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Abstract

Graves' ophthalmopathy (GO), a complication of Graves' disease (GD), is typified by orbital 

inflammation, ocular tissue expansion and remodeling and, ultimately, fibrosis. Orbital fibroblasts 

are key effectors of GO pathogenesis exhibiting exaggerated inflammatory and fibroproliferative 

responses to cytokines released by infiltrating immune cells. Activated orbital fibroblasts also 

produce inflammatory mediators that contribute to disease progression, facilitate the orbital 

trafficking of monocytes and macrophages, promote differentiation of matrix-producing 

myofibroblasts and stimulate accumulation of a hyaluronan-rich stroma, which leads to orbital 

tissue edema and fibrosis. Proteomic and transcriptome profiling of the genomic response of 

ocular and non-ocular fibroblasts to INF-γ and TGF-β1 focused on identification of 

translationally-relevant therapeutic candidates. Induction of plasminogen activator inhibitor-1 

(PAI-1, SERPINE1), a clade E member of the serine protease inhibitor (SERPIN) gene family and 

a prominent regulator of the pericellular proteolytic microenvironment, was one of the most highly 

up-regulated proteins in INF-γ- or TGF-β1-stimulated GO fibroblasts as well as in severe active 

GD compared to patients without thyroid disease. PAI-1 has multifunctional roles in inflammatory 

and fibrotic processes that impact tissue remodeling, immune cell trafficking and survival as well 

as signaling through several receptor systems. This review focuses on the pathophysiology of the 

GO fibroblast and possible targets for effective drug therapy.
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1. Introduction and clinical manifestations of orbitopathy

Graves’ ophthalmopathy (GO), which affects approximately 50 percent of Graves’ disease 

(GD) patients, exhibits a prominent female gender bias (Wiersinga and Bartalena, 2002). 
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Ocular involvement varies occurring before, with or after the onset of overt thyroid disease 

and presents as swelling, inflammation, redness, dryness, proptosis, eyelid retraction, 

foreign body sensation and stromal remodeling which can be extensive (Dik et al., 2016; 

(Wiersinga and Bartalena, 2002; Wiersinga et al., 1998; Bahn, 2010; Piantanida et al., 2013; 

Chng et al., 2012). Severely affected individuals (3-5% of those with ocular pathology) 

experience pain, diplopia, compression of the optic nerve and subsequent loss of vision 

largely as a consequence of connective tissue and muscular expansion within the confines of 

the boney orbit (Bahn, 2015, 2016). The most common ocular symptom of early mild GO is 

upper eyelid retraction coincident with complaints of foreign body sensation, photophobia 

and tearing. Lagging of the upper eyelid in downgaze (Von Graefe’s sign) and inability to 

close the eyelids completely (lagophthalmos) are further diagnostic hallmarks as is the 

presence of corneal erosions and superior limbic keratoconjunctivitis (Dolman, 2018). In 

moderate GO, inflammation and edema may lead to gaze abnormalities and myopathy; the 

patient may experience vertical diplopia in upgaze with compromised extraocular muscle 

(EOM) movement secondary to fibrosis (reviewed in Khalilzadeh et al., 2011). In severe 

disease, EOM/orbital fat expansion and progressive scarring within the orbit, concomitant 

with connective tissue and glycosaminoglycan accumulation, manifests a worsening 

proptosis and predisposes the optic nerve to compression (Dik et al., 2016). Chronic 

complaints of acute dry eye and pain, elevated intraocular pressure, visual field deficits or 

vision loss are common when the optic nerve is impinged (Bahn 2010) and may warrant 

surgery to prevent irreversible blindness (Dolman, 2018). The management of mild GO 

consists of artificial tears and other topical lubricating options; Tarsorrhaphy is considered 

an alternative for chronic dry eye complaints. Steroids or radiotherapy can reduce 

inflammation in patients with more advanced GO and ophthalmic surgery is an option in 

cases of severe or emergent orbitopathy.

