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Abstract
How can biophysical principles help precision medicine identify rare driver mutations? A major tenet of pragmatic approaches to
precision oncology and pharmacology is that driver mutations are very frequent. However, frequency is a statistical attribute, not a
mechanistic one. Rare mutations can also act through the same mechanism, and as we discuss below, Blatent driver^ mutations may
also follow the same route, with Bhelper^ mutations. Here, we review how biophysics provides mechanistic guidelines that extend
precisionmedicine.We outline principles and strategies, especially focusing onmutations that drive cancer. Biophysics has contributed
profoundly to deciphering biological processes. However, driven by data science, precision medicine has skirted some of its major
tenets. Data science embodies genomics, tissue- and cell-specific expression levels, making it capable of defining genome- and
systems-widemolecular disease signatures. It classifies cancer driver genes/mutations and affected pathways, and its associated protein
structural data guide drug discovery. Biophysics complements data science. It considers structures and their heterogeneous ensembles,
explains how mutational variants can signal through distinct pathways, and how allo-network drugs can be harnessed. Biophysics
clarifies howonemutation—frequent or rare—can affectmultiple phenotypic traits by populating conformations that favor interactions
with other network modules. It also suggests how to identify such mutations and their signaling consequences. Biophysics offers
principles and strategies that can help precisionmedicine push the boundaries to transform our insight into biological processes and the
practice of personalized medicine. By contrast, Bphenotypic drug discovery,^ which capitalizes on physiological cellular conditions
and first-in-class drug discovery, may not capture the propermolecular variant. This is because variants of the same protein can express
more than one phenotype, and a phenotype can be encoded by several variants.

Keywords Conformational ensembles . Phenotypic drug discovery . Ras . KRas . Signaling pathways . Pharmacology . Deep
sequencing . Genomics . Proteomics . Drug discovery .Machine learning

Introduction: precision pharmacology faces
challenges

Drug development has been facing challenges. Recent statis-
tics quoted 44% of the discontinued phase III drugs as being
due to inadequate efficacy, and 24% safety issues (Mills
2016). Several reasons were proposed as drivers of failure
(Grignolo and Pretorius 2016): inadequate basic science, sub-
optimal dose selection, insufficient assessment of the standard
of care and of disease area landscape, flawed study design,
flawed data collection/analysis, and study operations prob-
lems. Recent publications argued that even though improve-
ments in medicinal chemistry should have led to higher reli-
ability and reproducibility, that is not the case due to irrepro-
ducibility of the results (Begley and Ellis 2012; Ioannidis
2005; Perrin 2014; Prinz et al. 2011) and higher failure rates
in clinical trials (DiMasi 1995; Hay et al. 2014) as well as
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higher R&D costs (Booth and Zemmel 2004; Munos 2009;
Scannell et al. 2012; Scannell and Bosley 2016).

The advent of precision medicine aims to reset the pharma-
cology button (Cheng et al. 2019). The NIH-funded thrust Bto
catalogue and discover major cancer-causing genome alter-
ations in large cohorts… through large-scale genome sequenc-
ing and integrated multi-dimensional analyses^ (Tomczak
et al. 2015), coupled with individual scientist-inspired re-
search and pharmaceutical companies’ efforts, has propelled
the drug discovery frontiers with innovative, data- and
concept-driven approaches. The vast amount of generated da-
ta along with advanced, more powerful computational strate-
gies for its analysis and interpretation promise to transform
diagnosis and cure. Precision medicine abstracts genome sig-
natures and considers cell, tissue, and clinical observations,
recently made even more powerful by high-throughput time-
series analyses that permit following cancer cell evolution
(Cheng et al. 2019). The recent TCGA (The Cancer Genome
Atlas) collection tells what appears to be a success story
(Welcome to the Pan-Cancer Atlas 2016). Its three categories,
embracing patterns in cells-of-origin (Hoadley et al. 2018),
oncogenic processes (Ding et al. 2018), and signaling path-
ways (Sanchez-Vega et al. 2018), illustrate depth and breadth.
Among the key emerging questions looms one of the most
important to human health: how to leverage this information
in drug discovery. This challenge has led the TCGA teams to
focus on patterns of cancer vulnerabilities that will help in new
combination therapies. Among these are individual and co-
occurring actionable alterations in prominent cancer pathways
including those involved inMYC, RAS, ubiquitin, DNA dam-
age repair, splicing, and metabolism (Ge et al. 2018;
Knijnenburg et al. 2018; Peng et al. 2018; Schaub et al.
2018; Way et al. 2018). The teams are large and multidisci-
plinary. They include experimental and computational biolo-
gists, basic sciences, and the clinics. The methods are diverse
and comprehensive and span disciplines. They include analy-
sis of genomes, transcriptomes, and proteomes; they also en-
compass analysis of protein structures to more reliably identi-
fy driver mutations, commonly defined as statistically fre-
quent mutations that drive cancer.

