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Abstract
Identification of new drug and cell therapy targets for disease treatment will be facilitated by a detailed molecular understanding
of normal and disease development. Human pluripotent stem cells can provide a large in vitro source of human cell types and, in a
growing number of instances, also three-dimensional multicellular tissues called organoids. The application of stem cell tech-
nology to discovery and development of new therapies will be aided by detailed molecular characterisation of cell identity, cell
signalling pathways and target gene networks. Big data or ‘omics’ techniques—particularly transcriptomics and proteomics—
facilitate cell and tissue characterisation using thousands to tens-of-thousands of genes or proteins. These gene and protein
profiles are analysed using existing and/or emergent bioinformatics methods, including a growing number of methods that
compare sample profiles against compendia of reference samples. This review assesses how compendium-based analyses can
aid the application of stem cell technology for new therapy development. This includes via robust definition of differentiated stem
cell identity, as well as elucidation of complex signalling pathways and target gene networks involved in normal and diseased
states.
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Introduction

All somatic cells in a multicellular organism such as humans
contain the same DNA. However, each normal distinct cell
type within the organism only expresses a subset of the avail-
able genome required for proper functioning of that particular
cell type (Ralston and Shaw 2008). Expression of particular
sets of target genes (TGs) is regulated by a range of transcrip-
tional regulators (TRs) including transcription factors and his-
tone modifiers (Hoopes 2008; Ralston and Shaw 2008).
Disease states typically involve acquisition of abnormal cellu-
lar transcriptional profiles that, in turn, alter cell phenotypes
and function, for instance, during tumorigenesis.

Maturation of cellular phenotype and function occurs
through the interplay between environmental cues—sensed,
for example, via growth factor receptors—and transcriptional
changes that take place within the cell (Hoopes 2008; Ralston
and Shaw 2008). For most cell type/external cue combina-
tions, little molecular detail is known either of the molecular
events that lead to transcriptional changes or the breadth of
TGs changes that occur. Greater detail of these processes is
recognised as a key frontier for the development of new ther-
apies for a broad range of diseases (Berg 2016). Thus, there is
a compelling need to identify TG sets that are regulated by
particular signalling pathways and environmental factors, in
order to better characterise the development and maintenance
of cellular phenotypes, behaviours and biological processes.
This information will also greatly facilitate improved under-
stand of how these events become dysregulated in ageing and
disease.

Stem cells enable molecular characterisation
of human biology

Historically, the inability to access large amounts of normal
and diseased human tissue—particularly during the early
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stages of disease initiation—significantly impeded efforts to
define cell identity at a molecular level. The scarcity of human
tissues has also hindered efforts to define how environmental
cues alter cell biology and disease progression.

Significant genomic and functional similarities exist be-
tween human cells and tissues compared to those of other
species. Consequently, many different animal models have
been developed to try and progress investigation of normal
and disease development.While valuable knowledge has been
gained through decades of animal studies, the ability for ani-
mal models to specifically predict treatment responses in hu-
man patients is questionable (Shanks et al. 2009). This has led
both academic researchers and the pharmaceutical industry to
investigate human stem cells as an alternative source of infor-
mation for both basic research and drug discovery (Cressey
2012; O'Connor 2013).

Human pluripotent stem (PS) cells offer a unique opportu-
nity to rapidly progress our understanding of how environ-
mental cues modulate signalling cascades and TG sets. This
is due to key properties of human PS cells (O'Connor 2013;
O'Connor et al. 2011a; Ungrin et al. 2007), including the abil-
ity to:

1) Self-renew (i.e., proliferate while retaining developmental
potential), thereby enabling production of extremely large
numbers of human cells in vitro

2) Differentiate into essentially any desired human cell type
for research and clinical applications

3) Enable simple and highly targeted gene modification
through technologies such as Crispr/Cas9

4) Obtain both normal and disease-specific human PS cells,
either from donated IVF embryos (i.e., embryonic stem
cells, or ES cells), by cell reprogramming (i.e., induced
pluripotent stem cells) or by genome modification of
these PS cell types

5) Directly model human biology without confounding
species-specific differences that can arise through studies
of animal models

As a result of these properties, use of human PS cell tech-
nology has become widespread. For example, in 2010 GE
Healthcare announced the commercial availability of human
ES cell-derived cardiomyocytes. These PS cell-derived cells
provided a readily available and biologically relevant alterna-
tive to animal models and primary cells for cardiac drug dis-
covery and toxicity testing.