2. Cellular pathophysiology

Most patients with GO have EOM and/or adipose tissue enlargement (Dik et al., 2016). 

Patients under the age of 40 usually exhibit fat expansion while those over 60 present with 

muscle involvement (Forbes et al., 1986; Anderson et al., 1989). The EOM fibers in GO are 

separated by an amorphous, granular material consisting of collagen fibrils and non-sulfated 

glycosaminoglycans (GAGs), with the most abundant and highly-hydrophilic GAG being 

hyaluronan (HA) (Smith et al., 1989; Dik et al., 2016). HA synthesis is up-regulated in the 

GO fibroblast in response to IL-2 and TGF-β1 where it accumulates in the orbit connective 

tissue (Smith et al., 1989; Bahn, 2003; Khalilizadah et al., 2011). In active disease, the 

polyanionic charge and high osmotic pressure of this hydrated HA-rich matrix results in 

edema while likely exacerbating cellular growth, migration and inflammatory cell influx 

(Bahn, 2010; Hufnagel et al., 1984; Natt and Bahn, 1997; Smith et al., 1989; Bahn, 2010; 

Guo et al., 2011; Evanko et al., 2012; Itano et al., 2002). Although the specific HA synthase 

involved in orbital disease is uncertain (Galgoczl et al., 2016), earlier findings implicated 

HAS2 (Kaback and Smith, 1999; Zhang et al., 2009) and ocular fibroblasts derived from a 

mouse model of GO express significant levels of HAS2 (Gortz et al., 2016) supporting an 

association between HAS2 and GO pathogenesis.
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Orbital fibroblasts are both the major targets of inflammatory cytokines released by 

infiltrating immune cells as well as active participants in pathological progression (Bahn, 

2010, 2015, 2016; van Steensel et al., 2012a,b; Feng et al., 2017; reviewed in Bahn, 2015; 

Dik et al., 2016). In early GO, diffuse infiltration of primarily CD4+ T cells are the 

predominant microenvironmental effectors in the orbit but CD8+ T cells, macrophages, 

plasma cells and B cells are also evident in the EOM and adipose tissue (Pappa et al., 1997; 

Eckstein et al., 2004). Type 1 helper T cells produce inflammatory cytokines including IL-2, 

interferon-γ and TNFα the initial stages (Bahn, 2010). As disease progresses to a more 

chronic stage, type 2 helper T cells produce additional inflammatory cytokines including 

IL-4, IL −5, IL-6 and IL-10 (Aniszewski et al., 2000) while macrophages, fibroblasts and 

adipocytes synthesize and release IL-1, IL-6, IL-16 and TGF-α (Kumar and Bahn, 2003; 

Hiromatsu et al., 2000; Bahn 2010; Pawlowski et al., 2014). In GD-associated CD34+ T cell 

dysfunction, recent findings suggest that elevated levels of miR-4443 results in the increased 

expression of IL-1, IL-6, IL-17 and INF-γ (Qi et al., 2017). The increased expression of this 

cohort of proinflammatory effectors would be expected to impact virtually all orbit-resident 

cells including stromal fibroblasts and the vascular system. Orbit fibroblasts exhibit 

exuberant inflammatory responses when compared with fibroblasts from other anatomical 

sites as well as contribute to immune cell recruitment and activation (Smith et al., 2008; Dik 

et al., 2016). Indeed, stimulation of orbital fibroblasts with IL-1β, leukoregulin, INF-γ, or 

TNF-α results in a greater induction of cytokines, HA, prostaglandins and profibrotic factors 

compared to dermal cells (reviewed in Dik et al., 2016). It is not immediately obvious, 

however, whether this reflects their anatomical or developmental uniqueness relative to 

mesenchymal-derived fibroblasts. An increased number of T helper17 cells, moreover, 

which synthesize IL-17A in response to stimulation with IL-23, traffic to the orbit during 

development of thryoid-associated orbitopathy where the secreted IL-17A amplifies the 

proinflammatory and fibrotic response of resident fibroblasts promoting their differentiation 

into matrix-producing myofibroblasts and exacerbating disease progression (Fang et al., 

2016, 2017; Zhao et al., 2018).

