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RNA polymerase II ChIP-seq—a powerful and highly affordable method
for studying fungal genomics and physiology

Kaeling Tan1,2
& Koon Ho Wong1,3

Received: 18 December 2018 /Accepted: 27 December 2018 /Published online: 9 January 2019
# International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Fungi are ubiquitous in the biosphere with an estimate of around
two to five million species (Blackwell 2011; Hawksworth and
Lucking 2017). This diverse group of organisms occupies most,
if not all, environmental niches and plays many roles vital to our
daily life (see the 2018 State of the World’s Fungi report for
interesting fungal facts – https://stateoftheworldsfungi.org). One
indispensable role of fungi is their contribution to the ecosystem;
they are crucial in decomposing complex carbon compounds,
recycling nutrients, and facilitating nutrient exchanges between
organisms (Mohan et al. 2014; Treseder and Lennon 2015).
There is a long history of fungi used in food production (e.g.,
fermentation), and some of them can be taken directly as food
for nutritional or medicinal purposes (Dupont et al. 2017). Fungi
are also renowned for their drug potentials with themost famous
example being the antibiotic penicillin that has saved countless
lives since its discovery. Analysis of hundreds of fungal genome
sequences indicates a large repertoire of novel secondary me-
tabolites waiting to be discovered for therapeutic uses (Khaldi
et al. 2010; deVries et al. 2017).Moreover, certain fungi are also
employed by the Biotech industry as Bfactories^ for drugs, en-
zymes, and biofuel production (Baker 2013; Buijs et al. 2013;
Money 2016; Cairns et al. 2018).

Fungi also have their dark side. Fungal pathogens pose
increasing threats to plants and animals including humans

(Fisher et al. 2012). Mild superficial fungal infections of
humans are very common, but more importantly, life-
threatening systemic fungal infections have risen over the past
decade as a result of increasing application of immuno-
suppressive therapy for various diseases. In fact, preventing
and treating fungal diseases have become a major clinical
challenge. Similarly, plant fungal pathogens have always been
a big problem in agriculture; e.g., fungal infections of food
crops not only reduce yields but can also cause mycotoxin
contamination that may have adverse effects on humans such
as the cancer-causing aflatoxin (Gruber-Dorninger et al.
2017).

Growth and metabolic flexibility and ability to quickly
sense, respond, and adapt to constantly changing environ-
ments are essential for the success of fungi in colonizing al-
most any environments. For example, human fungal patho-
gens need to adapt to the host body temperature as well as to
respond and overcome attacks from the immune system dur-
ing infection (Braunsdorf et al. 2016; Köhler et al. 2017).
Similarly, saprophytic fungi have to constantly compete with
other microbes for limiting nutrients in harsh environments.
Therefore, most fungal physiological processes and responses
must be highly dynamic.

Transcription is the first essential step in retrieving genome
information for all biological processes. It is expected that
genes required (or detrimental) for growth and survival of
fungi (in fact all organisms) under a specific condition must
be tightly regulated in response to constantly changing envi-
ronments in order to maintain cellular homeostasis. As such,
knowing what and when genes are expressed under particular
conditions of interest can reveal the physiological pathways
necessary for fungi to survive and grow under that condition.
Microarray and RNA-seq are two commonly used methods
for determining genome-wide gene expression. These
methods are based on calculating the steady-state mRNA lev-
el, which is a composite measure of bothmRNA synthesis and
mRNA degradation rates. While useful for estimating gene
expression, they cannot reliably reflect the actual level of
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transcription activities and are not suitable for mapping dy-
namic transcription responses, especially over very short time
scales. This is due to the fact that mRNA degradation rate can
differ between genes and even among transcript isoforms of
the same gene (Geisberg et al. 2014; Gupta et al. 2014) and
that mRNA stability may also vary between different physio-
logical conditions (Maekawa et al. 2015; Miller et al. 2018).
These would then affect steady-state mRNAs levels.
Therefore, the classical profiling methods like microarray
and RNA-seq have apparent shortcomings in studying fungal
transcriptional responses.

