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Abstract

Publicly available gene expression datasets deposited in the Gene Expression Omnibus (GEO) are growing at an accelerating
rate. Such datasets hold great value for knowledge discovery, particularly when integrated. Although numerous software plat-
forms and tools have been developed to enable reanalysis and integration of individual, or groups, of GEO datasets, large-scale
reuse of those datasets is impeded by minimal requirements for standardized metadata both at the study and sample levels as well
as uniform processing of the data across studies. Here, we review methodologies developed to facilitate the systematic curation
and processing of publicly available gene expression datasets from GEO. We identify trends for advanced metadata curation and
summarize approaches for reprocessing the data within the entire GEO repository.
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Introduction

Gene expression datasets are accumulating rapidly in public re-
positories such as the NCBI’s Gene Expression Omnibus (GEO)
(Barrett et al. 2013) and the Sequence Read Archive (SRA)
(Kodama et al. 2012) as well as ArrayExpress (Rustici et al.
2013). That is partly driven by the emergence of new and im-
proved transcriptomic profiling technologies such as RNA se-
quencing (RNA-seq) (Fig. 1). In addition, most journals now
mandate the deposition of transcriptomics data as a requirement
for publication, with the goal of enabling reproducibility and data
reuse. Reanalysis and integration of themed collections of gene
expression datasets can produce new insights into the underlying
biological mechanisms under investigation. For instance, meta-
analysis of multiple datasets for a disease can help in discovering
the most consistently differentially expressed genes (DEGs) and
the pathways that these genes belong. In addition, consistent
DEGs can become biomarkers and drug targets. Similarly, curat-
ed collections of gene expression signatures can serve as a
Connectivity Map reference database for matching user-
submitted signatures of DEGs with annotated and curated signa-
tures (Lamb et al. 2006; Subramanian et al. 2017). Similarly,
curated signatures can be converted to gene set libraries for gene
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set enrichment analyses (Chen et al. 2013; Kuleshov et al. 2016;
Subramanian et al. 2005). In addition, curated signatures can be
compared for reproducibility across multiple independent studies
(Gundersen et al. 2016), or for finding unexpected relationships
between drugs, genes, and diseases (Wang et al. 2016; Chen and
Butte 2016; Cheng et al. 2014).

Several software tools have been developed for reanalyzing
individual or collections of datasets from GEO (Table 1). Those
tools enable users to search GEO for relevant studies and then
retrieve specific datasets for further analysis. In addition to those
tools, approaches have been developed to uniformly reprocess
all the microarray or RNA-seq datasets in GEO. The uniformly
reprocessed gene expression datasets can be organized into

databases that serve as search engines that enable knowledge
discovery at the data level. Prominent examples include
ExpressionBlast (Zinman et al. 2013), Recount2 (Collado-
Torres et al. 2017), ARCHS4 (Lachmann et al. 2018), and
SEEK (Zhu et al. 2015). These resources processed a large
number of microarray and RNA-seq samples to build search
engines for gene expression profiles and co-expression modules.
Recent advances in cloud computing infrastructure, efficient
cloud-enabled aligners such as Rail-RNA (Nellore et al. 2017),
and alignment-free RNA-seq quantification methods such as
Kallisto (Bray et al. 2016) enable the large-scale uniform
reprocessing of RNA-seq datasets from GEO. Such efforts in-
clude Recount2 (Collado-Torres et al. 2017) and ARCHS4

Table 1 Software tools developed for reanalyzing and further annotating GEO datasets
Tool Citation Individual/  Type Note Limitations
multiple

GEO2R (Barrett et al. 2013) Individual ~ Web Implements GUI that generate graphs Limited graphical visualizations;

and R script only implements DE analysis;
limited to microarray data

shinyGEO (Dumas et al. 2016) Individual ~ Web R Shiny extension of GEO2R DE analysis only available for

with improved graphics individual genes; limited to
microarray data

GEOquery (Davis and Meltzer 2007) Individual R package  Bridge between GEO and BioConductor ~ Requires users to be proficient in R
to enable analyses of GEO datasets and Bioconductor packages;
in various BioConductor packages limited to microarray data