Nonetheless, biophysical principles have largely been skirt-
ed (Nussinov and Wolynes 2014). Biophysics has been called
Bthe bridging science.^ Biophysicists seek to explain complex
biological phenomena. Modern technologies produce huge
amounts of data. To arrive at conclusions and make predic-
tions, biophysics considers the fundamental underpinnings of
the constituents of cells and tissues, their dynamic environ-
ments, and the communication between the molecular entities.
Even though to date biophysics has been applied increasingly
to the biological sciences, this has not been the case in the
emergent branch of precision medicine, despite its ability to
help decipher enigmatic questions, such as how changes in the
DNA of healthy cells can trigger their transformation into

cancer cells and how exactly pathogens can trigger cancer
and neurodegenerative diseases, such as Parkinson
(Nussinov et al. 2014).

Here, we offer some principles and guidelines for extend-
ing precision medicine through biophysics. Key among these
principles is that protein structures exist as conformational
ensembles which can be expressed as phenotypic traits
(Akhter and Shehu 2018; Alhadeff et al. 2018; Cukier 2018;
Frauenfelder et al. 1991; Gunasekaran et al. 2004; Jang et al.
2016a, b; Jenkins et al. 2018; Kumar et al. 2000; Mickert and
Gorris 2018; Naganathan 2018; Nguemaha et al. 2018;
Nussinov 2016; Nussinov et al. 2017; Nussinov et al. 2016,
2018a; Qiao et al. 2018; Tsai and Nussinov 2018). We con-
sider how a mutation can affect phenotypic traits by linking to
different network modules and, especially, how such confor-
mational effects may extend and empower innovative drug
discovery concepts. Notably, this applies to frequent and rare
mutations.

Successful identification of drug candidates with either sin-
gle cell or several cell types, as compared with targeted dis-
covery, has reinvigorated phenotypic drug discovery (Giuliani
et al. 2018; Heilker et al. 2018; Vaidya et al. 2018). At first
glance, the re-emergence of the phenotypic drug discovery
discipline is anathema to genome-based precision drug dis-
covery, where a panoply of mutations, or genomic aberrations,
can be expressed by similar disease phenotypes at the cellular
or organism level. However, phenotypic drug discovery can
produce first-in-class drugs and assess a target in its physio-
logical cell environment. As such, it can complement preci-
sion medicine. Nonetheless, it is unable to reliably target the
underlying mutational origin while minimizing toxicity.

Nomenclature/definitions

Here, we clarify some of the terminology used below:

Orthosteric site The functional site, e.g., active sites for en-
zymes, or protein-protein binding sites.

Allosteric site A site away from the orthosteric site but whose
perturbation by binding will affect the conformation at the
orthosteric site.

Conformational distributions The distributions of distinct con-
formations of the ensemble in the free energy landscape,
which display their relative populations (i.e., corresponding
free energy levels).

BOR,^ incremental Bgraded,^ BAND^ all-or-none logic gate
operations For simplicity, we explain these logic gates with
kinase examples (Bradshaw 2010). In an BOR^ logic gate
switch, one event is sufficient for complete enzyme activation
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(e.g., Syk kinase is an BOR-gate switch^ since either phos-
phorylation OR ITAMbinding is sufficient to fully activate it).
In a Bgraded^ switch, there is an incremental increase in ki-
nase activity with an increasing number of activating stimuli.
Unlike a Bgraded^ switch, an Ball-or-none^ switch has only
two possible responses: either inactive or fully active
(Bradshaw et al. 2003; Lisman and Zhabotinsky 2001; Ninfa
and Mayo 2004). Thus, an Ball-or-none^ switch can be either
an BOR^ gate or an BAND^ gate. In an BOR^ gate, a single
stimulus is sufficient for full activation; however, an BAND^
gate requires multiple stimuli (Prehoda and Lim 2002); Tec
kinase activation is an BAND^ gate switch (Bradshaw 2010).
The type of gate-switching mechanism is decided by the ki-
nase features. In Tec kinases, both phosphorylation of the
activation loop and the interaction with the SH2 linker are
required.

How biophysics can empower concepts
and approaches in precision medicine

With the same phenomena, biophysicists and biologists ask
different questions (Bialek 2011). To biophysicists, mecha-
nisms can only be fully understood at the detailed structural
level. Pathway diagrams are informative and important, but
insufficient. Biophysicists venture into microscopic scales.
They seek to understand why evolution has selected a certain
presumably optimal solution to a problem that is essential in
the life of the organism, and how it is reached and tuned—
with the adage that if they are able to understand, they may be
able to predict the observable behavior and exploit it in design.
To biophysicists, understanding implies comprehending the
molecular behavior on the conformational level.

