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Abstract
In-depth modeling of the complex interplay among multiple omics data measured from cancer cell lines or patient tumors is
providing new opportunities toward identification of tailored therapies for individual cancer patients. Supervised machine
learning algorithms are increasingly being applied to the omics profiles as they enable integrative analyses among the high-
dimensional data sets, as well as personalized predictions of therapy responses using multi-omics panels of response-predictive
biomarkers identified through feature selection and cross-validation. However, technical variability and frequent missingness in
input “big data” require the application of dedicated data preprocessing pipelines that often lead to some loss of information and
compressed view of the biological signal. We describe here the state-of-the-art machine learning methods for anti-cancer drug
responsemodeling and prediction and give our perspective on further opportunities to make better use of high-dimensional multi-
omics profiles along with knowledge about cancer pathways targeted by anti-cancer compounds when predicting their pheno-
typic responses.
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Introduction

Genome-wide genomic profiling approaches based on next-
generation sequencing (NGS) of thousands of patient tumors
have provided “big data” resources to map the disease mech-
anisms (The Cancer Genome Atlas, TCGA, http://
cancergenome.nih.gov/; International Cancer Genome
Consortium, ICGC, https://dcc.icgc.org; Weinstein et al.
2013; Cerami et al. 2012). When combined with clinical
information about patient characteristics and treatment

outcomes over the course of cancer progression and relapses,
such resources enable integrated approaches toward improving
both diagnostic and therapeutic options. Compared to
conventional clinical management, which treats cancers as
homogeneous entities, the “precision oncology” approach seeks
to find a molecularly-targeted treatment for each cancer patient
sub-type or individual patient (i.e., stratified or personalizedmed-
icine, respectively). Matching of available treatment to patients is
typically based on somatic aberrations, such as genomic muta-
tions or molecular alterations, provided that therapeutically ac-
tionable markers are found and can be used in the clinical prac-
tice (Meric-Bernstam et al. 2015). An important pre-requisite for
the precision oncology approach is therefore the ability to iden-
tify panels of biomarkers associated with the treatment responses
in a given patient cohort. If such markers generalize beyond the
discovery cohort to new cancer patients, we call them here as
“predictive biomarkers.”

Traditional analytical strategies for finding treatment
response-associated markers typically start from unsuper-
vised clustering of the molecular and/or genomic profiles
of the patient samples, and then subsequently try to iden-
tify the treatments showing therapeutic efficacy in the dis-
tinct sample sub-clusters (Hoadley et al. 2014; Campbell
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et al. 2017). The use of other clinical outcomes, such as
prognostic classes in thousands of patients, can also enable
the detection of statistically associated multi-gene interac-
tions in genomic-based studies, which can be restricted to
a single cancer type (Papaemmanuil et al. 2016).
Alternatively, one can start from the treatment response
clustering and then go into the genomic or molecular cor-
relates that explain the observed drug sensitivity or resis-
tance clusters of patient-derived samples (Pemovska et al.
2013; Tyner et al. 2013; Frismantas et al. 2017;
Andersson et al. 2018). However, studies that focus on
single cancer type and/or multiple treatment profiles are
often underpowered for multi-marker statistical regression
of drug response patterns. The paucity of available clinical
treatment information for the profiled patient tumors also
complicates the biomarker discovery task. Besides a few
notable cases of clinical success, single markers, regardless
whether they come from somatic mutations or other omics
data, are not generally accurate enough for explaining
treatment responses for most drug classes (Nguyen et al.
2016); instead, multivariate modeling in larger sample
sizes is required for identifying reliable marker panels
(Dietrich et al. 2018).

