diameter soma and
exhibit features of mechanosensory neurons.

As tamoxifen injection is needed to activate Cre-dependent
recombination, it should, in principle, allow temporal control of
Cre recombinase activity and modulation of the number of tri-
geminal neurons activating Cre, by adjusting the dose of tamox-
ifen injected to the mice.

To test this hypothesis, Ret:creER mice were first crossed to
TauGFP mice (Fig. 5A). In absence of tamoxifen, corneas did not
contain any fluorescent axons (Fig. 5B; n � 10). Mice were next
injected once with increasing doses of tamoxifen and corneas
collected 14 or 60 d later. At the lowest dose (0.25 mg; n � 10), a
sparse labeling was obtained with only a few GFP� axons seen in
the cornea (Fig. 5C). At an intermediate dose (0.5 mg; n � 5), the
density of GFP� axons was significantly increased (Fig. 5D) but
did not fill homogeneously the cornea. When the tamoxifen dose
was doubled (1 mg; n �10), the density of fluorescent axons was
further increased but still only represented a fraction of the cor-
neal nerves as demonstrated by �III-tubulin immunostaining
(Fig. 5E,F). Next, we analyzed Ret:creER;RosaTom double-
transgenic mice. At the lowest tamoxifen dose, the cornea was
almost completely filled with Tomato-positive cells, but a few
axons could be imaged despite the high Tomato expression in
corneal cells (Fig. 5G; n � 5). By contrast, at the higher doses,
Tomato� axons were readily seen in addition to corneal cells
(Fig. 5H, I; n � 10). We next attempted to combine the three lines
to determine whether combinatorial expression of GFP and To-
mato could be achieved when the two reporter lines were simul-
taneously intercrossed with the Ret:creER line. We also used a
higher dose of tamoxifen (3 mg) and also immunostained the
corneas of Ret:creER;RosaTom;TauGFP mice with anti-�III tubulin
(n � 3).

This strategy resulted in the multicolor labeling of corneal
innervation, with a majority of axons expressing both fluorescent
proteins (and therefore appearing yellow) and a lower number of
axons expressing a single protein, either Tomato or GFP (Fig.
6A,B). This could be partially due to the weaker intensity of the
GFP signal. Tomato� and GFP� axons (alone or in combina-
tion) represented 59% of �III tubulin� axons (n � 3). A similar

result was obtained with Ret:creER;RosaTom;TauSyn-FP mice (n �
3) (Fig. 6C,D).

We next crossed the Ret:creER;RosaTom and the CGRP:GFP
lines. The resulting Ret:creER;RosaTom;CGRP:GFP mice were first
injected with a low dose of tamoxifen (n � 3). The trajectories of
individual Tomato� axons within larger GFP� axonal trunks
could be followed (Fig. 6F), and their terminal arbors as they
stem from these large trunks were also visible (Fig. 6G). At a high
dose of tamoxifen (n � 3), GFP and Tomato were expressed in a
combinatorial manner in Ret:creER;RosaTom;CGRP:GFP corneas,
with only a small subset of axons expressing only one protein
(Fig. 6H). Administration of tamoxifen (3 mg) to the Ret:creER;
RosaTom;CGRP:GFP reporter adult mice led to expression of
Tomato (D14) in large soma NF200� neurons, CGRP� neurons,
and IB4� neurons (n � 5).

We also used the Ret:creER mice crossed to TauGFP mice in-
jected with a low dose of tamoxifen (0.25 mg) to visualize the
morphology and branching pattern of individual corneal axons.
Corneal axons of 10 corneas (143 axons in total) were traced
using the Imaris Neurofilament tool software on confocal images
at a 40� magnification (Fig. 7A,B). This showed that individual
axons extended relatively straight in a centripetal manner and
only bear a few side branches laterally. Reconstructions of super-
ficial nerve terminals in the mouse corneal epithelium led us to
identify three types of nerve terminals, as described previously
(Ivanusic et al., 2013; Alamri et al., 2015, 2018): simple (Fig.
7E,G), 33 multiple (Fig. 7C,D,H), and 34 complex (Fig. 7F, I).
Simple terminals (Fig. 7E,G) do not branch after leaving the
sub-basal nerves and end with a single, bulbar swelling at the
superficial surface of the epithelium. These were more frequent in
the center of the cornea than in the periphery. Multiple terminals
(Fig. 7C,D,H) branch within the epithelium into a small number
(usually 3 or 4) of horizontal fibers that run parallel to the surface.
Each of these branches end in a single bulbar swelling similar to
those associated with simple terminals. These ramifying termi-
nals were most obvious in the peripheral cornea. The axons form-
ing the complex terminals (Fig. 7F, I) form a cluster of highly
branched fibers that have many branches. These complex termi-
nals have multiple bulbar endings, and many of these bulbar
endings are larger than those associated with the simple and ram-
ifying terminals. Complex terminals were found in both the cen-
tral and peripheral parts of the cornea. Although a recent study
conducted in guinea pig (Alamri et al., 2015) reported morpho-
logical differences between localization of axonal endings in
terms of basal versus apical epithelium, we were unable to define
nerves endings on the basis of their localization in mice.