GEO2Enrichr (Gundersen et al. 2015) Individual ~ Brower Identifies DEGs and pipe to enrichment ~ Limited to microarray data;

extension analysis tool limited analysis components

BioJupies (Torre et al. 2018) Individual ~ Web Generates interactive Jupyter notebooks ~ Limited to RNA-seq data. Only
from RNA-seq datasets allows 2 group comparison

ScanGEO (Koeppen et al. 2017) Multiple Web Identifies DEGs across multiple GEO Limited to curated GEO datasets
studies matching user-specified criteria (GDS); only supports DE analysis

ImaGEO (Toro-Dominguez et al. 2018) Multiple Web Performs nine types of meta-analysis Limited to microarray datasets
across multiple GEO studies

GEOracle (Djordjevic et al. 2017) Multiple Web Uses text mining of the GEO metadata to  Limited to microarray datasets;

automatically identify perturbational
GEO datasets and associated metadata

only performs DE analysis
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(Lachmann et al. 2018). These newer search engines provide
other features besides sample search, for example, gene function
prediction, average expression in tissues and cells, and system-
atic discovery of alternative splicing events.

However, integrating datasets across studies as well as
performing meta-analyses from collections of studies is still
difficult. This is mainly because of the lack of machine-
readable standardized metadata at the study and sample levels.
The metadata associated with gene expression studies within
GEO typically do not adhere to controlled vocabularies to de-
scribe biological entities such as tissue type, cell type, cell line,
gene/protein, drug/small-molecule, and disease. Instead, the au-
thors of the datasets use semi-structured textual descriptions to
annotate their study design, sample characteristics, and experi-
mental protocols. Many GEO studies are also associated with
publications indexed in PubMed, which further helps other re-
searchers to understand the details of each study design, but
does not resolve the necessity for machine-readable metadata.

Therefore, there is an urgent need for better curating and
annotating publicly available gene expression datasets at scale
to enable better data reuse that can facilitate new discoveries.
The task of curating and annotating GEO datasets involves the
identifying and mapping of biological entities such as genes/
proteins, drugs/small-molecules, diseases, and cells/tissue-
types at both the dataset and sample levels. Such mapping needs
to be done to relevant community-accepted controlled vocabu-
laries such as specialized ontologies available from the National
Center for Biomedical Ontology (NCBO) BioPortal (Whetzel
et al. 2011) and other community-accepted naming standards.
Better annotation of datasets and samples will provide the basis
for identifying meaningful biological contrasts among groups of
samples, which can then be used for differential expression (DE)
analysis. Here, we review recent advances and future perspec-
tives in the process of curating and reprocessing publicly avail-
able gene expression datasets from GEO.

Approaches toward improving curation
and annotation of GEO metadata

Multiple approaches have been developed for improving the
curating of the metadata associated with publicly available
studies served on the GEO repository. These methods can be
broadly categorized into (1) manual curation, (2) automated
natural language processing (NLP), and (3) inferring metadata
directly from the gene expression profiles. In the subsequent
sections, we describe recent activities within these three cate-
gories (Fig. 2).

Manual curation

Although not perfect, manual curation efforts applied to anno-
tate GEO studies yield high-quality results. However, manual

curation does not scale up to cover the tens of thousands of
studies that are currently available from GEO. Since GEO, and
repositories like it, are expected to drastically grow in the com-
ing years, manual curation is in general not feasible.
Crowdsourcing microtasks are projects that consist of a relative-
ly trivial task that requires a large number of participants to
complete (Good and Su 2013; Khare et al. 2015). Such an ap-
proach is one way to scale up manual metadata curation of GEO
datasets. Through a massive open online course (MOOC) on
Coursera, we worked together with over 70 participants from
over 25 countries to identify and annotate 2460 single-gene
perturbation signatures, 839 disease signatures, and 906 drug
perturbation signatures from GEO (Wang et al. 2016). The col-
lections of these signatures are served as a web portal called
CRowd Extracted Expression of Differential Signatures
(CREEDS). CREEDS provides the annotated signatures for
query, download, and visualization. A few other similar projects
were launched to curate GEO datasets using microtask
crowdsourcing strategies. One such project is STARGEO, a
website that facilitates the curation of GEO samples with disease
phenotypes. The STARGEO project is a manual crowdsourcing
curation effort that recruited graduate students to annotate sam-
ples with disease phenotypes (Hadley et al. 2017). Another sim-
ilar effort called OMics Compendia Commons (OMiCC) (Shah
et al. 2016) is a community-oriented framework that enables
biomedical researchers to collaboratively annotate gene expres-
sion datasets and samples. OMiCC is also equipped with a web
interface that lets users perform meta-analyses including differ-
ential expression analysis.