Supervised machine learning models offer the opportuni-
ty for multi-marker prediction of drug responses using multi-
omics and multi-task learning approaches that leverage in-
formation across both patient samples as well as across drug
similarities (Costello et al. 2014; Ammad-ud-din et al. 2016;
Cichonska et al. 2018). However, the accuracy of such ma-
chine learning models depends critically on the availability
of high-quality training data from large-enough sample sizes.
Therefore, most of the learning studies to date have been
done using large panels of cancer cell lines (Garnett et al.
2012; Barretina et al. 2012; Seashore-Ludlow et al. 2015;
Iorio et al. 2016), although there are also a few recent ex-
amples aiming at clinical treatment predictions in patient
samples (Sadanandam et al. 2013; Geeleher et al. 2014;
Majumder et al. 2015; Ding et al. 2016; Noren et al. 2016;
Yao et al. 2018; Turki et al. 2018). Rather than conducting a
systematic review of all the works published on this broad
topic (please see, e.g., Azuaje 2017), we describe below
application cases of supervised machine learning models to
drug response prediction in cancer cell lines and discuss to
which extend these models could be also applied in a clin-
ical setting to individualized treatment selection once large-
enough patient cohorts become available. We also critically
evaluate whether the current learning approaches benefit
from the use of “big-scale” omics data, which still mainly
originate from the NGS-based technologies, and provide our
perspective on the future directions required for supporting
clinical applicability, both in terms of improved modeling
frameworks and most informative omics measurements used
as input for these models.

Drug sensitivity prediction challenge

The selected machine learning models and omics measure-
ments are described and compared here in the context of the
DREAM Challenges, which provide systematic and objective
means to assess the predictive power of the models and mea-
surements by means of large-enough validation datasets that
are hidden to the Challenge participants, and therefore can be
used as independent test data. The Challenges organized by
the Dialogue for Reverse Engineering Assessment and
Methods (DREAM, http://dreamchallenges.org/) implement
a community-based crowdsourcing solution for complex
questions in biology and medicine, through collaborative
competitions and open-data sharing, hosted by the Sage
Bionetworks (http://sagebase.org/). The primary focus here
is on the NCI-DREAM7 Drug Sensitivity Prediction
Challenge (Costello et al. 2014), but we also extend to newer
machine learning models introduced after the Challenge, es-
pecially those that also implement feature selection techniques
to identify such combinations of genomic and other features
from the multi-omics profiles that are most predictive of the
drug response phenotypes. Such predictive panels of bio-
markers are critical for clinical translation.

The Challenge setup and winning model

The DREAM7 Challenge, organized together with the National
Cancer Institute (NCI), specifically targeted the development and
benchmarking of drug sensitivity prediction algorithms, as a
stepping stone toward precision oncology (Costello et al.
2014). We use here this NCI-DREAM Challenge, as well as a
number of follow-up studies conducted by us and others, to
demonstrate the lessons learned from the use ofmachine learning
models for drug response prediction, and especially the impor-
tance of high-dimensional omics profiles in such prediction prob-
lem. In NCI-DREAM7 Challenge, the training of the prediction
algorithms was based on genome-wide omics profiles of 53 hu-
man breast cancer cell lines. These omics profiles included large-
scale somatic DNA copy number variation (CNV), DNA meth-
ylation, and point mutations, along with transcript expression,
RNA-sequencing, and protein abundance profiled fromuntreated
cells (Table 1). The drug treatment sensitivity was measured
using pGI50 readout (–log10GI50, where GI50 refers to the drug
concentration required to inhibit 50% ofmaximal cell growth), in
response to 28 anti-cancer therapeutic compounds. The aim of
the NCI/DREAM7 Challenge was to predict the drug responses
(sensitivity or resistance) of the test cell lines to the same or
similar compounds using various statistical andmachine learning
models.

Over 65 teams participated in theChallenge and tested various
combinations of the 6 omics profiles, along with multiple ap-
proaches to deal with missing data inherent to the high-
throughput measurements (e.g., imputation methods), and/or

32 Biophys Rev (2019) 11:31–39

http://dreamchallenges.org
http://sagebase.org


incorporating a prior biological knowledge in the form of anno-
tated biological pathways from KEGG (Kanehisa and Goto
2000) or MSigDB (Liberzon et al. 2011). Interestingly, the pre-
dictive models using all the omics profiles had the best perfor-
mance among all model submissions, suggesting that the geno-
mic, epigenomic, and proteomic profiles provide complementary
signal for the drug response prediction. Subsequent analysis of
the 44 prediction algorithms highlighted the importance of
modeling nonlinear relationships, along with the use of a prior
biological knowledge of the breast cancer oncogenes and
disease-driving pathways.