Precision, or personalized, medicine rests primarily on in-
dividual genomic sequences (Broes et al. 2018; Caskey 2018;
Hampel et al. 2017; Hyman et al. 2017; Martin et al. 2015;
Nakagawa and Fujita 2018; Poulos and Wong 2018; Prasad
2016; Senft et al. 2017; Tannock and Hickman 2016; Vargas
and Harris 2016; Voest and Bernards 2016; Yu et al. 2017).
The variability in human DNA is large, and the paramount
question becomes how to identify among the many variations
in the genomic sequences those which cause—or can cause—
susceptibility to the disease. Standard approaches involve a
priori identification of driver mutations, i.e., those whose as-
sociation with the disease is statistically significant (Fig. 1
provides an example for KRAS mutations). If the statistical
significance of a mutation is high, its correlation with the
disease is indicated. These driver mutations are then compiled
and stored in databases. Subsequent observations of these mu-
tations in an individual can testify to the origin of the illness
(Raphael et al. 2014; Tsang et al. 2017).

However, statistics cannot explain how these mutations
elicit the observed phenotype (Barone et al. 2017; Bilal et al.

2013; Blucher et al. 2017; Hogeweg 2011; Mathew et al.
2007; Payne 2012; Winter et al. 2012; Yakhini and Jurisica
2011). It also falls short when disease-promoting mutations
are rare. Structural knowledge can help in both identifying
mutations with low statistical significance and revealing the
mechanism behind those statistically significant (Raphael
2012). The first step would involve mapping the mutations
onto their corresponding macromolecular structures to identi-
fy their location and structural environment, and uncovering
the interactions the protein is involved in, and which the mu-
tations may affect. The mutations would be analyzed with
respect to how they may affect these interactions and thereby
rewire the cellular network. If located in highly flexible, or
disordered, regions, the chances of their driver character are
higher. Residue type may also help in providing clues:
chances are higher if the mutated residue is aromatic or
charged. Such regions are more likely to play a role in con-
formational changes with the altered interactions shifting the
relative stabilities, typically of the inactive in favor of the
active conformations. Mutations involving charged or aromat-
ic residues are also likely to lead to a similar outcome.
Eventually, the networks of protein-protein and protein-
DNA (or RNA) interactions determine cell behavior.
Importantly, for membrane-interacting proteins, the mutations
should be considered within this framework as well.
Hydrophobic or charged residues may be particularly in-
volved in altered membrane-interaction tendencies.
Interactions with signaling lipids such as eicosanoids,
phosphoinositides, sphingolipids, and fatty acids control crit-
ical cellular processes, including cell proliferation, apoptosis,
metabolism, and migration (Wymann and Schneiter 2008).
Mechanistic consequences may also involve mutations of res-
idues which can be post-translationally modified (PTMs).
PTM effects can be either via an allosteric mechanism
(Nussinov et al. 2012), or by abolishing or altering direct
molecular interactions, thereby shifting an inactive protein
state to an active one, or vice versa.

Altogether, mechanistic underpinnings that decide the mu-
tational effects—whether statistically frequent or rare, at the
tail of the distribution—can involve orthosteric or allosteric
effects (Cheng and Nussinov 2018; Cheng et al. 2016; Collier
and Ortiz 2013; Feher et al. 2014; Fetics et al. 2015; Liu and
Nussinov 2008; Lu et al. 2015, 2016a, b; Marcus and Mattos
2015; Morra et al. 2009; Munro et al. 2018; Nikolaev et al.
2018; Park et al. 2018; Risques and Kennedy 2018; Shen et al.
2017; Stout and Campbell 2018; Tehver et al. 2009; Tsai and
Nussinov 2014, 2017; Tuncbag et al. 2017; Waters and Der
2018; Xu et al. 2017; Zhan et al. 2016). Orthosteric mutations
are at binding or active sites and can directly abolish (most
frequent) or strengthen (much less frequent) interactions. The
interactions can be between proteins, between the protein and
nucleic acids, and between the protein and the membrane.
Allosteric effects can rewire the cell network via short- or
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longer-range effects. Notably, all involve a shift in the confor-
mational ensemble, including orthosteric mutations, since
they too disturb the structure and elicit changes in the atomic
interactions. Network rewiring reflects the changes in the con-
formational distributions whose outcome may favor different

partners at shared binding sites (Boehr et al. 2009; del Sol
et al. 2009). The shift of the ensemble can also explain the
propagation of signaling, i.e., Ballo-networks^ (Nussinov et al.
2011; Szilagyi et al. 2013). As we have postulated earlier,
Ballosteric signal propagation does not stop at the ‘end’ of a