Other mouse lines tested
Previous studies have identified other transgenic lines in which
fluorescent proteins selectively label subsets of axons innervating
the hairy skin (Fig. 8; for line descriptions, see Materials and
Methods). For instance, GFP is expressed by lanceolate A�-
LTMRs in TrkB:TauGFP mice (Li et al., 2011; Rutlin et al., 2014)
and A� rapidly adapting (RA)-LTMRs in Split:cre mice (Rutlin et
al., 2014). A� RA-LTMRs also express tdTomato in Npy2r:
tdTomato mice (Gong et al., 2003; Li et al., 2011). These two types
of LTMRs are absent from the cornea; and accordingly, no fluo-
rescent axons were detectable in corneas from mice belonging to
these three lines (Fig. 8A–C; n � 2 for each). Scattered GFP-
positive cells, possibly resident macrophages (Brissette-Storkus
et al., 2002), were observed in TrkB:TauGFP corneas. Likewise,
no GFP-fluorescent nerves were found in the corneas of Mrgprd:
GFP mice (Fig. 8D; n � 2) in which GFP is exclusively expressed
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Figure 6. Analysis of corneal nerves in Ret:cre ER compound mice. All images (except B and D) are maximal intensity z-projection confocal stacks from adult whole-mount corneas. A, Cornea from
a Ret:creER;TauGFP;RosaTom mouse immunolabeled for �III-tubulin. Some �III-Tub � axons (blue) also coexpress GFP and Tomato (and appear white). Other axons that only express GFP (right, green
or cyan) or only Tomato (right, red or magenta). B, A reslice of the cornea (54-�m-thick optical section) illustrating the distribution of the fluorescent axons in the stroma and epithelium. C, Image
of the apex of the cornea and axonal whorl from a Ret:creER;TauSyn-GFP;RosaTom mouse. The three types of axons are seen: GFP �, Tomato �, and a majority of GFP �/Tomato � axons. D, A reslice of
the cornea (54-�m-thick optical section). E, Description of the mouse lines. CGRP:GFP (see Fig. 1). RosaTom (see Fig. 2). Ret:creER (see Fig. 5). F, G, With a low dose of tamoxifen (0.25 mg), only a few
Tomato � axons and do not always overlap with GFP � nociceptive axons. Middle, Arrowhead indicates the area seen on the high-magnification image of a single tomato � terminal arbor (right).
H, With a high dose of tamoxifen, most axons coexpress GFP and Tomato, but a few only express a single fluorescent protein.
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in nonpeptidergic neurons that innervate the epidermis (Zylka et
al., 2005). More surprisingly, we could not observe fluorescent
axons, in corneas from VGluT3:GFP BAC transgenics (Fig. 8E),
although in the epidermis (n � 2), GFP was shown to be ex-
pressed in nonpeptidergic LTMR-C fibers (Seal et al., 2009),
which exist in the cornea (Müller et al., 2003; Alamri et al., 2015).