Human ocular cells can also differentiate into high thyrotropin-expressing mature adipocytes 

(Sorisky et al., 1996; Valyasevi et al., 1999; Starkey et al., 2003) which may, in part, explain 

the enlargement of orbital fat in GO. A significant fraction of fibroblasts isolated from the 

EOM of GO patients express the surface marker Thy-1 (Khoo et al., 2008), as opposed to 

GO orbital fat fibroblasts in which only 50% are Thy-1+ (Khoo et al., 2008). Elevated 

expression of Thy-1 (CD90) defines a fibroblast subpopulation that produces prostaglandin 

E2, IL-8 and HA (Khoo et al., 2008). When exposed to TGF-β which is strongly expressed 

in the orbit of patients with mild and severe GO (Pawlowski et al., 2014), these fibroblasts 

differentiate into myofibroblasts which participate in repair and fibrosis (Smith et al., 2002; 

Bahn, 2010). The duration and level of TGF-β exposure, coupled with the intrinsic 

heterogeneity of the ocular fibroblast cohort, may well dictate disease severity (Smith et al., 

2002). TGF-β also increases expression of sphingosine-1-phosphate (S1P), a profibrotic 

effector for various cell types including GO fibroblasts (Ko et al., 2017). Since S1P receptor 

blockade attenuates expression of fibrotic and tissue remodeling factors in GO cells (Ko et 

al., 2017), TGF-β signaling may activate several pathways that contribute to ocular 

inflammation and fibrosis (e.g., Fang et al., 2016; Dik et al., 2016).
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Numerous CD34+ fibrocytes are evident in the orbit of GO patients but not in healthy 

individuals (Douglas et al., 2010; Peng et al., 2012). These cells may play a pivotal role in 

the pathogenesis of GO, secondary to their expression of IGF-1 and thyroid stimulating 

hormone receptors, two well-known autoantigens in GO (e.g., Smith, 2015; Bahn, 2015). 

Orbital fibroblasts in GO patients, in fact, express higher levels of IGF-1R than non-diseased 

controls (Smith 2003). Receptor-activating antibodies stimulate signaling in orbital 

fibroblasts to release inflammatory cytokines, including IL-6 and TNF-α (Douglas et al., 

2010). Therapeutic targeting of the IGF-1R with teprotumumab, an inhibiting antibody, may 

provide a therapeutic option for patients with active GO (Mohyi and Smith, 2017).

3. Molecular basis of orbital disease

Expression profiling of orbital tissue and ocular fibroblasts from GO patients revealed 

significant up-regulation of several immediate-early genes including those encoding the 

inflammation/fibrosis inducers CYR61, connective tissue growth factor (CTGF) and the 

serine protease inhibitor plasminogen activator inhibitor-1 (PAI-1) (Lantz et al., 2005; Tsai 

et al, 2015; Smith et al., 1992; Higgins and Smith, 1993) suggesting involvement in disease 

initiation and/or progression. Since the proinflammatory cytokines interferon-γ (INF-γ) and 

IL-1α and the potent profibrotic factor TGF-β1 are implicated in Graves’ orbitopathy 

(Wakelkamp et al., 2003), proteomic and transcriptome analysis of the genomic response of 

ocular and non-ocular fibroblasts to INF-γ and TGF-β1 focused on identification of 

potential disease-relevant targets. Of 129 individual proteins resolved in 2-D gel separations 

of cutaneous fibroblasts suitable for quantitative analysis, the relative abundance of 14% 

changed in response to INF-γ (Smith and Higgins, 1993a,b). In contrast, 38% of the de 
novo-synthesized proteins resolved in 2-D gel separations of GO fibroblasts were 

significantly influenced by exposure to INF-γ (Smith et al., 1992; Higgins and Smith, 1993) 

with an approximately equal number partitioning between the up- and down-regulated sets 