Fig. 1 Examples of driver mutations in KRAS-driven cancer. a KRas is
the most highly mutated Ras isoform in cancer. Among the oncogenic
mutations at the active site, Gly12 is the most highly populated (89%).
Gly13 (9%) and Gln61 (1%) (large pie at the top left corner) display lower
frequencies. For Gly12, the proportions of occurrences of six different
driver mutations, G12D, G12V, G12C, G12A, G12S, and G12R, are
shown for 14 different cell/tissue types. The numbers in parenthesis
indicate the total number of mutated samples taken from the Catalogue

of Somatic Mutations in Cancer (COSMIC) database. Gly12 alterations
also include rare mutations, such as G12E, G12F, G12I, etc. b
Distributions of a mutated sample of seven tissue types, the large
intestine (LI), pancreas (PA), lung (LU), ovary (OV), biliary tract (BT),
endometrium (EN), and hematopoietic and lymphoid tissue (HL) for the
three major KRas Gly12 driver mutations, G12D, G12V, and G12C (left
panel), and three minor mutations, G12A, G12S, and G12R (right panel)
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protein; but may be dynamically transmitted across the cell.^
The signaling can be transmitted within a macromolecule,
such as protein, DNA, or RNA, or across interacting mole-
cules, enhancing or inhibiting specific interactions as the
Ballosteric wave^ propagates.

The challenge in the identification of mutations and the
complexity involved in their mechanisms, which is expected
to involve combinations of mutations within the same or dif-
ferent proteins whose conjoint effects may alter the network,
can be strikingly observed from recent statistics (Alexov
2014). The 1000 Genomes pilot project (Clarke et al. 2012)
indicated that most individuals carry 250 to 300 loss-of-
function mutations in annotated genes with 50–100 mutations
identified earlier as likely to be involved in inherited disorders
(Genomes Project et al. 2010). Critically, the mutational load
and the cell/tissue environment affect the severity of a disease.
These may reflect the level of expression, protein and RNA
concentrations, metabolites, presence/absence of microbiota
that can mitigate or aggravate disease phenotypes, and more.
The emerging complexity and ramifications pose an enor-
mous challenge. In the absence of good biophysical models,
exactly how to incorporate thousands of genetic variations of
proteins is, however, unclear. While feasible, combining indi-
vidual gene variability may lead to poor predictors of disease.

BLatent driver^ mutations, statistically rare
mutations, and the cellular network

Although many mutations are inherited, most appear during
normal cell growth (Nussinov and Tsai 2015; Vogelstein et al.
2013; Welch et al. 2012). Most of these are considered
Bpassengers,^ as are most of those emerging during cancer
evolution. By contrast, Bdriver mutations,^ whether inherited
or gained, acquire certain hallmarks of cancer, thereby confer-
ring cancer cell advantage, including drug resistance (Fig. 2)
(Egeblad et al. 2010; Hanahan and Weinberg 2000, 2011;
Merlo et al. 2006; Nussinov and Tsai 2013; Thiagalingam
et al. 1996). While mutation rates vary (Bignell et al. 2010;
Stratton et al. 2009; Youn and Simon 2011), a puzzling ques-
tion has been why a primary cancer can develop over many
years whereas drug resistance develops rapidly (Nussinov and
Tsai 2015). Even though resistance mechanisms are diverse
(e.g., Knievel et al. 2014; Nakamura et al. 2013; Poulikakos
et al. 2010; Roskoski Jr. 2014), Blatent driver^ mutations may
be among them. Like a passenger mutation, on its own a latent
driver mutation does not confer a cancer hallmark; however,
together with a newly evolved mutation, it can express a can-
cer cell phenotype and cause drug resistance. A latent driver
mutation can rewire the cellular network via BAND^ all-or-
none or incremental Bgraded^ logic gate operations (Nussinov
and Tsai 2015). Since, to date, Bactionable mutations^ have
only been those identified by their statistically significant

frequencies (Cheng et al. 2019), latent driver mutations have
been overlooked.

The Blatent driver^ concept builds on a conformational
view ofmacromolecules. According to this view, a macromol-
ecule has a certain distribution of its ensemble, which reflects
its environment. An environment can include concentration;
sequence; post-translation modifications; interactors, such as
proteins, nucleic acids, lipids, and small molecules; pH; tem-
perature; ions; the crowded cellular environment; etc. A mu-
tation may stabilize or destabilize the native state. The extent
of the stabilization/destabilization with respect to the wild type
may be minor, in which case the phenotypic change may not
be observed; however, integrated with an emerging mutation
whose contribution may also be minor, it may promote cell
transformation or drug resistance. Together, the mutations can
incrementally shift the protein ensembles toward populating a
constitutively active (or inactive for a repressor protein) state
(Tsai and Nussinov 2014), eliciting a cancer hallmark.
Identifying such mutational partners is highly challenging.