The best-performing approach was based on the Bayesian
efficient multiple kernel learning (BEMKL) model (Gönen
2012), a kernelized regression model that makes use of
multi-task and multi-view learning (Costello et al. 2014). In
the winning BEMKL model, the pairwise similarities of cell
lines in terms of the multiple omics profiles are represented as
separate profile kernels. Multiple kernel learning (MKL) al-
gorithm (Gönen and Alpaydın 2011) then calculates a com-
bined kernel as the weighted sum of all profile-specific ker-
nels. Multi-task learning (MTL), on the other hand, allows
BEMKL to train the model simultaneously for all the drugs

Table 1 Details of the key omics datasets available from representative
cancer cell lines and patient genomic resources, along with the dataset
sizes and dimensionalities of the raw and processed profiles for the NGS-

based datatypes (rows in italics). For the other datatypes, only the
dimensionality of the processed data is reported for comparison

NCI-
DREAM71

NCI-602 GDSC10003 TCGA4/TCPA5

Cancer type Breast cancer 9 tissue types 29 tissue types 33 tissue types

Number of samples 53 cell lines 59 cell lines 1124 cell lines ~ 11,000 patient tumors

Total size of NGS datatypes (raw datasets) ~ 13 TB ~ 15 TB 260 TB ~ 2.5 PB

Whole genome sequencings (~ 3.2 billion
reads/sample)

~ 8 TB ~ 9 TB ~ 170 TB ~ 1.6 PB

Whole exome sequencings (150 million
reads/sample)

~ 4.5 TB ~ 5 TB ~ 90 TB ~ 0.8 PB

RNA sequencing (30–100 million reads/sample) ~ 55 GB ~ 60 GB ~ 1 TB ~ 11 TB

MicroRNA profiles – ~ 5 GB – ~ 500 GB

Total size (processed datasets) ~ 27 GB ~ 33 GB ~ 90 GB ~ 480 TB

Whole genome sequencing ~ 20,000 genes ~ 17,000 genes 19,100 genes ~ 21,000 genes

Whole exome sequencing ~ 22,000 genes ~ 13,000 genes ~ 23,000 genes ~ 20,000 genes

RNAsequencing ~ 40,000
transcripts

~ 60, 000 transcripts ~ 50, 000
transcripts

~ 55,000 transcripts

MicroRNA profiles – ~ 800 miRNA
transcripts

– ~ 1800 miRNA transcripts

Microarray gene expression ~ 18,000 genes 25,722 genes 17,737 genes ~ 22,000 genes

Somatic mutation calling ~ 33,000 SNPs6 ~ 500,000 SNPs ~ 485,000 SNPs ~ 500,000 SNPs

Copy number variation ~ 27,000 variants ~ 25,000 variants ~ 50,000 variants ~ 50,000 variants

DNA methylation patterns ~ 27,000 CpGs7 20,000 CpGs ~ 35,000 CpGs ~ 486,000 CpGs

RPPA8 proteomics 131 proteins 162 proteins – ~ 240 proteins

MS9 proteomics – 10,350 proteins – ~ 16,000 proteins10

Drug response data 28 compounds > 100,000 compounds 265 compounds Survival data for clinical
treatments