(Figure 1). This differential sensitivity to INF-γ reprogramming evident between GO and 

dermal fibroblasts underscores the exacerbated response of diseased orbital cells to 

proinflammatory stimuli. Although alterations in specific proteins involved in inflammation 

and remodeling were also resolved by MALDI mass spectrometry of orbital tissue obtained 

from GO patients compared to non-thyroid involved controls, more significant up-

regulations were evident in GO patients not previously treated with steroids (Matheis et al., 

2015). Induction of plasminogen activator inhibitor-1 (PAI-1, SERPINE1), a clade E 

member of the serine protease inhibitor (SERPIN) gene family and a prominent regulator of 

the pericellular proteolytic microenvironment (Figure 2), was one of the most highly up-

regulated proteins in INF-γ-stimulated GO fibroblasts (Smith et al., 1992). By comparison, 

INF-γ only modestly increased (5-fold) or attenuated PAI-1 levels in dermal fibroblasts. 

PAI-1 was virtually undetectable in unstimulated orbital cells compared to expression levels 

under basal conditions in all dermal fibroblast strains (Smith et al., 1992; Higgins and Smith, 

1993). Similarly, large-scale mRNA expression profiling of confirmed that PAI-1 transcript 

abundance was markedly increased (28-fold) in the intraorbital adipose/connective tissue 

collected from severe active Graves’ disease patients by lateral decompression surgery 

compared to that obtained from patients without thyroid disease undergoing cosmetic 

procedures (Planck et al., 2011). Tear PAI-1 levels, moreover, were also significantly 
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increased in GO patients relative to GD patients without orbitopathy or to normal controls 

(Ujhelyi et al., 2012). Data analysis confirmed, in fact, that PAI-1 was the only protein to 

exhibit a statistically increased release in GO relative to GD patients with non-ocular 

involvement. These findings collectively suggest that the regulation of pericellular 

proteolysis may be fundamentally different between cutaneous and ocular fibroblasts (Smith 

et al., 1992).

While TGF-β1 is highly-expressed in the GO orbit (Pawlowski et al., 2014), analysis of 

differentially-expressed genes indicates that the fibroblast response to TGF-β1 is 

considerably more complex compared to the rather restricted reprogramming induced by 

INF-γ (Gardner et al., 2004; Planck et al., 2011). Moreover, as is the case for INF-γ, the 

TGF-β1-stimulated increase in PAI-1 mRNA and protein levels was significantly greater in 

GO vs. dermal fibroblasts (Cao et al., 1995) and likely contributes to the matrix expansion 

characteristic of active Graves’ disease. Whether this is impacted by the elevated HA levels 

in the GO orbit (Wang et al. 2005, Guo et al. 2011) is unknown, however HA increases 

PAI-1 expression in human vascular smooth muscle cells (Marutsuka et al. 1998) and a 

positive correlation exists between HA and PAI-1 produced by human aortic endothelial 

cells exposed to inflammatory stimuli (Devaraj et al. 2009). In human umbilical vein 

endothelial cells, moreover, high molecular weight HA both activates the type I TGF-β 
receptor and induces PAI-1 expression (Park et al. 2012). It is reasonable to assume that 

similar vascular consequences of HA exposure may occur in the microenvironment of 

Graves’ orbitopathy.