Realising the full academic, industrial and clinical
potential of human PS cells will require application of
big data or ‘omics’ techniques to overcome major chal-
lenges that face the field. These challenges include (i)
improving culture manipulations for optimal PS cell
maintenance and directed differentiation, (ii) develop-
ment of efficient cell purification strategies, and (iii)

establishment of robust characterisation assays for dif-
ferentiated cell types.

Overcoming these challenges will require defining the sim-
ilarities between differentiated cell types and desired primary
cell types. This will include assessment of the developmental
maturity of differentiated cells as relates to their phenotypes
and functions, as well as the molecular events required to
achieve and maintain cell phenotypes and functions. Doing
so will provide both minimal characterisation criteria for re-
producible production of desired differentiated cell types, and
also a molecular framework for disease investigation and drug
target discovery.

Molecular profiling using big data

Transcriptional changes that result from environmental cues
occur via activation and/or repression of specific TG sets.
Historically, investigations of signalling pathways and related
TGs developed from the discovery of recombinant DNA tech-
nology (Cohen et al. 1973) and the ability to genetically mod-
ify mice and other organisms. Initial characterisation technol-
ogies for these studies included PCR, histology and electron
microscopy. While these initial approaches yielded useful in-
formation, limited molecular detail of affected signalling path-
ways or TG sets was obtained.

The development of big data techniques for transcriptomics
(from spotted arrays and microarrays to RNA-sequencing,
also known as RNA-seq) (Bumgarner 2013) and proteomics
(particularly mass spectrometry) (Han et al. 2008) enabled
much higher resolution characterisation of the molecular
changes that link environmental sensing, signal transduction
and affected TG sets. Additionally, traditional immunoprecip-
itation techniques—that provide evidence of protein interac-
tions through antibody-based protein capture—have been
coupled with both microarray analysis and DNA sequencing.
For example, chromatin immunoprecipitation (ChIP) tech-
niques (termed ChIP-chip and ChIP-seq, respectively) enable
interactions between proteins and DNA to be defined with
high resolution of the chromosomal location (Furey 2012;
Mardis 2007). Both ChIP-chip and ChiP-seq assays have been
widely used with cell lines and animal tissue to determine the
chromosomal location of post-translationally modified his-
tones, histone variants, transcription factors and chromatin
modifying enzymes (Bailey et al. 2013; Collas 2010).

Computational approaches have also been developed to
investigate TG regulation by TRs. This has largely been driv-
en by the capacity for genome-wide assessment of DNA-
binding motifs within gene promoters, as a consequence of
sequencing the human genome. Algorithms such as PASTAA
(Roider et al. 2009), Homer (Heinz et al. 2010), GeoSTAN
(Zacher et al. 2017), iRegulon (Janky et al. 2014) and
compendium-based approaches (Banks et al. 2016) are
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examples of software that use different approaches to predict
TG regulation by transcription factors. As these methods are
evolved, the accuracy of TG predictions increases.
Combinations of sequencing and computational-based ap-
proaches have also been developed for identification of TG
regulation by TRs. For example, cap analysis of gene expres-
sion (CAGE) data generated through the Fantom5 consortium
has provided sequencing data from the 5′ region of mRNA
transcripts (as opposed to traditional 3′ sequencing ap-
proaches) for 975 human and 399 mouse cell samples
(Andersson et al. 2014; Consortium et al. 2014).
Computational analysis of this data has been used to predict
TRs responsible for regulation of large sets of TGs across
many cell types (Marbach et al. 2016).