Boldface entries represent total sizes of raw and processed datasets. These are not statistical significance values
1NCI-DREAM7, DREAM7 Challenge (http://dreamchallenges.org/), organized together with the National Cancer Institute (NCI; Costello et al. 2014)
2NCI-60, The National Cancer Institute drug screening panel (Shoemaker 2006)
3GDSC1000, Genomics of Drug Sensitivity in Cancer project (Yang et al. 2012)
4 TCGA, The Cancer Genome Atlas (http://cancergenome.nih.gov/; Weinstein et al. 2013)
5 TCPA, The Cancer Proteome Atlas (http://tcpaportal.org/tcpa/, Li et al. 2013)
6 SNPs, single-nucleotide polymorphism
7CpGs, CpG island in DNAwhere “C” is connected to “G” by a phosphodiester bond “p”
8RPPA, reverse phase protein array
9MS, mass spectrometry
10CPTAC, Clinical Proteomic Tumor Analysis Consortium (https://proteomics.cancer.gov/programs/cptac)
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(tasks). BEMKL first estimates drug-specific intermediate
variables for each kernel through Bayesian inference using
cell line weights and then estimates the output drug response
matrix by sharing the kernel weights across all the drugs.
Hyper-parameters and an error term (also known as bias) are
introduced in BEMKL to account for the modeling bias aris-
ing due to the varying rate of missing values and noise in the
drug response data set.

More specifically, BEMKL model predicts drug response
of an unseen cell line x∗ based on a single omics profile X ∈
ℝN ×D, whereN is the number of cell lines andD is the number
of features. This regression problem can be formulated by the
following kernel-based decision function:

f x*ð Þ ¼ aT k* þ b ð1Þ
where k : X × X⟹ℝ is profile-specific kernel, a represents
unknown weights for cell lines, and b stands for drug-
specific bias. There is a need to introduce distributional as-
sumptions for a and b, in order to model nonlinear relation-
ships between cell lines using kernelized regression formula-
tion in Eq. 1:

λt;n∼G λt;n;αλ;βλ

� �
∀ t; nð Þ

at;n∼N at;n; 0;λ−1
t;n

� �
∀ t; nð Þ

γt∼G γt;αγ ;βγ

� �
∀ tð Þ

bt∼N bt; 0;λ−1
t

� �
∀ tð Þ

Here, N ;μ;Σð Þ and G ;α;βð Þ refer to normal and gamma
distributions with μ mean, Σ covariance, α shape parameter,
and β scale parameter, respectively, and t represents drug
response prediction of a single drug as a single task. The
interested reader is referred to Gönen (2012) and Costello et
al. (2014) for more detailed explanation of Bayesian formula-
tion of BEMKLmodel for multiple omics profiles, along with
the distributional assumptions and specific constraints ap-
plied. Importantly, the joint MT-MKL strategy yields an in-
creased signal-to-noise ratio in the heterogeneous and noisy
omics datasets and therefore improves predictive power for
drug sensitivity predictions.

Lessons learned and further model developments

It has been observed in the DREAM7-NCI Challenge and in
other studies that most of the variability in the drug response
levels across the cell lines can be explained by the genome-
wide gene expression data, whereas the other omics profiles
only marginally improve the prediction performance (Jang et
al. 2014; Costello et al. 2014). However, the use of multiple
omics profiles from various biological levels can still improve
the prediction results (Cortés-Ciriano et al. 2016), especially
in the case of small sets of samples (cell lines or patient sam-
ple) and/or feature profiles (genes or drugs) (Amin et al.

2014). Therefore, the development of drug response predic-
tion models critically depends on the input data type, dimen-
sionality, noise ratio, data heterogeneity, and complexity along
with the particular prediction problem. To decrease the dom-
inance of the gene expression profiles, which sometimes make
the interpretation of the prediction models difficult, Aben et al.
(2016) developed a two-stage approach, called TANDEM,
which first explains the drug responses using point mutations,
copy number variation, methylation, and cancer type and only
in the second stage explains the remaining variability in the
response levels using gene expression. Predictive models can
also be tailored, for instance, to specific cancer type or drug
classes, or alternatively, one may choose a pan-cancer ap-
proach, to model multi-drug class or even combinatorial drug
response prediction as problem domain (Menden et al. 2018;
Aben et al. 2018). Typical large-scale data preprocessing in-
cludes noise filtering, feature engineering, and normalization,
which are particularly important for high-throughput measure-
ment data from a limited sample size for model training. In
addition to the training data volume and quality, the perfor-
mance of predictive models has also shown to depend on the
given drug sensitivity measure and statistical indicator
(Azuaje 2017).