The manually curated GEO datasets facilitated the reanal-
ysis of multiple related datasets to reveal novel biological
insights. For instance, by clustering the curated signatures
from genetic perturbation and diseases, we found multiple
myelodysplastic syndrome (MDS) signatures from CD34+
cells that cluster with ERBB2 overexpression signatures from
MCF10A cells. Such co-clustering suggests that the upregu-
lation of ERBB2 and related pathways may play a role in MDS
(Wang et al. 2016). Another example is the meta-analysis of
inflammatory bowel disease (IBD) signatures across multiple
independent studies, curated by the OMiCC platform. This
analysis discovered that several peroxisome proliferator-
activated receptors (PPARs) are lowly expressed in Crohn’s
disease (Shah et al. 2016).

While manual curation through crowdsourcing produces,
in general, high-quality annotations, this approach has other
drawbacks besides lack of scalability. Curators make mistakes
and produce inconsistent annotations in borderline cases
(Good and Su 2013; Khare et al. 2015). While this can be
resolved through a double-blinded review process, having
multiple curators annotate the same datasets increases the bur-
den on the curation task many folds. For the CREEDS project,
we had to spot check all entries and remove contributors that
produced annotations with high error rates. Another approach
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Metadata

Series GSE12609

Status

Title

Organism
Experiment type
Summary

Study
level

Query DataSets for GSE12609
Public on Aug 30, 2008
Transcription factor Arx null brains (fulp-affy-mouse-364520)
Mus musculus
Expression profiling by array
Arx is a paired-box homeodomain transcription factor and the vertebrate
ortholog to the Drosophila aristaless (al) gene. Mutations in Arx are associated
with a variety of human diseases, including X-linked infantile spasm syndrome
(OMIM: 308350), X-linked myoclonic epilepsy with mental retardation and
spasticity (OMIM: 300432), X-linked lissencephaly with ambiguous genitalia
(OMIM: 300215), X-linked mental retardation 54 (OMIM: 300419), and
agenesis of the corpus callosum with abnormal genitalia (OMIM: 300004). Arx-
deficient mice exhibit a complex, pleiotrophic phenotype, including decreased
proliferation of neuroepithelial cells of the cortex, dysgenesis of the thalamus
and olfactory bulbs, and abnormal nonradial migration of GABAerglc

Curated Metadata

Study type: genetic perturbation
Biological conditions: 2

-

Manual curation

interneurons. It has been suggested that deficits in interneuron
migration, or function lead to loss of inhibitory neurotransmlsslon wh:ch then

fails to control excitatory actwlty and Ieads to epilepsy or s . Given
that Arx i are |n which
epilepsy and spasticity predominate and that Arx-deficient mice exhibit deficits
in interneuron migration, understanding the function of Arx in interneuron
migration will prove crucial to understanding the pathology underlying

>

Sample: GSM315885
Tissue: superior cervical

Automated NLP

remain unidentified.