Current big data analysis tools

The above technical and technological advances mean it is
now possible to accurately and simultaneously measure the
expression levels of essentially all genes for species that have
had their genomes sequenced. It is also possible to begin in-
terrogating the TRs involved in generating gene expression
profiles, through ChIP-seq and or computational analyses.
Alternatively, mass spectrometry enables simultaneous mea-
surement of the levels of many thousands of proteins.

Avariety of open source and proprietary software has been
developed to analyse whole transcriptome expression data.
For example, Gene Pattern (Broad Institute) (Reich et al.
2006) and GeneSpring (Agilent) for microarray data; limma
for both microarray and RNA-seq gene expression data
(Ritchie et al. 2015); and EdgeR (Robinson et al. 2010) for
RNA-seq data. These different softwares enable identification
of differentially expressed genes related to developmental
and/or disease states. However, it should be noted that
sequencing-based approaches, such as RNA-seq, tend to be
better suited for identification of expressed vs. non-expressed
genes, as opposed to identification of only differentially
expressed genes. This is due to the digital nature of transcript
detection by sequencing techniques, compared to the analogue
nature of microarray based techniques (that typically rely on
fluorescent-based methods for transcript detection, thereby
making determination of absolute expression cut-off thresh-
olds challenging).

Transcriptome analysis software can generate lists of
expressed and/or differentially expressed genes from ei-
ther new whole transcriptome data or reanalysis of pub-
lished studies. These gene lists then provide insights into
the signalling pathways and TGs involved in development
or function of normal tissue, as well as pathways and TGs
altered by disease states. A commonly used approach to
investigate differentially expressed gene lists is identifica-
tion of gene groupings via gene ontology (GO) analysis.

Various GO analysis software are available including the
DAVID Gene Ontology Functional Annotation Clustering
tool (Huang et al. 2009a, b), Enricher (Kuleshov et al.
2016), GO-Bayes (Zhang et al. 2010), Babelomics
(Medina et al. 2010), etc. Alternatively, assessment of
expressed growth factor signalling pathway members can
be performed by comparison of gene lists against the
Kyoto Encyclopaedia of Genes and Genomes (KEGG)
pathway database (Kanehisa and Goto 2000).

Characterising pluripotency mechanisms
using big data

Transcriptional, translational and ChIP profiling studies
have been performed using cell lines and primary cells/
tissue, and more recently using stem cells and their dif-
ferentiated derivatives. For example, landmark studies
have highlighted genes that are highly expressed across
multiple human PS cell lines, thus identifying core tran-
scriptional machinery consisting of the transcription fac-
tors OCT4/POU5F1, NANOG and SOX2 (Boyer et al.
2005; Cloonan et al. 2008; Hirst et al. 2007). These
studies have also identified some TGs of these key
pluripotency TRs. Additional studies have identified oth-
er human PS cell regulators including FOXD3, SALL4,
Polycomb-group proteins, etc. (Lee et al. 2006; O'Connor
et al. 2011b; Respuela et al. 2016).

Through comparison with mouse ES cell transcription-
al data, these human studies provided a molecular frame-
work for understanding the different culture requirements
for PS cells obtained from different species. For instance,
while mouse and human ES cells are both obtained from
fertilised embryos, maintenance of mouse ES cells is
LIF-dependent and FGF-independent. Conversely, human
ES cells are LIF-independent and FGF-dependent.
Transcriptional profiling studies have helped provide an
explanation for these observations. The initially isolated
mouse ES cell state is now recognised as a developmen-
tally earlier state termed the ‘naïve’ pluripotency state. In
contrast, the initially isolated human ES cell state is now
termed the ‘primed’ pluripotency state that is analogous
to pluripotent cells that can be isolated from the mouse
epiblast. Naïve human ES cells can be transitioned be-
tween the naïve and primed pluripotency states (Chen
et al. 2015; Duggal et al. 2015; Warrier et al. 2017),
raising the possibility of obtaining naïve human ES cells
directly from blastocysts (Van der Jeught et al. 2015). As
naïve PS cells may enable better control of differentiated
cell production, the transcriptomics studies described here
provide evidence that big data might facilitate improve-
ment and application of stem cell technology.
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Big data repositories for defining cell identity

A major challenge for the stem cell field is the reliable pro-
duction and characterisation of desired differentiated cell
types. Cell-type identification via a whole transcriptome gene
expression profile can provide a relatively rapid, broad and
reasonably cost-effective approach. Accurate cell-type identi-
fication is needed to enable better manipulation of differenti-
ated cells in culture (e.g., by identifying growth factor require-
ments), and also to provide a framework for understanding the
molecular events that occur in a disease state.