In our recent work (Ali et al. 2018), we investigated the rela-
tive contribution of various omics profiles, focusing especially on
the proteomics profiling for the drug sensitivity prediction in the
NCI-60 pan-cancer cell line data (Shoemaker 2006). TheNCI-60
cell line panel comprises of 60 cell lines spanning over 9 cancer
types, which are tested against ~ 15,000 anti-cancer therapeutics
(Table 1). Multiple omics profiles are publicly available for these
cell lines, including global mass spectrometry (MS)-based prote-
omic profiling (Gholami et al. 2013). An integrated BEMKL
model based on the multi-omics profiling improved drug sensi-
tivity prediction as compared to the prediction performance sole-
ly based on gene expression profile. Notably, although the global
MS proteomic data includes a total of 8113 proteins, the NCI-60
cell lines contains, on average, 55% missing proteomic data,
which greatly complicates the predictive modeling. After consid-
ering only the completely measured proteins in MS-based pro-
file, the predictive performance was increased significantly for
molecularly-targeted drugs as compared to using MS data alone
with all the proteins. However, considering only the completely
measured census cancer genes from COSMIC (http://cancer.
sanger.ac.uk/cosmic) for the MS and other omics profiles
surprisingly improved drug response predictions for 75% of the
NCI-60 drugs for both sets of selected 47 cytotoxic and 24
targeted drugs, separately. Interestingly, this filtering reduced
the MS data from 8113 proteins to 42 proteins, yet leading to
statistically significant improvements. We further tested a num-
ber of general imputation methods as well as ones tailored for
MSdata (Webb-Robertson et al. 2015), but these did not improve
the prediction results as much as the data filtering (Ali et al.
2018).
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Use of auxiliary information and feature selection

Auxiliary information for drugs or cell lines has also been
shown to boost the predictive power by providing a prior
information for the drug response prediction (Ammad-ud-
din et al. 2016; Yang et al. 2018). For instance, component-
wise MKL (cwKBMF) identifies groups of output variables
(drug responses) and applies MKL on such subsets of auxil-
iary side information (cell line information as omics profiles
and drug information as drug chemical properties) in a
Bayesian setting (Ammad-ud-din et al. 2016). In the NCI/
DREAM7 Challenge, the BEMKL method demonstrated im-
proved predictive performance as it enabled capturing com-
mon signal among multiple omics profiles, resulting in an
increased signal-to-noise ratio (Costello et al. 2014).
Similarly, cwKBMF provides an opportunity to add additional
side information on drugs (such as biological, chemical and/or
structural information). Compared to BEMKL, cwKBMF fur-
ther refines the use of a prior biological knowledge for subsets
of multiple side-data views, including biological pathway in-
formation, hence enabling one to infer target or other path-
ways associated with the drug’s mode-of-action (Ammad-ud-
din et al. 2016).

Transfer learning (TL; Turki et al. 2018) is another way of
incorporating auxiliary information among different cancer
cell lines to improve in vitro or in vivo drug sensitivity pre-
diction. Training data in TL consists of expression profile and
drug responses of tissue-specific training cell lines/samples as
well as of cell lines/samples of related tissue types (added as
auxiliary data), whereas the test data consists of expression
profile of tissue-specific test samples only. This method is
useful even when data distributions and feature space of
tissue-specific and auxiliary data differ. Transferring knowl-
edge from auxiliary data to training cell lines involves three
steps: (i) shifting representation of auxiliary data to match the
training data using a modified version of Gaussian blurring
mean shift (GBMS; Wang and Carreira-Perpinán 2010), (ii)
optimal alignment between training and auxiliary data using
procrustes analyses (Wang and Mahadevan 2008), and (iii)
applying standard machine learning method (e.g., support
vector regression with linear or sigmoid kernel ridge regres-
sion and logistic ridge regression) to learn a highly accurate in
vivo or in vitro model. Trained model is then applied on test
data to make in vivo response predictions.