It was previously shown that YFP is expressed in a large frac-
tion of corneal nerves in Thy1:YFP mice (Yu and Rosenblatt,
2007; Namavari et al., 2011; Taylor-Clark et al., 2015). Interest-
ingly, lines expressing a Brainbow cassette under the Thy1 pro-
moter were generated (Livet et al., 2007), suggesting that

multicolor labeling of corneal axons could be achieved using the
Brainbow strategy. Brainbow is a transgenic system based on Cre-
lox recombination for stochastic expression of multiple genes
coding spectrally distinct fluorescent proteins. We used the Thy1-
Brainbow1.0 line in which the red fluorescent protein tdimer2
(RFP) is expressed by default (Livet et al., 2007), whereas either
the blue fluorescent protein Cerulean (CFP) or the yellow fluo-
rescent protein (YFP) are expressed upon Cre-driven recombi-
nation. Accordingly, RFP� axons could be observed in the
cornea of Thy1.Brainbow1.0 mice (data not shown). To trigger
the recombination of the Brainbow cassette in corneal nerves, we

Figure 7. Heterogeneous terminal arborization of corneal axons. A, Maximal intensity z-projection confocal stacks from adult Ret:creER;TauGFP whole-mount corneas injected with a low dose of
tamoxifen (0.25 mg). B, Axons from A were analyzed with Imaris software using the Filament Tracer module. Arrowheads d, e and f indicate axons seen at higher magnification in panels D, E
and F. C, High-magnification image showing single axons in a sagittal view. D, Single axon tracing showing ramifying nerve terminal. E, Single axon tracing showing simple nerve terminal. F, Single
axon tracing showing complex nerve terminal. G–I, Reconstructions of superficial nerve terminals in the mouse corneal epithelium showing examples of simple (G), ramifying (H), and complex (I)
nerve terminals based on 143 axons.
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used the CAG:creERT2 line (Guo et al., 2002) that expresses almost
ubiquitously a tamoxifen-inducible Cre recombinase. As ex-
pected, upon tamoxifen injection (see Materials and Methods),
we could observe axons expressing YFP, CFP, or both (Fig. 8F),
but fluorescence intensity was very low and we could not detect
any RFP signal, suggesting that all cassettes were recombined
with the tested protocol (n � 3). Therefore, this line was not used
further.

Analysis of corneal nerve reorganization during aging
Our next objective was to use transgenic lines to study the remod-
eling of corneal nerves during aging as little information on this
process is currently available. We focused on the CGRP:GFP line
as GFP expression is very robust in a well-characterized popula-
tion of corneal axons (peptidergic nociceptors). In CGRP:GFP
newborns (Fig. 9A; n � 5), GFP� axons already formed a dense
ring-like network at the periphery of the cornea in the limbal
region. GFP� axons were also found extending toward the center
of the cornea, but they expressed lower level of GFP (see also Fig.
1H). By P10, GFP� axons covered completely the cornea and
terminal intraepithelial branches were numerous, but there was
not yet any obvious polarization or corneal axons (Fig. 9B; n � 8).
By P21, the typical axonal leashes started to form and to acquire
their centripetal orientation (Fig. 9C; n � 5). This remodeling
was more advanced at 1 month with also the first evidence for the
development of an axonal spiral or whorl-like vortex at the center
of the cornea (Fig. 9D; n � 5). In 4-month-old CGRP:GFP mice,

the corneal innervation pattern of GFP� axons was fully mature
with a clear centripetal polarity and pronounced central vortex
(Fig. 9E; n � 5). Interestingly, between 6 and 9 month of age (n �
10), evidence for a deterioration of the corneal innervation were
detected primarily affecting axons located at the cornea apex (Fig.
9F,G). The structure of the vortex was often disorganized with
either axons lacking a spiral organization or with a disappearance
of GFP� axons in the central region. This was accompanied at
older ages (12–18 months; n � 6 and n � 6) by a reduction in the
density of CGRP� axonal leashes followed by the reappearance of
disoriented axonal branches seen at immature stages (Fig. 9H, I).

Corneal CGRP� innervation density decreases significantly in
the center and in the periphery with the age of the mice at 4 (n �
5), 12 (n � 5), and 18 (n � 5) months of age. Density in the center
of the cornea was measured at 214,019 � 10,107 pixels at 4
months and then decreased to 148,333 � 25,482 pixels at 12
months (p � 0.04) and to 77,068 � 11,268 pixels at 18 months
(p � 0.006). Density in the periphery of the cornea was measured
at 173,045 � 12,823 pixels at 4 months and then decreased to
80,500 � 8045 pixels at 12 months (p � 0.007) and to 55,807 �
7830 pixels at 18 months (p � 0.03).