Rare mutations can drive cancer development even if they
are at the tail of the distribution. Even though not identified as
drivers, the mechanisms of these mutations resemble those of
mutations which are frequent and thus identified as drivers.
Like statistically significant mutations, rare drivers can occur
at the binding site, thus directly abolishing binding or alloste-
rically shifting the protein ensemble from an inactive to an
active state (or vice versa). Here, too, the challenge is their
identification, pulling them out of the background passenger
mutational clutter.

A protein (node) in a signaling pathway is typically mod-
ulated by upstream activation (or inhibition), with the effects
(transmission of the signals or blocking them) propagating via
interactors to pathways downstream, thereby affecting the net-
work (Fig. 2). At the basic, conformational level, the modula-
tion switches the population of the ensemble. In the absence of
an upstream signal, passenger mutations cause no change in
the relative (active versus inactive) populations, thus no
downstream signaling shift. Even if the effects of several pas-
senger mutations are integrated, there is still no change toward
the distinct active conformation. This contrasts with driver and
latent driver mutations. Both lead to alterations in the popula-
tions of the active vs inactive state—however to different ex-
tents. Latent drivers would shift the distributions in favor of
the active (or inactive) state; however, the extent is insufficient
for an observable phenotypic change. On the other hand, by
definition, a driver mutation would result in a clear observable
change. A rare driver is a driver, except that its statistics is
lower. Heterogeneous protein ensembles can explain howmu-
tations can elicit the observed phenotype; thus, the definitions
of driver, latent driver, passenger, and rare driver hinge on
their change of relative conformational populations between
the active and inactive states with respect to that of the wild
type and their statistics.
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Taken together, we can view protein molecules in terms of
their conformational ensembles; this contrasts with a network
view which perceives proteins as nodes in networks.
Considering research disciplines, chemists aim to obtain drugs
that target actionable mutants; mathematicians and physicists
consider the consequences of the inhibition on the cellular net-
works which they view as nodes and edges (the interactions
connecting them). However, allosteric propagation across the
protein, and via its interactors to the pathways, merges the two
views and thereby can extend the database of drug targets
(Csermely et al. 2013; Szilagyi et al. 2013). The propagation
of allosteric signals can dynamically transcend their interfaces.
However, we would still not expect the signal to travel a long
way, through multiple pathway-associated proteins. For this to
take place, there should be additional perturbations down-
stream. Binding to a protein may elicit distance-limited, specif-
ic, and network-neighboring changes (Antal et al. 2009; Ma
and Nussinov 2009; Nussinov et al. 2011; Tsai et al. 2009).

Protein ensembles link physicochemical principles with the
cellular network and protein behavior in vitro and in vivo. As
we discuss below, they are also critical components in
pharmacogenomics and pharmacogenetics.

Driver mutations, interactions, and cell
signaling

Driver mutations can destabilize or stabilize proteins, shifting
their states between active (or ON) or inactive (OFF) states.
They can also rewire cell signaling. Identifying those muta-
tions that shift states can help identify rare driver mutations.
Key proteins, especially hubs, are epitomized by shared bind-
ing sites (Fig. 3a) (Gursoy et al. 2008; Tuncbag et al. 2009).
Mutations that abolish an interaction of a partner protein bind-
ing at a shared site can favor binding of another protein at that
site, thereby rewiring the network, which may now favor, e.g.,
pro-inflammatory signaling rather than apoptosis (Fig. 3b)
(Guven-Maiorov et al. 2015). One example is the case of
C27* mutation in the Fas-associated protein with death do-
main (FADD) protein in lung squamous carcinoma (0.21%,
TCGA), which our data (unpublished) suggest can abolish its
interaction with myeloid differentiation factor 88 (MyD88),
permitting interleukin-1 receptor-associated kinase 4
(IRAK4, the NF-κB pathway) to occupy that MyD88 site
(Fig. 3c). Similarly, TNF receptor-associated factor 6
(TRAF6) and TRAF3 occupy overlapping binding sites on