There are also a number of supervised machine learning
methods that implement detailed feature selection to learn the
panels of genomic or molecular features (e.g., gene or protein
expression changes combined with somatic alterations) that
are most predictive of the drug response (see Table 2 for ex-
amples). In addition to general feature selection techniques,
such as elastic net or random forests, that can be applied to any
high-dimensional dataset, researchers have also developed
novel feature selection techniques specifically for drug

response prediction problem. Many of these techniques em-
ploy a prior information about the MoA of the drugs, such as
their protein targets or biological pathways (Ammad-ud-din et
al. 2017; Yang et al. 2018). Such response predictive panels of
multi-omics biomarker are critical for clinical translation of
the modeling results to new patient cohorts.

Model applications to cancer patient cohorts

In addition to the cancer cell line panels, genomic and molecular
profiling has also been performed in patient tumor samples. For
instance, TCGA provides a comprehensive cohort of omics and
clinical information, across 33 different cancer types, consisting
of genomic, molecular, proteomic, and clinical features of >
11,000 cancer patients, with the aim to enhance understanding
of cancer mechanisms for improved diagnosis and treatment op-
tions. The number of patients for each tissue type ranges from 36
to 1100 (Table 1). Although survival times and other clinical
endpoints are available for those treatments the patients were
given over the course of their clinicalmanagement, these samples
have not been subjected to a large-scale drug sensitivity profiling
using laboratory assays.

To that end, Geeleher et al. (2017) recently developed a novel
computationalmethod that allows one to computationally impute
drug response in large clinical cancer genomics data sets such as
the TCGA. Their approach first trains linear ridge regression
models described before (Geeleher et al. 2014; see Table 2),
through linking gene expression to drug response in large panels
of cancer cell lines from the GDSC1000 resource (Table 1), and
then applies the estimated models to the batch-corrected tumor
gene expression data in the TCGA data. This provides an “im-
puted drug response profile” for each patient over 138 drugs.
Their approach was able to re-construct some known drug asso-
ciations for clinically actionable somatic genetic alterations,
along with identifying novel predictive biomarkers for investiga-
tional compounds and approved drugs that require further
clinical validation.

Similarly, Turki et al. (2018) showed that TL improves drug
response predictions of tissue-specific clinical trial samples by
transferring knowledge from auxiliary data of related cell lines or
tumor samples. Due to many biological differences between cell
lines and patient primary tumors, the clinical applications of the
machine learning models to predict patient’s treatment responses
in vivo will ideally require training and careful testing of the
models in large-enough patient cohorts. An example experimen-
tal setting would be applying TL model trained on the set of
multiplemyeloma patients combinedwith breast cancer auxiliary
data and predicting drug sensitivities of multiple myeloma pa-
tients, or applying TL on training set of non-small cell lung
cancer patients with triple-negative breast cancer auxiliary data
to test response predictions of a set of non-small cell lung cancer
patients. TL can also make use of patient electronic health re-
cords to transfer knowledge.
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Conclusions and future directions