Transcriptional and/or translational analyses typically in-
volve characterisation of a control sample with or without
comparison to treated sample(s) generated through chemical
or genomic perturbations. Time-course components are also
often included. The vast number of transcriptional and trans-
lational studies performed over the past 15 years has led to the
establishment of large data repositories to facilitate public ac-
cess to gene and protein expression data. Examples of public
repositories for gene expression data include the Gene
Expression Omnibus (GEO) that accepts data from any spe-
cies (Barrett et al. 2013); human and mouse data available via
the ENCODE consortium (Consortium TEP 2012;
Consortium TME 2012); and human data available via
GTEx (Consortium GT 2013). Protein data repositories in-
clude UniProt (Consortium TU 2007) and STRING (von
Mering et al. 2003). These public gene and protein expression
data repositories can provide compendia for more
comprehensive/more robust cell-type identification for differ-
entiated PS cell progeny.

Compendium-based methods for defining
cell identity

Discovery of new biology by comparison of a test gene ex-
pression profile against a larger collection (i.e., compendium)
of expression profiles has been used for almost two decades
(Fig. 1a). However, compendium-based analyses have not yet
been widely used by the stem cell field, despite the opportu-
nity for robust cell type identification through compendia
(Fig. 1a–c).

Two general approaches have been used for compendium-
based cell-type identification: those that use a somewhat lim-
ited gene set as the query and those that use a larger expression
profile as the query (DeFreitas et al. 2016). Compendium-
based approaches can also be further divided into those that
enable within-species comparisons and (less frequent) those
that enable cross-species comparisons. For example, SPELL
enables within-species identification (only for yeast) from a
limited gene set against large gene expression microarray
compendia (Hibbs et al. 2007). Alternatively, GEMINI uses
a large transcriptome profile to query for similar profiles but

only within BThe Cancer Genome Atlas^ database (DeFreitas
et al. 2016). GEMINI uses a principal component analysis to
reduce the dimensionality of the query transcriptome, and then
uses a distance function to search for the closest match within
the compendium. It does not support cross-species
comparisons.

A small number of compendium-based approaches that
enable cross-species cell-type identification have recently
been described. For example, the web server ProfileChaser
mines only the curated GEO datasets for gene expression pro-
files that differentially regulate the same transcriptional pro-
grams as the query profiles (Engreitz et al. 2011). Another
web server that matches query gene sets (to a maximum of
100 differentially expressed genes) by searching the GEO

Fig. 1 Increases in the number of published articles making use of
compendium-based analyses (as identified via PubMed searches). a The
number of articles using compendium-based analyses for both non-stem
cell types (white bars) and stem cell types (black bars). bAn indication of
the number of publications using particular compendium-based applica-
tions for analysis of non-stem cell types. c Publications using particular
compendium-based applications for analysis of stem cell types
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database is ExpressionBlast. Required inputs are the limited
query gene list together with their expression comparison
values, a species type, a desired output species type and a
distance metric (Euclidean/correlation/anti-correlatin/anti-
Euclidean). The algorithm then uses text analysis methods to
perform similarity matching of the query gene set against
GEO datasets. ExpressionBlast then outputs the relevant
GEO datasets that similarly express the same genes as the
query gene list (Zinman et al. 2013). The web server Cell
Montage permits searching for similar gene expression pro-
files compared to a query gene profile (Fujibuchi et al. 2007).
The method is platform specific (i.e., specific to similar mi-
croarray platforms) and also only allows users to query against
GEO datasets that contain raw expression values.