GSM315884
GSM315885
GSM315886
GSM315887
GSM315888
GSM315889
GSM315890
GSM315891

brain, lateral and medial ganglionic eminences:
brain, lateral and medial ganglionic eminences:

L Sample

brain, lateral and medial ganglionic eminences:
level

brain, lateral and medial ganglionic eminences:
brain, lateral and medial ganglionic eminences:
brain, lateral and medial ganglionic eminences:
brain, lateral and medial ganglionic eminences:
brain, lateral and medial ganglionic eminences:

All genes measured

interneuronopathies. Yet, downstream transcriptional targets of Arx, to date,

Arx+/Y #3_lel
Arx-/Y#1_lel

Arx+/Y #4_lel
Arx-/Y #3_lel
Arx+/Y #1_lel
Arx-/Y #4_lel
Arx-/Y #2_lel
Arx+/Y #2_lel

ganglion (BTO:0001325)
Gene: Arx (MGI:1097716)
Genetic perturbation type:
Knockout

Gene
Expression
Data

[ \
|

1] | L
OELE A DM LT

T

LT

Fig. 2 Graphical summary of various curation approaches for further
annotating GEO datasets. Metadata and the gene expression data from
an example GEO study are shown on the left. Metadata are composed
of semi-structured textual annotations supplied by the authors of the
dataset at both study-level and sample-level to describe the experi-
mental design of the study, and the characteristics of the samples.
The goal of further annotating GEO datasets is to generate structured

to deal with errors made by manual curators is benchmarking.
For instance, to validate the quality of the extracted signatures
from STARGEO (Hadley et al. 2017), the authors showed that
the DEGs from the meta-analysis of curated breast cancer
datasets are comparable to signatures automatically generated
from The Cancer Genome Atlas (TCGA) resource (The
Cancer Genome Atlas Research N et al. 2013). Overall, man-
ual curation efforts produce valuable resources to enable the
systems pharmacology community.

Automated natural language processing

Applying natural language processing (NLP) techniques
such as named-entity recognition (NER) and document
classification to the textual descriptions of GEO studies
is an attractive alternative for curating GEO metadata
manually. NLP has been intensively applied to extract
structured elements from the free-text of biomedical re-
search publications over the past two decades (Huang
and Lu 2016). Within this domain, NER is central. The
goal of NER is to identify biological entities of interest,
including genes, chemical/small-molecule/drug, disease,
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metadata for each study (top right) and samples (bottom right).
Annotations are linked to relevant controlled vocabularies such as
ontologies. Three approaches are visualized as arrows: manual
curation and automated NLP, both attempt to identify and extract
structured metadata from the textual descriptions. In addition, meta-
data can be inferred from the gene expression data using supervised
machine learning approaches

cell type, and tissue terms from free-text. Once key terms
are identified, document classification models can be
trained, using, for example, manually curated samples, to
identify perturbation and control samples from GEO using
labeled features from text identified by NER. Similarly,
such document classification models can be trained to pre-
dict the themes of the datasets, including the specific drug
treatment, disease model, or the genetic perturbation from
the provided descriptions. We used the collection of the
manually annotated CREEDS signatures metadata as a
training set to train a document classifier for extracting
the themes of the datasets from the entire GEO repository
(Wang et al. 2016). Subsequent studies further improved
NLP-based pipelines by enabling manual adjustments to
the automatically curated gene expression datasets. For
instance, GEOracle implements a machine learning (ML)
classifier that identifies perturbation and control samples
from GEO using textual features. It automatically tags
samples as perturbation and controls to construct signa-
tures. Importantly, it provides users with the ability to
manually adjust the automated selection through a web
interface (Djordjevic et al. 2017). Other related work
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attempted to improve the general quality of the metadata
associated with each sample and each GEO study. The
leading effort is MetaSRA (Bernstein et al. 2017), a re-
source that normalized and improved the metadata from
SRA. To achieve this, manual annotation of metadata ap-
plied to a small subset of SRA was carried out using
ontologies for creating a training set. Then, by applying
a computational model that implements a data structure
called a Text Reasoning Graph, metadata labeling was
automatically assigned to the remaining samples.