Fig. 2 Mutations in the cellular network. In diseases, driver mutations affect the cellular network to alter phenotypic traits. A latent driver mutation, like a
passenger mutation, does not confer a cancer cell phenotype. However, together with a newly evolved mutation, it can express a cancer cell phenotype
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Fig. 3 The protein interaction network and its mutational effects. a A
classical representation of a cellular pathway (top left). In the cellular
network, proteins (nodes) connect with each other through protein-
protein interactions (edges). Node traits can be highlighted by structural
representation in the cellular pathway (lower left panel). Hub proteins
provide shared binding sites for many binding partners. Edge traits can
be characterized by specific combinations of the protein-protein
interactions (right panel). The cartoons were inspired by a previous
publication (Tuncbag et al. 2009). b An example of the hub protein
MyD88 (PDB code: 3MOP) and its binding partners. FADD (PDB

code: 2GF5) and IRAK4 (PDB code: 3MOP) partially overlap at the
same binding site of MyD88, and TRAF6 (PDB code: 1LB5) and
TRAF3 (PDB code: 1FLL) share the same binding site of MyD88 and
completely overlap at the interface. These proteins compete to bind to
MyD88, causing distinct downstream signaling pathways. c Mutations
can alter edge traits. Examples are shown for R34H missense and C27*
nonsense mutants of FADD. These mutations abolish the interaction of
FADD with MyD88, rewiring cellular network. Protein complex
constructions were inspired by a previous publication (Guven-Maiorov
et al. 2015)
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MyD88; thus, MyD88 induces either pro- or anti-
inflammatory cytokines. A R505* TRAF3 mutation in head
and neck tumors (4.7% frequency) abolishes its binding to
MyD88, which promotes TRAF6 binding, possibly
explaining how it contributes to cancer.

Mutations can shift not only the preferred binary interac-
tions but also interactions in multimolecular assemblies (or
Bsignalosomes^), and in this way alter cell signaling. This
can alter the intramolecular crosstalk (Rowland et al. 2017)
and influence drug activity. Structural data, coupled with effi-
cient structural comparison algorithms, appropriate datasets,
and filters can assist in getting an insight into such shared sites,
and in obtaining concrete predictions of interactions consistent
with experiment. Mutations that favor such a switch, even if
rare, are likely to be drivers. Driver mutations can alter the
regulation of the signalosome assembly/disassembly. Notably,
when inhibited, the impacts on different tissues will vary, in-
dicating that cellular context is crucial for targeting signaling
networks.

Conformational heterogeneity can help
bridge pleiotropy and pharmacogenetics

As an example for how biophysics can help link
pharmacogenomics with precision medicine, consider the
emerging principle that variation in any one pharmacogene
may impact the clinical outcome for more than one drug
(Oberg et al. 2016), since one gene often impacts more than
one clinical outcome. This can be straightforwardly understood
in terms of a shift in the ensemble, leading to an altered favored
interacting partner. It can also reflect an altered pattern of post-
translational modifications in distinct tissues. Notably, according
to the standard definition, unlike pharmacogenomics, pharmaco-
genetics considers how variation in a single gene influences the
response to a single drug.

Thus, even though classically not described in this light, plei-
otropy can reflect the presence of multiple states (Fig. 4). While
definitions vary, a pleiotropic gene (or genetic variant) is often
conceived as affecting multiple traits (Hodgkin 1998; Houle
et al. 2010; Solovieff et al. 2013; Stearns 2010; Tyler et al.
2016; Wagner and Zhang 2011; Wang et al. 2010), as for exam-
ple in the case of the small heat shock familyα-crystallin B chain
R120G mutation in mice which causes cataracts and cardiomy-
opathy (Andley et al. 2011). Pleiotropic genes that affect related
traits cluster into relatively independent modules, with a muta-
tion more likely to have smaller effects on unrelated traits in a
different module than on related traits (Pendergrass and Ritchie
2015;Wagner and Zhang 2011). Comprehensive phenome-wide
association study (PheWAS) of the National Health and
Nutrition Examination Surveys (NHANES) observed potential
pleiotropic genes with 13 SNPs associated with more than one
phenotype (Hall et al. 2014), and a broad analysis of disease-

causing proteins in UniProt revealed that 12% are pleiotropic,
i.e., variants in the same protein cause more than one disease
(Ittisoponpisan et al. 2017). Pleiotropy was also suggested as a
reason why a drug that targets only one phenotype may fail, and
thus, developing drugs that target only one phenotypic effect of a
pleiotropic gene could be futile (Wagner and Zhang 2011).
Classically, pleiotropy was captured in cases of clear, observable
linkage between disease and a distinct mutation. Biophysics can
extend such observations, offer their underlying mechanisms,
and bridge the disciplines. A major tenet of biophysics is that a
single mutation—frequent or rare—or another allosteric event
can induce different phenotypic traits by populating conforma-
tions within the same or different network modules, and favor
certain signaling pathways.