Compendium-based analyses for stem cell
research

A small number of groups have started utilising the
compendium-based approach for stem cell research
(Fig. 1c). For example, Germanguz et al. used a
compendium-based approach consisting of 17 cell state-
specific gene expression data (including PS cells) to identify
genes that uniquely define cell states and developmental
stages. They also identified core genes (including transcrip-
tion factors) that can drive and maintain the cell states
(Germanguz et al. 2016). StemCellNet is a web server for
interactive network analysis and visualisation in the context
of stem cell biology (Pinto et al. 2014). HAEMCODE is a
repository of transcription factor binding maps for mouse
blood cells generated by ChIP-seq (Ruau et al. 2013). Asp
et al. generated a dataset of genome-wide locations for ten
key histone marks and transcription factors. By using mouse
myoblasts and terminally differentiated myotubes, they were
able to discover key epigenetic changes underlying
myogenesis (Asp et al. 2011). Hannah et al. described a
ChIP-Seq compendium to discover transcriptional mecha-
nisms operating in the haematopoietic system (Hannah et al.
2011). Sharov et al. identified a reliable set of direct TGs for
Pou5f1, Sox2 and Nanog by utilising a compendium of pub-
lished and new microarray data (Sharov et al. 2008). Hackney
and Moore built a compendium of information and data de-
rived from biological and molecular studies relating to
haematopoietic stem cell regulation (Hackney and Moore
2005).

The above compendium-based stem cell studies tended to
either compare multiple cell types or identify a specific cell
type. These approaches are not optimised for identification of
an unknown cell type. In comparison, a new open source R
package developed by our group, termed C3, allows cross-
species identification of any cell type. C3 uses a large
transcriptomic profile rather than a limited gene list, and is

compatible with a wide variety of input compendia (Kabir
et al. 2018a). The cross-species comparison enabled by C3
makes use of a recently developed cross-species gene set anal-
ysis method called XGSA (Djordjevic et al. 2016). C3 can
identify unknown cell types for a wide variety of species by
comparing gene expression profiles with a large compendium
of public human and mouse gene expression datasets. This
approach is suitable for identification of poorly characterised
cell types obtained from stem cell differentiation strategies
(Murphy et al. 2018). In this way, C3 fits well into the pipeline
of cell analyses needed by the stem cell field (Fig. 2).

In addition to identification and characterisation of differ-
entiated stem cell progeny, transcriptional profiles are also
being used to guide stem cell differentiation strategies. For
example, a recently published algorithm called MOGRIFY
uses gene expression data to predict TRs responsible for gen-
erating cell type-specific transcriptional profiles (and thus cell-
specific phenotypes and functions) (Rackham et al. 2016).
These cell type-specific combinations of TRs can then be used
to guide overexpression studies aimed at directly converting
(i.e., trans-differentiating) one cell type into another.

Investigating extracellular regulation of cell
behaviour

A second major challenge for the stem cell field, and disease
research in general, is to define how extracellular signalling
pathways regulate transcriptional events required for cell de-
velopment, environmental sensing and disease progression
(Berg 2016; Zhang and Mallick 2013). At the genome level,
gene transcription is often activated or repressed by the action
of transcription factors (also referred to as trans-regulatory
factors) that bind to promoter regions generally upstream
(i.e., 5′) of a gene’s transcription start site (termed cis-
regulatory elements). The specific DNA sequences within
the genome to which transcription factors bind are called
DNA-binding motifs and are often described via position
weight matrices (Babu et al. 2004; Boeva 2016; Spitz and
Furlong 2012).

Transcriptional and translational profiles represent molec-
ular snapshots that result from the combined action of an array
of transcriptional, post-transcriptional and translational regu-
lators, often under extracellular control via signalling path-
ways. Individual gene transcript abundance is largely deter-
mined by the net activity of the transcription factors bound to a
gene’s promoter (Beer and Tavazoie 2004; Chen and
Rajewsky 2007; Kim and O'Shea 2008)—though other regu-
lators of transcript abundance can also be involved such as
transcriptional regulators acting at more distance (e.g., en-
hancer) sites and post-transcriptional regulators (such as mi-
cro-RNA). Overall, the ability of any particular transcription
factor to activate or repress gene expression is dependent upon
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the interplay between the intracellular context and regulatory
cues received from the extracellular environment, for instance
via growth factor signalling pathways.