Inferring metadata from gene expression profiles

In addition to enriching and normalizing textual descriptions
manually or automatically by examining the existing metada-
ta, one can also leverage the information from the gene ex-
pression data itself to infer the metadata for curation. Given
high-quality annotated gene expression profiles as a training
set, ML models can be implemented to automatically identify
the metadata from the gene expression profiles. For instance,
various algorithms, including URSA (Lee et al. 2013),
CIBERSORT (Newman et al. 2015), and xCell (Aran et al.
2017), were developed to predict cell types using gene expres-
sion data. Predicted cell types from such algorithms can be
integrated with NER methods to corroborate the cell type
terms recognized by NER to improve the accuracy of cell-
type prediction algorithms directly from data. In the same
way, other metadata elements can be predicted directly from
the expression data. For example, the automated label extrac-
tion (ALE) (Giles et al. 2017) platform was used to impute the
age, gender, and tissue type of samples from GEO using the
expression data alone. Similarly to ALE, phenotype prediction
of processed RNA-seq samples (Ellis et al. 2018) was imple-
mented with ML methods trained using annotated samples
from TCGA (The Cancer Genome Atlas Research N et al.
2013) and GTEx (Lonsdale et al. 2013). Another effort that
utilized the Center for Expanded Data Annotation and
Retrieval (CEDAR) framework (Panahiazar et al. 2017) tested
the ability of a classifier to predict few basic common struc-
tured metadata elements such as cell type, organism, and plat-
form from GEO samples.

Future perspectives

Further improving the curation of GEO datasets
with deep and active learning

Current efforts in curating and annotating GEO datasets have
exploited the information from both the textual descriptions
and the gene expression profiles with manual crowdsourcing
and automatic ML/NLP approaches. However, there is still
room for further improving both the accuracy and the

throughput of such curation tasks. Recent breakthroughs in
NER were introduced by the application of deep learning
(DL) for this task (Lample et al. 2016; Chiu and Nichols
2015). Due to the significant improved performance, such
methods are currently considered the state-of-the-art. Deep
neural network implementations of NER typically start with
a word embedding layer that maps word tokens to low dimen-
sional vectors that represent the meaning of the words learned
from a large corpus using algorithms such as word2vec
(Mikolov et al. 2013) and GloVe (Pennington et al. 2014).
These word vectors are next connected to various long short-
term memory (LSTM) or convolutional neural network (CNN)
layers. Then, predictions can be made for each word token,
suggesting whether the token is a start, a middle, or an end of
a valid named-entity, or is an irrelevant token. The aforemen-
tioned state-of-the-art DL-based NER approaches have not
been widely applied to biomedical data curation projects yet,
perhaps with one exception (Habibi et al. 2017). In a recent
study (Habibi et al. 2017), it was demonstrated that a deep
neural network (DNN) model, specifically LSTM-
Conditional Random Field (CRF) (Lample et al. 2016), out-
performs domain-specific models with hand-crafted features in
five biomedical NER tasks on 33 datasets. It would be prom-
ising to adopt the state-of-the-art deep NER algorithms, and
train them on large biomedical corpora such as full-text articles
from PubMed Central (PMC) to improve the accuracy of the
mapped biological entities.

Another future direction to boost the quality and efficiency
of the data curation task of GEO datasets is to develop a
hybrid approach of manual and automated curation with ac-
tive learning (AL). AL is a meta-algorithm for ML that learns
to intelligently select examples (data points) for the underlying
supervised ML algorithm to train and generalize more effi-
ciently (Cohn et al. 1994). AL is particularly suitable for sit-
uations when unlabeled data is abundant and manual labeling
is too expensive and time-consuming. AL algorithms attempt
to overcome the lack of labeled data by asking human curators
to aid with the labeling. The method strategically selects a
subset of the data that needs labeling to maximally improve
the model performance with minimal labeling requirement.
This allows the ML algorithm to improve dynamically while
reducing the effort necessary of the human curator
(Krishnakumar 2007; Settles 2010). AL methods have been
shown to achieve improved performance in similar
crowdsourcing settings (Mozafari et al. 2014).