Based on the lessons learned from the DREAM Challenges and
other related benchmarking studies, the NGS-based “big data” is
not yet among themost predictive genomic or molecular features
for drug response prediction globally, except for the few known
examples of cancer types that are driven by single somatic aber-
rations, such as BCR-ABL-positive chronic myeloid leukemia,
non-small cell lung cancer or BRAF inmelanoma,with clinically
actionable small-molecule inhibitors available (Flaherty et al.
2012; Pemovska et al. 2015).With regard to other cancer or drug
classes, which especially require multi-marker panels, the
microarray-based gene expression and targeted protein abun-
dance profiles appear currently as the most predictive source of

signal (Costello et al. 2014). This is likely due to the fact that
these profiling platforms have been around for some time al-
ready, and available tailored processing methods have been de-
veloped for these. For the more recent NGS-based platforms,
such as DNA copy number or point mutations, we are still lack-
ing the knowledge of how to best utilize all the hidden nuggets of
information available from the raw sequencing data for drug
response prediction; instead, one needs to rely only on the most
processed, limited “gene-level” data available (Table 1). The
same applies to some extend also to genome-wide RNA-seq
transcriptomics and especially to theMS-based global proteomic
profiling, which would benefit from standardized analytical ap-
proaches to extract more accurate and complete gene expression
and protein activity profiles. For example, our pilot study showed

Table 2 Representative drug sensitivity prediction models classified in terms of whether or not they implement also feature selection

Prediction
model

Example applications

Kernel-based SVM1 Dong et al. (2015) used SVM classification model to predict drug sensitivity accurately for several drugs using
baseline gene expression of cell line panels from preclinical studies (CCLE2 and CGP3) as features. Other
applications of SVM for drug response prediction include, e.g., Costello et al. (2014), Jang et al. (2014), and
Hejase and Chan (2015).

BEMKL Kernelized regression model for drug response prediction based on data integration across multiple omics profiles,
through multi-task, multiple kernel learning (Costello et al. 2014; applications in breast cancer cell line panel). A
particular emphasis was placed on the proteomic profiles in our follow-up work using NCI4-60 human tumor cell
lines screen (Ali et al. 2018).

cwKBMF5 Drug response prediction model (Ammad-ud-din et al. 2016) by utilizing cell line information along with the drug
chemical properties as an additional information source through selective data integration. Applications in GDSC6

and CTRP7 cancer cell line panels, and wet-lab validations in AML cell lines conducted in-house.

KRL Kernelized rank learning (KRL; He et al. 2018) is a personalized drug recommendation method that selects the most
promising drug based on its predicted effect per cell line. Applications shown inGDSC cell lines and TCGA breast
cancer patients using one expression profile at a time.

Feature
selection-based

Ridge
Regressio-
n

Geeleher et al. (2014) and Geeleher et al. (2017) applied ridge regression model to predict drug responses in GDSC
cell lines, and inferred marker panels for predicting comprehensive drug response profiles in patient tumors in the
TCGA dataset (Geeleher et al. 2017).

Elastic net Jang et al. (2014) found elastic net regression as one of the best-performing modeling strategies for drug response
prediction in CCLE and GDSC cancer cell lines. Similarly, Ding et al. (2018) applied elastic net regression to
generate logistic models for drug sensitivity prediction through deep learning in CCLE and GDSC datasets.

Random
forests

Riddick et al. (2010) built an ensemble regression model using random forest (RF) for drug sensitivity prediction in
NCI-60 cell line panel. The model was also used to create drug-specific gene expression signatures and identify
core cell lines associated with each drug’s response. Other applications of RF include, e.g., Menden et al. (2013),
Nguyen et al. (2016), and Rahman et al. (2017).

MVLR8 Bayesian multi-view multi-task linear regression model (Ammad-ud-din et al. 2017) for drug response prediction by
capitalizing on feature combinations that are most predictive of the drug’s response. This method also enables one
to use functional-linked-networks (FLNs) as prior biological knowledge. Applications in GDSC and in-house
TNBC9 cell line panels.