4. Multifunctional roles of PAI-1 in inflammatory/fibrotic disease

Among its varied functions, PAI-1 negatively regulates the plasmin-dependent pericellular 

proteolytic cascade, largely through inhibition of the urokinase/tissue-type plasminogen 

activators (uPA/tPA), effectively limiting ECM degradation and fibrinolytic activity (Figure 

2) contributing, thereby, to the initiation and/or progression of fibrotic disease (Ghosh and 

Vaughan, 2012; Flevaris and Vaughan, 2017). Plasmin targets several ECM proteins directly 

while also activating various proenzymes of the matrix-metalloproteinase (MMP) family 

creating a proteolytic stromal remodeling cascade. PAI-1 restricts this process of proteinase 

activation, thus controlling the locale and extent of ECM degradation by (1) direct 

inactivation of PAs attenuating, thereby, plasmin generation/MMP activation which 

increases matrix deposition and promotes fibrosis and (2) targeting uPA receptor-bound uPA 

complexes for endocytotic clearance via members of the LDL-receptor family (Ghosh and 

Vaughan 2012). Development of gene-deficient animals confirmed that PAI-1 null mice are, 

in fact, protected from excessive ECM accumulation as well as lung, liver, kidney and 

vascular fibrosis and PAI-1 uPA/tPA domain decoys reduced both injury-initiated and 

established interstitial fibrosis (Gonzalez et al., 2009). Plasmin levels and activity, however, 

are not affected by PAI-1 deficiency in certain tissues (e.g., kidney) suggesting the 

involvement of other pathways impacted by PAI-1 knockout (e.g., Flevaris and Vaughan, 

2016). Indeed, illumina-based microarray analysis revealed that a number of genes involved 

in diverse biological processes (e.g., immune system processing, stress response, cytokine 

and growth factor signaling, cell growth, migration and death, ECM organization and 

transcriptional regulation) were up- or down-regulated in several organ systems by the 
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genetic absence of PAI-1 (Ghosh et al., 2013). Clearly, the role of PAI-1 in fibrotic disease is 

complex and likely transcends its function as a regulator of the pericellular proteolytic 

microenvironment. In this regard, increased PAI-1 levels in the Graves’ disease orbit may 

well impact various cell types (e.g., endothelial and immune cells, activated pericytes) as 

well as resident fibroblasts. PAI-1 is, in fact, a key contributor to intravascular coagulopathy, 

endothelial dysfunction and metabolic syndrome (Aso, 2007) each of which may be 

exacerbated by the effects of thyroid disease on glucose/insulin metabolism, Insulin is a 

potent inducer of PAI-1 expression in vivo (Nordt et al., 1995) and hyperinsulinemia is a 

major factor in PAI-1 elevation (Aso, 2007; De Taeye et al., 2005) where this SERPIN may 

promote vascular luminal fibrin accumulation. and creation of a procoagulant state (Cozma 

et al., 2007). Color doppler imaging revealed significant vascular anomalies in dysthyroid 

ophthalomopathy involving the superior ophthalmic vein (SOV), likely a consequence of 

optic nerve compression by the expanding EOM (Walasik-Szemplinska et al., 2015; Nakase 

et al., 1994; Kurioka et al., 2001; Yanik et al., 2005; Perez-Lopez et al., 2011). SOV 

thrombosis, while uncommon, is a pathophysiologically important complication of GO 

(Sorrentino et al., 2018) and may well reflect a state of PAI-1-induced coagulopathy and 

vessel pathology. Small molecule PAI-1 inhibitors (e.g., TM5441, TM5007, Tiplaxtinin) 

significantly attenuate the development of insulin resistance, intravascular coagulopathy, 

vascular thrombosis, and fibrosis in several mouse model systems (Lee et al., 2017; Isuhara 

et al., 2008; Rouch et al., 2015; Hennan et al., 2008; Baxi et al., 2008; Smith et al., 2006). 

Given the relative ease of PAI-1 inhibitor systemic administration, these findings suggest 

that the use of anti-PAI-1 functional therapeutics may have efficacy in the management of 

the orbital consequences of GD.

Recent findings also highlight an unexpected involvement of PAI-1 in innate immunity. 