Phenotypic drug discovery

Phenotypic drug discovery has been dubbed Bclassical
pharmacology,^ which is the historical basis of drug
discovery—in contrast to Breverse pharmacology,^ which is
considered as target-based drug discovery (Lage et al. 2018).
The classical concept of Bphenotypic drug discovery^ is thus
not new. However, questions about the sustainability of the
current target-based drug discovery process have triggered its
renaissance which capitalizes on physiological cellular condi-
tions and first-in-class drug discovery, and a recent perspec-
tive attempted to merge the phenotypic drug discovery con-
cept with a target-based view (Heilker et al. 2018). The root of
the phenotypic drug discovery concept is an anathema to the
structure-based biophysics view, as well as to precision med-
icine whose basis is specific genomic sequences and muta-
tions. Phenotypic drug discovery is now considered in data-
bases, with assays that it employs grouped by animal disease
model or phenotypic endpoint, accounting for assay data on
protein targets or cell- or tissue-based systems (Hunter et al.
2018). Accounting for phenotypic consideration was also pro-
posed to help computationally guided drug repurposing
(Giuliani et al. 2018). Phenotypic screens were also proposed
to be useful in chemogenomics (Jacoby and Brown 2018), as
well as bridging the gap between phenotypic and biochemical
assays (Denny 2018). Exploiting image-based profiling as-
says for assessing single-cell phenotypes has also been ex-
plored, including by machine learning (Scheeder et al.
2018). Powerful cell-based assay technologies that permit
tighter linkage between in vitro and physio-pathological con-
ditions and environments, including induced pluripotent stem
cells, three-dimensional models, co-culture, and organ-on-a-
chip systems, as well as advances in gene-editing technologies
(Dorval et al. 2018), were put forward as the reasons for this
renaissance and its promising future. Methods have also been
developed to capture it (Joslin et al. 2018). These have trig-
gered excitement for phenotypic drug discovery approaches,
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which can complement large-scale drug discovery efforts. It
was further suggested that some diseases would benefit from a
focus on a relevant condition or phenotype, rather than a spe-
cific target, via coupling network pharmacology with pheno-
typic screening (Sidders et al. 2018). A recent review provides
an excellent overview of these and other small-molecule dis-
covery technologies with examples (Markossian et al. 2018),
and comparative analyses have been carried out as well
(Riddy et al. 2018). A search of the literature yields a plethora
of phenotypic drug discovery approaches, developments, and
applications (e.g., Ayotte et al. 2018; Chatelain and Ioset
2018; Lagunin et al. 2018; Lane et al. 2018; Orellana et al.
2018; Ortiz et al. 2017), and finally, a cautionary note was also
put forward (Copeland and Boriack-Sjodin 2018).

From the biophysical standpoint, protein (i.e., target) vari-
ability, even that induced by a single mutation or a change in
the environment, may elicit altered phenotypes. The converse
also holds: an observed phenotype, such as a disease, may
reflect not only different proteins for example in the same
signaling pathway but also variants of the same proteins. A
phenotype may have diverse origins, and thus, even though
the phenotypic approach may be helpful under certain circum-
stances in speeding up discovery, it may or may not capture
the proper variant and accurately predict its source. The heated
controversy between the supporters of phenotypic and target-
focused screening, which is at the core of precision medicine,
as to which provides a more reliable path to successful drug
development is expected. Even though attempts to reconcile
the two have been advocated, the biophysics axiom argues
that no matter how efficient phenotypic methods are, a

phenotype may not equate to a single molecular shape.
Phenotype-based discovery does not identify the pathway or
the protein target, and since no structure is involved, it also
does not permit ab initio design, or design optimization.

How biophysics applications can identify
candidate cancer driver mutations

Examples of how biophysics applications can identify cancer
driver mutations include molecular dynamics simulations of
the native state and the mutant state: if the mutation promotes
destabilization of the inactive state, it is a candidate for a
driver mutation. Such destabilization can elicit a release of
an autoinhibited state, as for example in PI3K (Nussinov
et al. 2018b; unpublished data), Raf, and EGFR kinases.
Simulations can also reveal mutations that can deactivate an
essential enzymatic action which makes the enzyme switch
back into the inactive state, as in the case of Ras oncogenic
mutations, e.g., Q61L and G12 mutations (Lu et al. 2016a, b;
Pantsar et al. 2018). Trapping different states experimentally,
as well as simulations in the case of EGFR (Ruan and Kannan
2018; Verma et al. 2018), Raf (Rukhlenko et al. 2018), and
other proteins, and integrating these with activity either direct-
ly or indirectly by observing their resulting actions down-
stream (e.g., on phosphorylation or transcription/translation)
can provide first-hand confirmation, with the detailed struc-
tural data showing exactly how the mutation works. In another
recent modeling strategy, exploration of structure, energetics,
and dynamics of p53, PTEN, and SMAD4 tumor suppressor