Neuropilin-1 control the postnatal development of the
corneal innervation
The molecular factors controlling the development and mainte-
nance of corneal innervation are still largely unknown. Sema3A
and Sema3F and their respective receptors, neuropilin-1 and

Figure 8. Other transgenic lines tested. Maximal intensity z-projection confocal stacks (A, F) or epifluorescence images (B–E) from adult whole-mount corneas. A–E, No fluorescent corneal axons
were detected in TrkB:TauGFP, Split:cre:GFP, Npy2r:tdTomato, Mrgprd:GFP, and Vglut3:GFP mice. Note the presence of scattered GFP � cells in TrkB:TauGFP line. F, Cornea from a 12-month-old
CAG:creERT2;Thy1-Brainbow1.0 mouse injected with 0.3 mg of tamoxifen at P0. A few CFP � axons (blue) and YFP � (green) axons are seen. Left, Middle, Arrowhead indicates a CFP �/YFP �

double-labeled axon. Arrow indicates axons that are either YFP � or CFP �.
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neuropilin-2, control the initial branching of trigeminal axons on
the embryonic cornea (McKenna et al., 2012). The embryonic or
perinatal lethality of most mice deficient in axon guidance mol-
ecules has hampered the analysis of the molecular mechanisms
involved in the postnatal development of corneal axons. Interest-
ingly, our genetic screen uncovered several lines expressing Cre
recombinase in ophthalmic trigeminal axons. Therefore, we next
attempted to use these lines to study the role of axon guidance
molecules in the development of cornea innervation.

We first focused on Neuropilin-1 (Npn1), which is the bind-
ing component of the receptor complex for Sema3A, a secreted
semaphorin expressed in the developing lens and cornea (Lwigale
and Bronner-Fraser, 2007; Ko et al., 2010). There is a severe de-
fasciculation of embryonic trigeminal axons in a mouse ENU
mutant expressing a mutated Sema3 unable to bind Neuropilin-1
(Merte et al., 2010) as well as in Sema3A KO embryos (Ulupinar
et al., 1999). To inactivate neuropilin-1 in trigeminal axons, we
crossed Npn1lox conditional KOs (Gu et al., 2003) to TAG-1:cre

Figure 9. Age-dependent evolution of the corneal innervation in CGRP:GFP mice. All images are maximal intensity z-projection confocal stacks from whole-mount corneas. A negative image was
generated as fluorescent axons are more visible in black on a white background. A–D, Developmental time course of corneal innervation in CGRP:GFP mice during the first postnatal month. The
progressive centripetal extension and polarization of the axonal leashes. E, At 4 months, the axonal vortex at the center of the cornea is well formed (compare with D). F–H, Abnormal pattern of
innervation in the center of the cornea, frequently observed from 6 to 9 months. H, The lower density of GFP � axons compared with E. I, cornea from an 18-month-old CGRP:GFP mouse. The axonal
whorl is absent, axonal leashes are not seen in the center of the cornea, and polarity is perturbed. Larger areas do not contain GFP � axons. J–L, WT corneas immunolabeled with anti-tubulin. The
progressive thinning of corneal innervation is also seen from 9 months, as well as the disorganization of axonal leashes in a 1-year-old mouse.
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Figure 10. Neuropilin-1 controls the development of corneal innervation. A–D, Light sheet microscopy 3D images of E12.5 TAG-1:cre;Npn1lox/� (A, C) and TAG-1:cre;Npn1lox/lox (B, D) embryos,
immunolabeled with anti-Tag-1 antibodies and cleared with 3DISCO. Tag-1 � sensory axons innervating the face are more numerous and highly defasciculated in TAG-1:cre;Npn1lox/lox embryo.
Trigeminal axons have already invaded the cornea (arrows) in the mutant unlike in the heterozygous control. E, F, Confocal images of GFP � axons in the cornea from a TAG-1:cre;Npn1lox/�;TauGFP

newborn mouse at the level of the epithelium (E; Epithel.) or the stroma (E; stromal trunks) and the whole cornea (F). The GFP � axons already form a dense network in the sub-basal plexus. A few
large axonal trunks are found in the stroma. Bottom, A 54 �m reslice through the cornea stack. F, Maximal intensity z-projection confocal stack from a whole-mount TAG-1:cre;Npn1lox/�;TauGFP