1 SVM, support vector machines
2CCLE, Cancer Cell Line Encyclopedia
3CGP, Cancer Genome Project
4NCI, National Cancer Institute
5 cwKBMF, component-wise kernelized Bayesian matrix factorization
6GDSC, Genomics of Drug Sensitivity in Cancer project
7CTRP, Cancer Therapeutic Response Portal
8MVLR, multi-view linear regression
9 TNBC, triple-negative breast cancer

36 Biophys Rev (2019) 11:31–39



that theMS-based proteomics can significantly improve the drug
response predictions, but only after filtering out most of the pro-
teinmeasurements (Ali et al. 2018). Similarly, a recent transcript-
level machine learning work demonstrates how the RNA-seq
technology offers additional predictive signal, when compared
to gene-level expression or mutation information (Safikhani et al.
2017). Therefore, we argue that we will need improvements both
in the computational methods and in the experimental assays in
order to convincingly show the added value of “big data” for
drug response prediction.

Future developments in the machine learning models should
therefore be directed toward better use of the integrated and full
information from the multiple omics datasets. For instance, how
to deal with the redundancy between the predictive profiles in
case of anti-correlations between CNVand somatic point muta-
tions, which are widely observed both in tumor samples and in
cancer cell lines (Ciriello et al. 2013; Iorio et al. 2016). Based on
multiple lines of evidence and benchmarking (Saez-Rodriguez et
al. 2016; Guinney et al. 2017), clinical data from the cancer
patients, including their standard laboratory tests and other pa-
tient characteristics, seems often to provide most predictive sig-
natures for treatment responses (Ding et al. 2018). Even though
this is somewhat disappointing from the “precision oncology”
perspective, this is not too surprising given that these clinical data
have been used for decades by the medical doctors for both
diagnostic and treatment selection purposes. The next challenge
for the computational community is therefore to show how to
improve the prediction accuracies beyond that based on clinical
information only, through using all the modern high-throughput
biotechnologies such as genomics, proteomics, and metabolo-
mics (Peddinti et al. 2017). In case the sequencing data proves
not to be alone sufficient for drug response prediction, then other,
even more high-dimensional data sources, such as biomedical
imaging or immune-profiling, might provide the necessary level
of resolution required for the next leap for treatment selection
(Friedman et al. 2015; Horvath et al. 2016). It has been shown
with other related applications, including bioimage analysis
(Janowczyk and Madabhushi 2016; Wang et al. 2017) and
compound-target interaction prediction (Ma et al. 2015; Xu et
al. 2017) that when the feature spaces are large enough, deep-
learning machine learning models can learn the most predictive
signal from such “big data,” without the need of any processing
of filtering steps, hence providing opportunity for significant
improvements in precision oncology in terms of both treatment
response prediction accuracy as well as resources and time re-
quired for data processing (Camacho et al. 2018; Chang et al.
2018; Ding et al. 2018).

From themedical point of view, however, rather than thinking
what and how much can be measured on a large scale, one
should also consider what is the source of information that is
most useful for the particular prediction task. For systematic
mapping of compound-target interactions, instead of generating
more and more compound-target bioactivity data, a more

effective approach might be to train machine learning models
based on the existing data and then use these models to predict
what parts of the massive compound-target universe one should
experimentally explore in order to get most benefit from the
expensive laboratory experiments (Azencott et al. 2017; Ding
et al. 2018). The same approach should be useful also for drug
response prediction task, where we already have large-scale data
in cancer cell lines, and hopefully soon also in patient samples, to
start making more comprehensive machine learning exercises to
prioritize the next phases of experimentation. We argue that such
data-driven predictive approachwill bemore cost-effective, com-
pared to the exhaustive approach of sequencing everything,
which has been the dominating approach so far in many interna-
tional efforts. Collection and integration of the already available
data are by no means straightforward, requiring both infrastruc-
ture developments and common standards for integrating and
sharing data from various experimental assays and laboratories.
However, such community-based approach will likely provide
not only a cost-effective but also a faster track to new biomedical
discoveries, as it can also collect large-enough patient cohorts for
single cancer types, hence avoiding the need for pan-cancer ap-
proaches that may miss important cancer-specific findings. For
clinical translation, feature selection remains a critical part of
precision oncology as large-scale profiling of each cancer patient
is not likely to be possible within the coming years, rather the
treatment selection will be based on targeted assays of most
predictive markers for a given cancer type.
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