Fig. 4 Genotype and phenotype.
a Monogenic phenotype occurs
when a single gene expresses
each trait, b while polygenic
phenotype arises when multiple
genes influence a single trait. c
Pleiotropy occurs when
seemingly unrelated phenotypic
traits are expressed by a single
gene. d In a new genotype-
phenotype paradigm, a
pleiotropic gene can encode a
distinct conformational ensemble
in all states with certain
populations of the specific
phenotype traits that link to
genotype. See text for further
details
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proteins has also revealed that driver mutations in these pro-
teins inactivate structurally stable residues that play a funda-
mental role in global propagation of dynamic fluctuations and
mediating allosteric interaction network (Verkhivker 2019).
p53 mutations were also shown to alter the interaction of the
protein with the genome, promoting carcinogenesis, with a
biophysical model for a gain-of-function mechanism that con-
solidates many literature observations (Stiewe and Haran
2018). Crystallography provides the key building block in
such studies (Gomes et al. 2018), as also shown by TrkA
(tropomyosin receptor kinase A, a nerve growth factor recep-
tor) and broadly in activating mutations in tyrosine kinase
domains in cancer (Artim et al. 2012).

Biophysics and precision medicine: principles
and strategies

A fundamental biophysical principle is that molecules are not
rigid rocks and should not be considered as single entities
(Nussinov and Wolynes 2014). Statistics based on such a de-
scription may be inaccurate, especially when related to disease
and treatment decisions. Molecules exist as dynamic ensem-
bles, which integrate into and enhance the dynamic nature of
interactome (Alexov 2014; Bohnenberger et al. 2011; Foerster
et al. 2013). Molecules fluctuate, and these fluctuations are
required for cell life (Wei et al. 2016). Fluctuation involves
sampling different states, some of which have distinct func-
tions. Fluctuations are critical for enzymes to work, for a re-
ceptor to switch between states, and for the chromatin to ex-
press the right protein at the right time (Rychkov et al. 2017).
Overlooking these fluctuations does not necessarily affect the
identification of targetable states, although it is required in the
optimization of the drug design process. However,
overlooking protein conformations and their dynamics may
result in omissions in identification of protein mutations, and
their consequences on the dynamic cell states, as well as ac-
curate identification of the origin of an observed phenotypic
trait. Upon mutational events, altered environment, covalent
or non-covalent linkages or associations, and conformational
heterogeneity may lead to different favored partners at shared
binding sites and explain propagation of signaling. Biophysics
can explain how variants can signal through distinct pathways,
and how allo-network drugs can be harnessed. It clarifies how
one mutation—frequent or rare—can affect multiple pheno-
typic traits by populating conformations that favor other net-
work modules, and that such conformational effects may ex-
tend and empower innovative drug discovery concepts.

How to identify rare driver and latent driver mutations and
how to construct the cellular allo-network? Mapping the muta-
tions on the protein structure will indicate whether they adjoin
functional or allosteric sites, and whether they exist in clusters, in
which case they have a higher likelihood of being rare or latent

drivers. Mutations that elicit a switch in partners at a shared
binding site are also likely driver mutations, even if such muta-
tions are rare, as those in highly flexible regions. Mutations that
prevent execution of essential regulatory actions, such as
abolishing ubiquitination of theRas hypervariable region, thereby
leading to extended membrane anchorage and mitogen-activated
protein kinase (MAPK) signaling (Bigenzahn et al. 2018; Steklov
et al. 2018), are also highly likely candidates. Molecular dynam-
ics simulations might also observe changes in the distributions of
the ensemble of the native vs the mutational state.

Paraphrasing the Biophysical Society (Biophysical Society
2018), one may ask what do the laws of physics, like those
that define forces or energy, have to do with biology? As the
Society befittingly explains, Bthese laws and concepts are es-
sential to unraveling complex biological questions like how
plants extract energy from sunlight and how changes in a
protein’s shape affect its function… Biophysics is critical to
integrating systems biology, genomics, and proteomics data
into information that can guide diagnostics and medical
treatment.^ This is the essence of precision medicine.

Thus, while precision medicine can be viewed as driven by
systems biology, and the phenotypes of diseases are complex,
biophysics can help in addressing the challenge (Ali and
Aittokallio 2018; Filipp 2017; Schurdak et al. 2018). Still
the question looms: driver mutations are not always frequent;
how to identify them? Can biophysics suggest strategies that
would broaden the pharmacological targets to include not only
rare driver mutations (Ciriello et al. 2013) but also latent
drivers, which by definition are rare as well?
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