cornea. G, H, Confocal images of GFP � axons in the cornea from a TAG-1:cre;Npn1lox/lox;TauGFP newborn mouse. The density of GFP � axons and branches is strongly increased in the sub-basal plexus
(G, left) compared with heterozygous controls. The stroma also contains a much higher number of large axonal trunks (right). Bottom, A 54 �m reslice through the cornea stack. H, Maximal intensity
z-projection confocal stack from a whole-mount TAG-1:cre;Npn1lox/lox;TauGFP cornea. I–L, The density of GFP � axonal branches and large nerve trunks (arrowheads) in the epithelium and stroma
is still abnormally high in TAG-1:cre;Npn1lox/lox;TauGFP mice at P14 (K) and at 2 months (L) compared with aged-matched TAG-1:cre;Npn1lox/�;TauGFPmice (I,J). Occasional large accumulations of
axons are also seen in the KO (L, arrow). Bottom, The 54�m reslices of the confocal image stacks. DAPI counterstaining of adult corneas from TAG-1:cre;Npn1lox/�;TauGFP (M) and TAG-1:cre;Npn1lox/lox;TauGFP

(N) mice. Density of superficial epithelial cells, basal epithelial cells, and keratocytes in the stroma is similar in mutant and control mice.
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mice. To validate this strategy, we first studied trigeminal projec-
tions in E12.5 TAG-1:cre;Npn1lox embryos, as severe sensory
nerve branching defects were previously observed at this age in
Npn1�/� null embryos (Kitsukawa et al., 1997). The ophthalmic
branches of the trigeminal nerve were visualized using anti-
TAG-1 immunostaining, 3DISCO tissue clearing, and 3D light
sheet microscopy (Belle et al., 2014). We found that ophthalmic
axons were highly defasciculated in TAG-1:cre;Npn1lox/lox em-
bryos compared with TAG-1:cre;Npn1lox/� controls (Fig. 10A,B;
n � 3 for each genotype), and the total length of the ophthalmic
V1 branch (main trunk and all branches of the superior ophthal-
mic division of the trigeminal nerve surrounding the eye) was
strongly increased (18 � 1.5 mm in mutant compared with 4.3 �
0.24 mm in control; p � 0.003). At this age, the cornea of the
TAG-1:cre;Npn1lox/lox embryos was prematurely innervated (Fig.
10C,D) containing 1.7 � 0.11 mm of Tag-1� axons compared
with 0.12 � 0.03 mm in corneas from controls (p � 0.001). A
premature innervation of the cornea has been previously re-
ported in embryo from a Neuropilin-1 mutant line in which this
receptor is unable to bind its ligand Sema3A (McKenna et al.,
2012). These results show that, in this line, Neuropilin-1 was
inactivated in trigeminal projections to the cornea. In contrast to
Npn1�/� mutants, TAG-1:cre;Npn1lox/lox mice were viable and
survive to adulthood. To visualize trigeminal axons postnatally in
conditional KOs, we crossed them to TauGFP mice.

At birth, abnormal development of corneal innervation was
observed in TAG-1:cre;Npn1lox/lox on confocal images of whole-
mount corneas (Fig. 10E–H). In comparison with TAG-1:cre;
Npn1lox/� controls (n � 3), the density and branching of GFP�

axons were strongly increased in TAG-1:cre;Npn1lox/lox newborn
mice (n � 3), both in the subepithelial plexus (98,333 � 12,583
pixels in mutant vs 34 667 � 4509 pixels in controls; p � 0.009)
and in the stroma (88,667 � 10,969 pixels in mutants vs 17,667 �
2516 pixels in controls; p � 0.003). Larger axonal trunks were
found in the stroma and more GFP� axons in the plexus (Fig.
10E,G). The abnormal density of GFP� axons was clearly visible
after reslicing of the images. These obvious and severe branching
defects were still seen at P14 (n � 3) both in the epithelial plexus
(156,667 � 20,816 pixels vs 93,333 � 10,408 pixels; p � 0.03) and
in the stroma (128,667 � 18,583 pixels vs 41,667 � 4725 pixels;
p � 0.008) and in 2-month-old adult TAG-1:cre;Npn1lox/lox mice
(n � 6; 320,000 � 26,457 pixels vs 148,333 � 12,583 pixels in the
epithelial plexus; p � 0.002; 202,667 � 16,623 pixels vs 59,667 �
5507 pixels in the stroma; p � 0.003; Fig. 10I–L). The presence of
Tomato� cells in the cornea of TAG-1:cre;RosaTom (Fig. 3B) sug-
gests that the axon branching defects observed in the cornea of
TAG-1:cre;Npn1lox/lox mice could be at least to some extent attrib-
uted to abnormal cornea structure, although trigeminal axon
branching defects are already observed before birth, when only a
few Tomato� cells are present in TAG-1:cre;RosaTom mice (data
not shown). To assess cornea cytoarchitecture, we used DAPI (see
Materials and Methods) and quantified the number of superficial
epithelial cells, basal epithelial cells, keratocytes (the only cells
present in the stroma), and corneal thickness (n � 3 corneas for
each genotype; Mann–Whitney test) in control and TAG-1:cre;
Npn1lox/lox mutants. The mean superficial epithelial cell density
per �m 2 was 647 � 69 in mutants versus 625 � 60 cells in con-
trols (p � 0.85). The mean basal epithelial cells density per �m 2