ChIP-seq can map genome-wide active
and dynamic transcription responses

Chromatin immuno-precipitation (ChIP) measures in vivo as-
sociation of proteins with chromatin. It involves crosslinking
(usually by formaldehyde) of proteins to chromatin, followed
by pulling down a protein-of-interest (e.g., transcription fac-
tor) along with any associated DNA using either a protein-
specific antibody or an epitope-specific antibody if the
protein-of-interest is tagged with an epitope. The level of pro-
tein occupancy on DNA can be measured by a number of
downstream methods. For a small number of known or can-
didate targets, the pulled-down DNAs can be quantified by
PCR or real-time PCR. Alternatively, microarray (ChIP) or
next generation sequencing (seq) may be applied for mapping
protein occupancy at the genome-wide level as well as for
identifying unknown targets bound by the protein-of-interest.
ChIP, ChIP-chip, and ChIP-seq have been extensively applied
to studying various biological processes that happen on chro-
matin (e.g., transcription, chromatin remodeling, and DNA
repair) and are arguably the most powerful techniques in the
transcription and chromatin field.

Using ChIP-chip or ChIP-seq against RNA polymerase II
(PolII), actively transcribing genes, can be mapped and the
transcription level of each gene can be measured simply by
quantifying PolII occupancy (e.g., the amount of DNA pulled
down by PolII) on the gene (Fig. 1). As with RNA-seq, PolII
ChIP-seq/ChIP-chip readouts are also quantitative measure-
ments of gene expression, although they are somewhat less
accurate for genes that are subjected to transcript stability con-
trols. Importantly, as formaldehyde crosslinking is instanta-
neous, transcription levels determined by PolII ChIP-seq pres-
ent a snapshot of active transcription events occurring at the
time of crosslinking. This feature has made the ChIP-based
technique extremely powerful in capturing dynamic transcrip-
tion responses in time-course experiments with timescales as
short as a few minutes (Mason and Struhl 2005; Proft et al.
2006; Wong and Struhl 2011; Wong et al. 2014). Such high
temporal resolution cannot be achieved bymethods relying on
steady-state mRNA levels.

Commercial antibodies specific to the highly
conserved C-terminal domain of PolII are
available and can be used for fungi

Availability, specificity, and affinity of antibodies to proteins-
of-interest not only dictate whether ChIP/ChIP-seq assays can
be applied but also govern whether a ChIP experiment would
be successful and determine data quality. The C-terminal do-
main (CTD) of the largest subunit of the PolII complex is
highly conserved among eukaryotes and is present in all eu-
karyotic PolII, differing mainly in the numbers of heptad re-
peats (e.g., YSPTSPS) between different species (Eick and
Geyer 2013; Yang and Stiller 2014). For example,
Saccharomyces cerevisiae and human PolII have 26 and 52
heptad repeats, respectively, with many of the repeats being

Fig. 1 Genome-browser view of
PolII ChIP-seq data. PolII ChIP-
seq can be used to profile
genome-wide transcription activi-
ties by measuring PolII occupan-
cies (e.g., ChIP-seq signals) over
gene bodies. This powerful
genome-wide transcription profil-
ing method can capture active
transcription events and global
dynamic transcription changes in
time-course experiments
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identical although minor sequence variation is observed for
some heptads. Because of this, antibodies specific for heptad
repeats (e.g., 8WG16) or their post-translationally modified
forms (e.g., 3E8 and 3E10) can be used to immuno-
precipitate PolII from different eukaryotic species. Some of
these antibodies are commercially available and have been
extensively used in PolII ChIP and ChIP-seq experiments of
various organisms from humans to worms, flies, as well as
fungi (e.g., S. cerevisiae, Schizosaccharomyces pombe,
Candida albicans, and Aspergillus nidulans).