PAI-1-deficient mice develop an attenuated inflammatory/fibrotic response following tissue 

injury while transgenic PAI-1 over-expressing animals exhibit increased macrophage and T-

cell infiltration and/or immune cell tissue residence time (Oda et al., 2001; Gupta et al., 

2016). In the aorta, monocyte adhesion to the intima is significantly reduced in 

streptozotocin-treated PAI-1−/− mice reflecting decreases in the inflammatory mediators 

TNF-α and monocyte chemotactic protein-1 (Zhao et al., 2017). Since PAI-1 provides a 

“don’t eat me” signal, effectively inhibiting neutrophil efferocytosis (Park et al., 2008; Chao 

et al., 2011), it appears that this SERPIN may affect cellular influx as well as the intensity 

and/or duration of the injury-initiated inflammatory phase. Indeed, elevated PAI-1 levels 

closely mirror systemic and localized inflammation while exogenously-delivered PAI-1 

stimulates expression of proinflammatory cytokines (e.g., TNFα and macrophage 

inflammatory protein-2) in primary bone marrow macrophages (Gupta et al., 2016). The 

protease inhibitory as well as the vitronectin- or LRP1-binding properties of PAI-1, however, 

are not necessary for macrophage activation but TLR4 is required, at least in part, since 

TLR4 neutralizing antibodies or the genetic depletion of TLR4 attenuated PAI-1-induced 

tissue inflammation (Gupta et al., 2016) suggesting that PAI-1 may function as a 

matricellular damage-associated molecular pattern (DAMP) TLR ligand (Marquerlot et al., 

2006; Cartier-Michaud et al., 2012). PAI-1 appears involved, in fact, in lipopolysaccharide 

(LPS) signaling and PAI-1 knockdown attenuates LPS-induced increases in macrophage 

TLR4, MD-2, MyD88, TNF-α, IL-1β and NF-κB levels while vector-driven PAI-1 over-
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expression enhanced these responses (Ren et al., 2015; Wang et al., 2014). Recent findings 

implicate specific TLR4 and TLR9 polymorphisms in the pathogenesis of GD and thyroid-

associated ophthalmopathy (Cho et al., 2017). Although the mechanism is unclear, PAI-1 

participates in host inflammatory responses via TLR4, at least in macrophages (Gupta et a., 

2016). This is likely to have a significant impact on fibrogenic outcomes following tissue 

injury and/or prolonged inflammation as exogenous PAI-1 treatment increased TGF-β1, 

collagen 1α1, collagen 1α2 and MCP-1 transcripts in non-ocular cells (Nicholas et al., 

2005; Jeong et al., 2016; Seo et al., 2009) and may well do so in the orbit. The TLR4/RAGE 

DAMP-type ligand HMGB1 also activates a subset of genes in the TGF-β1 profibrotic 

signature that includes PAI-1, CTGF and TGF-β1 (Cheng et al., 2015) suggesting that 

DAMPs and LPS utilize common and unique signaling pathways that may be exploited in 

the design of interventional strategies. Collectively, it appears that TLR4 may function as a 

molecular “switch”, activated by endogenous DAMPs to initiate repair while stimulating 

TGF-β1 signaling (by down-regulating the TGF-β pseudoreceptor BAMBI) promoting the 

persistent expression of TGF-β target genes to create and maintain a progressive fibrotic 

microenvironment (Bhattacharyya and Varga, 2015; Bhattacharyya et al., 2013). This is 

particularly relevant to the cytokine-driven inflammatory microenvironment and extensive 

matrix remodeling that typifies the onset and progression of orbitopathy in GD patients. 

DAMPs, including various fragments of proteoglycans and ECM components, are released 

from damaged tissues and subsequently activate TLR2, 4, 6, and 9 to initiate downstream 

signaling triggering and prolonging the inflammatory response (Frevert et al., 2018). Low 

molecular weight HA, moreover, is a potent stimulator of both TLR2 and TLR4 resulting in 

the activation of the NF-κB pathway and mobilization of a matrix-active remodeling cascade 

that includes increased expression of PAI-1 (Frevert et al., 2018). The marked up-regulation 

of HA in GO fibroblasts may exacerbate disease progression, through up-regulation of TGF-

β signaling and PAI-1 expression (Wang et al., 2005; Guo et al., 2011; Marutsuka et al., 

1998; Devaraj et al., 2009; Park et al., 2012), facilitating creation of a fibrotic stroma in the 

confines of the orbit.