was 1607 � 147 versus 1668 � 113 cells (p � 0.78) in mutants
and controls, respectively. The mean keratocyte density was
182 � 26 versus 165 � 34 cells/�m 2 (p � 0.87) in mutant and
control, respectively; and the mean corneal thickness was 87 � 10
�m in mutants versus 92 � 11 �m in controls (p � 0.91). To-

gether, these results show that neuropilin-1 is a key regulator of
trigeminal axon branching in the cornea.

Discussion
Our knowledge of the organization, ontogenesis, and remodeling
of corneal innervation has primarily relied on immunolabeling
methods. Here, we have tested 22 transgenic lines for their ability
to induce the expression of one or multiple fluorescent proteins
in corneal axons. We have identified 7 lines, including one BAC
transgenic and 6 cre-recombinase driver lines, that efficiently la-
bel all or subsets of corneal axons. We further show that a com-
binatorial and dual expression of more than one fluorescent
protein is possible by generating compound transgenic mice. Im-
portantly, this genetic labeling method alleviates the problem of
antibody penetration.

In the known “cornea nerve mouse lines” Trpm8:GFP and
Thy1:YFP (Yu and Rosenblatt, 2007; Parra et al., 2010; Knowlton
et al., 2013; Taylor-Clark et al., 2015), only a subset of corneal
axons express a GFP. By contrast, the whole population of cor-
neal axons could be labeled, using several of our cre-driver lines,
as demonstrated by the perfect overlap with �III-tubulin immu-
nolabeling. This suggests that, in these lines, Cre is not only ex-
pressed in trigeminal projections but also probably in autonomic
axons. In all cases, the fluorescent signal was high enough to be
imaged directly indicating that it should be possible to image
corneal axons in vivo and to perform time-lapse study of their
development and response to injury. Importantly, we also iden-
tified lines that target a fraction of corneal nerves. The CGRP:GFP
line will be very useful as it labels peptidergic nociceptors, which
play a pivotal role in cornea pain (Belmonte et al., 2015). The
Ret:creER line is also particularly interesting as, at a low tamoxifen
dose, a sparse labeling of a few corneal axons can be achieved.
This is unique and will allow to image and reconstruct the ar-
borization and branching pattern of single corneal axons and
determine how it develops and respond to injury, inflammation,
and other pathological conditions. Moreover, the morphology of
nerve terminals we observed is consistent with a previous de-
scription of human corneal innervation (Marfurt et al., 2010),
which reported terminals with single endings or more com-
plex tree-like morphologies in the epithelium. Thus, the mor-
phological heterogeneity we found in mice may also be present
in humans.

Previous studies have suggested that, although corneal axons
do not establish synaptic contacts in the cornea, they could re-
lease neuropeptides, such as CGRP and substance P, via vesicles
resembling synaptic vesicles and expressing typical synaptic pro-
teins (Kruger et al., 2003; Talbot and Kubilus, 2018). The pres-
ence of GFP� puncta in corneal axons of Wnt1cre;TauSynGFP mice
supports these findings. However, it could also just represent a
diffusion of the vesicles containing the GFP fusion protein in the
peripheral branch of trigeminal axons.