Signal transduction pathways and target
genes

As discussed above, a range of computational tools have been
developed to elucidate gene regulatory networks by defining
transcription factor/TG interactions (e.g., PASTAA, Homer,
GeoSTAN, iRegulon, etc.). Sequencing approaches that target
the 5′ end of mRNA transcripts, such CAGE, have also been
developed. Significant recent progress has been made by ap-
plying these approaches within large, international collabora-
tive efforts. For example, the Fantom5 consortium generated
CAGE data across 975 human and 399 mouse samples, in-
cluding primary cells, tissues and cancer cell lines (Andersson
et al. 2014; Consortium et al. 2014). From these data, TG sets
for transcription factors expressed by 394 human cell samples

have been defined via analysis of DNA-binding motifs within
gene promoters and enhancers (Marbach et al. 2016).

While the above approaches have provided a wealth of
information on transcription factor/TG interactions, there are
relatively few open source or proprietary algorithms that exist
for comprehensively linking signal pathways to TG sets. A
typical signal transduction pathway for transmitting extracel-
lular cues involves growth factors binding to specific cell sur-
face receptors, subsequent modulation of intracellular kinase
activities, and ultimately altered transcription factor activity
and consequent changes in TG expression (Wang et al.
2011). The coordinated activity of different signalling path-
ways within and between multiple cell types is the basis of
many important biological processes, such as development,
tissue repair and immunity (Zhao and Li 2017; Zhao et al.
2008). Activation of different signalling pathways can lead
to numerous physiological or cellular responses, such as cell
proliferation, differentiation, metabolism and death—key pro-
cesses relevant to stem cells and their progeny both in vitro
and in vivo.

Stem cells

Differentiation

Self renewal

Cell purification or 

organoid production

Improve stem cell maintenance 

via C-GRN-ID
Improve differentiation methods 

via C-GRN-ID

Characterise cell identity 

via C-Cell-ID

Define normal biology Define disease biology Cell transplantation 

to treat diseases

Define GF-based 

regulation of  GRNs 

via C-GRN-ID

Stimulate in vivo 

regulation / repair

Define effect of environmental cues 

(e.g., GFs and risk factors) on GRNs 

in disease via C-GRN-ID

Identify novel candidate drug 

targets for disease treatment

Legend

C-Cell-ID: compendium-based analyses for cell type identification

C-GRN-ID: compendium-based analyses for gene regulatory network identification

Characterise cell identity

via C-Cell-ID

Fig. 2 Schematic diagram
showing how compendium-based
analyses can be used to accelerate
application of stem cell
technology to identification and
testing of new drug and cell-based
therapies
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Bioinformatic determination of signal
pathways

Various resources have been created to assist in defining sig-
nalling pathways. The collection of manually drawn pathway
diagrams available via KEGG provides a starting point for
understanding particular receptor-mediated signalling path-
ways. However, their use can be limiting when attempting to
define cell type-specific signalling pathways. Conversely, the
STRING database contains millions of known protein-protein
interactions (PPIs); however, accessing cell type-specific sub-
sets of these interactions can be challenging.

Several bioinformatics methods have been described that
reconstruct known signalling pathways from PPI data, with or
without inclusion of gene expression data (Bebek and Yang
2007; Gil et al. 2017; Ritz et al. 2016; Wang et al. 2011).
CASCADE_SCAN uses a steepest descent method to build
a specific pathway from a list of protein molecules (Wang
et al. 2011). Pathlinker creates signal pathways by using input
receptors and transcriptional regulators to interrogate PPI da-
tabases (Gil et al. 2017; Ritz et al. 2016). PathFinder uses
characteristics of known signal pathways together with related
association rules to find pathways from a receptor to a tran-
scription factor in PPI networks (Bebek and Yang 2007).
Gitter et al. proposed a method to handle the orientation prob-
lem (i.e., orienting protein interaction edges using direction-
less PPI data) in weighted protein interaction graphs (Gitter
et al. 2011). Mei et al. proposed a multi-label, multi-instance
transfer learning method to simultaneously reconstruct 27 hu-
man signalling pathways (Mei and Zhu 2015). Scott et al.
proposed a method to reconstruct known signalling pathways
by applying a colour coding algorithm (Scott et al. 2006).
Tuncbag et al. formulated a forest approach (defined as a
disjointed union of trees) to simultaneously reconstruct multi-
ple pathways from biological networks that are altered in a
particular condition (Tuncbag et al. 2013). Other methods
identify known signalling pathways using gene expression
datasets to calculate edge weights for PPI data (Liu and
Zhao 2004; Steffen et al. 2002; Zhao and Li 2017; Zhao
et al. 2008).