PolII ChIP-seq is much more affordable than
RNA-seq

The advent of next generation sequencing has opened up
genome-wide profiling studies to any organisms, but experi-
mental cost is still a major consideration. It is noteworthy that
a number of unique features of fungal genomes have rendered
genome-wide profiling experiments relatively less expensive
for fungi as compared to higher eukaryotes. First, fungal ge-
nomes are very compact with around 6000–15,000 genes ar-
ranged within genomes of ~ 10–30 Mb in size on average.
Second, the majority of genes are relatively short (e.g., around
1–2 kb), as compared to genes in higher eukaryotes. Third,
unlike in humans, fungal introns are usually small with respect
to exons, and certain species such as S. cerevisiae do not even
have introns for most genes (Goffeau et al. 1996; Stajich et al.
2007; Hooks et al. 2014).

Although these genomic features equally apply to both
RNA-seq and PolII ChIP-seq, PolII ChIP-seq has an addition-
al and rather significant cost advantage in that PolII ChIP-seq
only captures active transcription events (i.e., genes/DNA re-
gions with elongating PolII), while RNA-seq measures total
steady-state mRNAs that include stable mRNAs from previ-
ous transcription events. For example, most genes have some
level of mRNA detected in RNA-seq experiments, while anal-
ysis of a significant number of fungal PolII ChIP-seq data
reveals that in general, only about 10% of genes are actually
engaged in the transcription process at a given time and con-
dition. Therefore, far fewer sequencing reads are actually
needed for a genome-wide transcription profile by PolII
ChIP-seq as compared to RNA-seq. This provides a signifi-
cant cost saving advantage for PolII Chipseq. Based on our
experience, when using similar amounts of fungal cells or
biomass as starting materials, around two to three millions
raw reads from the Illumina platform are sufficient for high-
quality PolII ChIP-seq profiles for fungi (e.g., S. cerevisiae,
C. albicans, and A. nidulans), while standard RNA-seq
datasets typically require ~ 20 to 30 million raw reads (assum-
ing a mapping rate of about 80%). In other words, the se-
quencing cost for transcription profiles using PolII ChIP-seq
is at least ten times cheaper than by RNA-seq.

In addition, experimental cost for a PolII ChIP-seq exper-
iment (antibody, DNA detection and purification reagents,
ChIP-seq library preparation kit, etc.) is only approximately
half of that for a standard RNA-seq pipeline (RNA extraction,
RNA quality assessment, mRNA purification or enrichment,
RNA-seq library preparation, etc.). Currently, the overall cost
for one PolII ChIP-seq profile generated using a multiplexing
system (Wong et al. 2013) is around USD 50–60. At this cost,
ChIP DNA detection through sequencing is actually much
more cost-effective than by real-time PCR, because the
amount is merely sufficient for quantifying a handful of genes
using real-time PCR as opposed to genome-wide information
by sequencing. This already extremely affordable cost is ex-
pected to further reduce as NGS technology improves and
sequencing costs continues to drop. Therefore, global tran-
scription profiling by PolII ChIP-seq is likely to become a
routine method in fungal studies.

Concluding remarks

With the advent of NGS, genome-wide transcription profiling
can now be readily performed for any organism. RNA-seq is a
powerful method and often is the method-of-choice for global
gene expression studies, but it has shortcomings in studying
fungal physiologies and transcriptional responses that are rap-
id and highly dynamic. To this end, the ability to map active
transcription changes over short temporal time scales and
highly affordable experimental cost render PolII ChIP-seq a
more attractive profiling method for fungi (and in fact, also for
other organisms, especially those with a small genome size). It
has been proven useful in understanding various key fungal
functions (Leach et al. 2016; Xie et al. 2017; Veri et al. 2018),
and we believe that PolII ChIP-seq is a powerful approach for
studying this group of fascinating organisms.
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