A deeper characterization of these new cornea nerve lines will
require assessing their electrophysiological properties. For in-
stance, it will be important to determine whether A� fibers are
labeled in these lines and whether their morphology differs from
the C-fibers. Other lines that could also label corneal axons
should also be studied, such as the Piezo2:GFP mice (Woo et al.,
2015) and the TRPV1:cre line (Cavanaugh et al., 2011). Previous
studies reported how mouse corneal nerve terminal density and
number change during development (Wang et al., 2012; Reichard
et al., 2016). More recently, a study shows the morphological
and functional characteristics of corneal TRPM8-EYFP axons
and how terminals appeared markedly altered in aged mice
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(Alcalde et al., 2018). Our study focuses on peptidergic CGRP�

axons and shows anatomic evidence for a significant decrease in
corneal peptidergic nerve terminal density as a function of age in
the mouse.

The morphological and functional modifications of corneal-
sensitive innervation with age are part of the general, senescence-
induced degenerative processes affecting primary sensory neurons,
associated with DNA damage and oxidative stress (Long et al.,
2014). These changes are likely reflected in morphometric, ultra-
structural, and functional alterations of peripheral axons that, in
the case of peripheral corneal nerves, may be accelerated by the
slowdown in regeneration and remodeling of the nerve terminals
that are needed to maintain the innervation of the rapidly turning
over surface layers of the corneal epithelium (Alcalde et al., 2018).
Interestingly, similar features were described in humans, and
data from confocal microscopy demonstrated that corneal nerves
(particularly sub-basal nerve density) exhibit pronounced reduc-
tion of corneal epithelial nerve terminals and sub-basal nerve
fiber density with age (Niederer et al., 2007; He et al., 2010).
Increased sub-basal nerve tortuosity has also been observed with
age (Patel and McGhee, 2009).

An alternative measure of age-related corneal nerve changes is
testing the functionality of corneal nerves. Using a Cochet-
Bonnet aesthesiometer to test A� fiber mechanical sensitivity,
corneal sensitivity seems to decrease gradually with age, begin-
ning in the periphery and progressing centrally (Murphy et al.,
2004; Roszkowska et al., 2004). Using the Belmonte noncontact
aesthesiometer, which measures mechanical stimulation to A�
fibers and C fibers as well as thermoreceptor and chemoreceptor
sensitivity in C fibers, corneal sensitivity begins to decline in the
second decade in patients, with major changes (presumably those
registered by the Cochet-Bonnet aesthesiometer) becoming ap-
parent by age 50 (Murphy et al., 2004). A reduction of the num-
ber and probably functional activity of peptidergic CGRP� axons
probably contributes to dry eye disease observed in aged patients
and to the development of accompanying unpleasant dryness
sensations.

Previous studies have shown that chemorepulsive axon guid-
ance cue semaphorin 3A (Sema3A) and it receptors neuropilin-1
and plexin-A4 control the embryonic development of trigeminal
axons (Yaron et al., 2005; Lwigale and Bronner-Fraser, 2007; Ko
et al., 2010; McKenna et al., 2012). Sema3A, which is expressed in
the developing cornea and lens, is thought to control the time
course of cornea invasion by trigeminal axons. Interestingly,
adult corneal axons are still responsive to Sema3A repulsive ac-
tivity (Tanelian et al., 1997; Zhang et al., 2018). However, the
postnatal development and adult patterning of corneal nerves in
absence of Sema3A signaling have not been studied. Here we
confirm that trigeminal axons prematurely invade the cornea
in both neuropilin-1-deficient mice as observed in another
Neuropilin-1 mutant line. We also show that, during postnatal
development, the fasciculation and branching of corneal axons
are strongly enhanced in both neuropilin-1 KOs. Corneal inner-
vation defects are still present in adult neuropilin-1 KOs. As VEGF
is able to bind neuropilin-1, it is possible that some of the defects
seen in neuropilin-1 KO are also due to altered VEGF signaling in
addition to Sema3A. However, the development of cornea itself
does not seem to be affected in the TAG-1:cre;Npn1lox/lox, which is
consistent with other studies of another Neuropilin-1 mutant
(McKenna et al., 2012), indicating that trigeminal axon branch-
ing defects are probably cell-autonomous. These genetic data
confirm that Sema3A/neuropilin-1 are interesting drug targets
for corneal nerve regeneration (Omoto et al., 2012).
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