Linking signal pathways and TG sets

All the above methods for signal pathway analysis generate
topological structures for known signalling pathways. One
potential limitation is that most of the methods were assessed
and applied only to yeast data, with few methods designed for
complex mammalian data. Recent work from our group has
demonstrated a novel approach—termed SPAGI (Signal
Pathway Analys is for Gene regula tory ne twork
Identification)—that systematically identifies biologically rel-
evant signalling pathways for mammalian cells (Kabir et al.

2018c). The SPAGI approach starts with a whole tran-
scriptome expression profile and uses it to construct a com-
prehensive catalogue of signalling pathways from PPI data.
Application of the SPAGI approach to mouse and human cell
RNA-seq data, including from differentiated progeny of hu-
man PS cells, identified known critical signalling pathways
relevant to the cell types used. Subsequent research using
human lens epithelial cell gene expression data has coupled
each of the SPAGI-generated receptor-defined paths to TG
sets obtained from the Fantom5 consortium data (Kabir et al.
2018b). The resulting lens epithelial cell gene expression
framework (or lens transcriptional blueprint) describes growth
factor-mediated control of transcriptional programs important
to lens epithelial cell biology. Initial validation studies have
shown that known gene regulatory interactions were identi-
fied, and predicted new transcriptional regulators were vali-
dated via Western blotting. This approach directly addresses a
major challenging in the stem cell and disease research fields,
namely, the need for large-scale generation of discrete and
testable molecular hypotheses that describe the influence of
environmental factors during tissue development and disease
progression (Fig. 2).

Defining disease mechanisms by integrating
signal pathways and disease genes

A key motivation driving the establishment of integrated sig-
nalling pathways and TG networks is the need to better define
disease processes to enable identification of novel drug targets
(Butcher et al. 2004; Davidson et al. 2002). Information relat-
ing to genes and gene variants involved in disease phenotypes
can be found within the Online Mendelian Inheritance in Man
(OMIM) database (Hamosh et al. 2005). Tissue-specific dis-
ease gene databases also exist for numerous tissues including
the kidney, heart, muscle, brain, lens, etc. By correlating the
abovementioned lens transcriptional blueprint with the Cat-
Map database of lens-related disease genes (Shiels et al.
2010), our group has been able to identify both known and
novel gene regulation events and map them to growth factor
signalling pathways (Kabir et al. 2018b). This approach can
also be applied to other cell types, including differentiated
stem cell derivatives, to define candidate drug targets—and
therefore candidate novel therapeutics—for human diseases
(as outlined in Fig. 2).

Conclusion

Stem cells provide an opportunity to examine normal and
disease human biology on a scale not possible with primary
cells and tissues. Realising these opportunities requires over-
coming specific challenges relating to determination of cell
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type identity, and definition of how environmental cues in-
cluding growth factor signalling pathways regulate gene tran-
scription involved in tissue development, repair/regeneration
and disease. Compendium-based analyses hold promise for
rapid and robust identification of first-reported differentiated
stem cell types, as well as batch-produced cells for industry or
cell therapy applications. Bioinformatic methods that generate
comprehensive and integrated combinations of signalling
pathways and gene regulatory networks are starting to provide
specific molecular disease hypotheses that can be investigated
using human PS cell-derived cell types. Thus compendium-
based big data approaches to stem cell research present signif-
icant opportunities for the development of novel cell and drug
therapies.
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