5. Conclusions

Expression profiling of orbital tissue and ocular fibroblasts from GO patients revealed 

significant up-regulation of several potentially disease-relevant genes in response to INF-γ 
or TGF-β including that encoding the serine protease inhibitor PAI-1, a downstream effector 

of the fibrotic response. PAI-1 limits matrix degradation by negatively impacting the 

plasmin-activated pericellular proteolytic cascade to promote tissue fibrosis while promoting 

the duration and amplitude of the inflammatory response by inhibiting neutrophil 

efferocytosis. Exogenously-delivered PAI-1, moreover, stimulates TGF-β1 synthesis in 

several cell types which could be attenuated by small molecule PAI-1 functional inhibitors, 

suggesting the existence of a PAI-1/TGF-β1-positive feedback mechanism. These findings 

suggest that PAI-1 may initiate, perhaps maintain, a potential pro-fibrogenic “loop” 

(Nicholas et al., 2005; Seo et al., 2009) consistent with recent observations that engineered 

PAI-1 over-expression is sufficient to promote the development of a fibrogenic phenotype 

(Lian et al., 2018). PAI-1 also stimulates myofibroblast differentiation, a transition blocked 

by pretreatment with small molecule functional inhibitors (Omori et al., 2016). Several such 
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compounds (e.g., SK-216, TM5275) similarly attenuated bleomycin- and TGF-β1-induced 

lung fibrosis in mice (Huang et al., 2012; Omori et al., 2016). It is tempting to speculate, 

therefore, that targeted pharmacological down-modulation of PAI-1 expression or function 

(Rouch et al., 2015) may provide multi-level therapeutic opportunities to inhibit the onset 

and progression of tissue inflammatory and fibrotic disease, particularly in the context of the 

accessible GO orbit.
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Figure 1. 
Two-dimensional electrophoretic separations of de novo-synthesized 35S-methionine-labeled 

cellular proteins from control and INF-γ-stimulated GO fibroblasts (A) confirmed a 

significant up-regulation (>16- to >40-fold) in the induced expression of the various distinct 

isoelectric variants of PAI-1 described previously (Higgins and Smith, 1993). PAI-1 map 

coordinates were confirmed using combined immunoblotting and 2-D gel separation criteria 

established previously (Higgins and Ryan, 1992). Individual protein spots were detected by 

fluorography and quantified with a Zeiss MOPS III digital image analyzer (Smith et al., 

1992). I An approximately equal number of the resolved INF-γ-responsive GO fibroblast 

protein complement partitioned between the up- and down-regulated sets (B).2IndividuMM-

dimensional electrophoretic protein maps derived from 2 individual strains of gamma- spot 

55s and 65s-69s induction by interferon gamma in human orbital fibroblasts. Cells were 

incubated in control
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Figure 2. 
PAI-1 is a critical factor in the regulation of pericellular proteolysis and tissue fibrosis. 

Plasminogen activators (urokinase, uPA; tissue-type, tPA) are the physiologically relevant 

plasmin-generating proteinases that impact ECM homeostasis through a complex and 

interdependent proteolytic cascade. uPA-stimulated conversion of plasminogen to plasmin 

leads to an increased downstream activation of matrix metalloproteinases (MMPs). 

Collectively, plasmin and MMPs dictate the locale and extent of ECM remodeling. Increased 

PAI-1 expression and/or activity facilitates ECM accumulation and attenuates ECM 

degradation which, if prolonged or chronic, results in the onset and progression of fibrotic 

disease (reviewed in Flevaris and Vaughan, 2016; Rabieian et al., 2018; Milenkovic et al., 

2017; Higgins et al., 2018).
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