GEO dataset submission system with improved
metadata standardization and validation

To prospectively improve the annotation quality of future
datasets that will be deposited into GEO in the coming years,
it would be a benefit to create a data and metadata submission
system implemented with metadata standardization and
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validation capabilities. It is feasible to implement web-based
submission forms with metadata fields using various mini-
mum information standards (Taylor et al. 2008) such as
Minimum Information About a Microarray Experiment
(MIAME) (Brazma et al. 2001). These fields can validate user
input using external ontologies to ensure the accuracy of the
deposited metadata. For instance, small molecule compounds
used in a specific study can be validated by their chemical
structure representation through UniChem (Chambers et al.
2013). Such mappings would enable cross-referencing to ma-
jor public chemical databases to enrich the annotations by
providing additional annotations, such as mechanism of ac-
tions, targets, disease associations, clinical phase status, and
synonyms. It has been shown that such data submission sys-
tems, with deep metadata annotations that utilize established
terminologies and ontologies, contribute to interoperability
and reusability of the data (Stathias et al. 2018).

Toward making GEO datasets more FAIR

Recently, the findable, accessible, interoperable and repro-
ducible (FAIR) guiding principles have been proposed to
improve the groundwork needed to support the reuse of
scientific data (Wilkinson et al. 2016). The ultimate goal
of curating publicly available gene expression datasets is to
make repositories such as GEO more FAIR. With the im-
proved metadata annotations, GEO datasets will be more
findable by both humans and machines through FAIR-
compliant search engines such as the recently developed
DataMed (Ohno-Machado et al. 2017; Chen et al. 2018)
and Google DataSet Search (https://toolbox.google.com/
datasetsearch). These search engines are powered by
machine readable metadata that is hosted on dataset
landing pages by the data repository using standards such
as schema.org (Guha et al. 2016). Advances in web technol-
ogies also enable better interoperability between application
programming interfaces (APIs). For instance, the BioThings
APIs (Xin et al. 2018) can be cross-linked via JavaScript
Object Notation for Linked Data (JSON-LD), a data format
encoding semantically precise Linked Data, to enable auto-
mated knowledge extraction pipelines without having to
specify the individual API endpoints and the returned data
structures. The use of such technologies for building web
services enables better interoperability, and can benefit the
integration of GEO datasets with other resources and tools.
For example, a researcher will be able to perform a drug-
repurposing pipeline by simply specifying a disease of inter-
est, to receive a ranked list of drugs as potential therapeutics
through these web-services APIs. This pipeline will start by
finding disease-related gene expression signatures, and then
identify consensus DEGs through the API serving the anno-
tated GEO datasets, which can then be applied as input for
another API that serves drug repurposing queries such as

@ Springer

those provided by the applications L1000CDS? (Duan
et al. 2016), L1000FWD (Wang et al. 2018a), or clue.io
(Subramanian et al. 2017) to retrieve a ranked list of drugs
and compounds predicted to reverse the disease signature.

While the curation of metadata and the unified metadata
models are important, optimal and uniform data processing
pipelines, such as Recount2 (Collado-Torres et al. 2017),
ARCHS4 (Lachmann et al. 2018), RNAseqDB (Wang
et al. 2018b), and Toil Recompute (Vivian et al. 2017) are
also vital for the reusability of the processed gene expression
datasets. It is necessary to develop benchmarking strategies
for processed datasets from different experimental and com-
putational pipelines. For example, by comparing the consis-
tency between transcription factor knockout and knockdown
experiments with ChIP-seq studies that profiled the same
transcription factors, we can evaluate the quality of RNA-
seq alignment algorithms (Lachmann et al. 2018), calibrate
the calling of genes from peaks for ChIP-seq studies, or
benchmark methods for differential expression analysis
(Clark et al. 2014).

Public gene expression data repositories such as GEO
harbor enormous capacity for knowledge discovery.
Outstanding progress has been achieved in developing meth-
odologies and tools to facilitate the improved curation and
reuse of those datasets in the past few years. However, there
is still opportunity to develop better approaches to further
advance the quality of GEO’s metadata and data. With the
FAIR guiding principles, the resultant improved curated
public gene expression datasets will be integrated into an
ecosystem of biomedical datasets and knowledge-bases for
advancing biological discovery and for accelerating thera-
peutics development.
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