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Abstract. Digital breast tomosynthesis (DBT) is an imaging technique created to visualize 3-D mammary struc-
tures for the purpose of diagnosing breast cancer. This imaging technique is based on the principle of computed
tomography. Due to the use of a dangerous ionizing radiation, the “as low as reasonably achievable” (ALARA)
principle should be respected, aiming at minimizing the radiation dose to obtain an adequate examination. Thus,
a noise filtering method is a fundamental step to achieve the ALARA principle, as the noise level of the image
increases as the radiation dose is reduced, making it difficult to analyze the image. In our work, a double denois-
ing approach for DBT is proposed, filtering in both projection (prereconstruction) and image (postreconstruction)
domains. First, in the prefiltering step, methods were used for filtering the Poisson noise. To reconstruct the DBT
projections, we used the filtered backprojection algorithm. Then, in the postfiltering step, methods were used for
filtering Gaussian noise. Experiments were performed on simulated data generated by open virtual clinical trials
(OpenVCT) software and on a physical phantom, using several combinations of methods in each domain.
Our results showed that double filtering (i.e., in both domains) is not superior to filtering in projection domain
only. By investigating the possible reason to explain these results, it was found that the noise model in DBT
image domain could be better modeled by a Burr distribution than a Gaussian distribution. Finally, this important
contribution can open a research direction in the DBT denoising problem. © 2019 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JMI.6.3.031410]
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1 Introduction
Computed tomography (CT) was developed to obtain a more
accurate diagnosis through internal images by the transmission
of γ- or x-rays, reducing dramatically the use of surgery or inci-
sion (invasive method) in the patient’s body for diagnosis.
In tomography, the idea is to obtain visual “slices” of a body.
For that, projections of the body being scanned are acquired
by using a radiation source and analyzing the residual radiation
detected after to cross the object. In CT, the source emits radi-
ation with a certain intensity and at different angles around the
body, acquiring noisy projections. To obtain the desired image,
a set of projections is used in a tomographic reconstruction
stage. In digital breast tomosynthesis (DBT),1 the principle is
practically the same as in CT, but the projections are acquired
at limited angles and with low radiation dose, by definition.

However, the noise level becomes higher when the radiation
dose is reduced. This noise in acquired projections is commonly
modeled by Poisson (quantum noise)2 or Poisson–Gaussian
(quantum and electronic noise)3 distributions.

Thus, methods to smooth noise in DBT are essential in the
case of DBT, that is usually done implicitly in an iterative
optimization process by a reconstruction algorithm, such as
simultaneous algebraic reconstruction technique2 and total

variation (TV).4 In addition, the traditional method for DBT
reconstruction is the filtered backprojection (FBP) algorithm,2

which performs a filtering step on the projections before back-
projection step by using a high-pass filter (ramp filter) plus
a windowing technique (e.g., Hann filter) to attenuate a general
high frequency noise. It should be noted that using only a ramp
filter will result in a higher noise level.

In turn, only a few denoising methods have been proposed
specifically to deal with Poisson or Poisson–Gaussian noise in
projections or for image domain in DBT, defining an explicit
step for filtering before or after reconstruction. Basically, we can
highlight the following methods in literature, mainly to denoise
DBT projections: pointwise Wiener filter (PWF) in an Anscombe
domain with FBP reconstruction,5 and one of its extensions, by
evaluating a window adaptive PWF;6 a nonlocal version of the
bilateral filter with reconstruction given by a maximum likelihood
convex algorithm;7 block matching and 3-D filtering (BM3D)
method in Anscombe domain,3 or directly in projections domain8

(both with FBP reconstruction); RF3D (a version of BM3D) in
Anscombe domain with FBP reconstruction;9 and nonlocal
means (NLM) with FBP reconstruction.8 In turn, NLM with
TV reconstruction was the only approach found that was applied
on the DBT image domain.10

However, there is a lack of studies in DBT focusing on both
filtering steps. Therefore, this paper proposes to use a double
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denoising in DBT by filtering in both pre- and postreconstruc-
tion steps. A double filtering basically consists of filtering the
projection data (prefiltering), backprojecting them, and then
applying a filtering step (postfiltering) on the reconstructed
image. This process is illustrated in Fig. 1.

The main motivation to evaluate a double denoising
approach in DBT was a previous study11 performed for CT,
which shows that double denoising achieved results superior
to denoising CT data before or after reconstruction only. So,
it is necessary to validate this approach for DBT as well.

In addition, this work includes a study of several combina-
tions made with some existing filtering methods for Poisson and
Gaussian noise found in literature, in order to achieve a better
balance between detail preservation and noise reduction through
double denoising in DBT. It is worth mentioning that several
filters were individually evaluated (eight for prereconstruction
and six for postreconstruction steps, respectively). To the best
of our knowledge, most of such filtering methods are being
evaluated for the first time for DBT denoising. Moreover,
considering this number of individual filters, we tested a total of
48 combinations in a double filtering approach.

In summary, the main contributions of this paper are three-
fold: (i) the evaluation of double filtering in DBT; (ii) a com-
prehensive study and evaluation of denoising methods in DBT;
and (iii) a study of the noise model on DBT image domain,
especially regarding the reconstructed image after a prefiltering
step. Items (i) and (iii) consist of the main novelties of this
work.

Finally, this paper is organized as follows. In Sec. 2, the
methodology and the definitions of the methods used are pre-
sented. In Sec. 3, the experimental evaluation is described.
In Sec. 4, the results are shown and discussed. Finally, in Sec. 5,
the conclusions and future proposals are presented.

2 Methodology
This work focuses on the stages of denoising prereconstruction
data (projection domain), denoising postreconstruction data
(image domain), and their combinations (double filtering) in
DBT, as previously mentioned.

To denoise projections, whose noise can be modeled by a
Poisson distribution, we evaluate two approaches: without or
with the use of the Anscombe transform (AT).12 In the first case,
we have filters applied directly on projections since these filters
are derived supposing a Poisson distribution. In turn, the use
of the AT12 has the objective to stabilize the noise variance.
Because Poisson noise is a signal-dependent one, we use the
AT to transform a signal-dependent noise to an additive noise,
making it approximately Gaussian, with zero mean and unitary
variance. The approaches using AT are illustrated in Fig. 2.

Traditionally, in tomography, AT is applied as a first step to
filter projection data before its reconstruction. Next, the data are
filtered in the Anscombe domain and then the inverse AT is used
so that the image is prepared to go through the reconstruction
process.

For a stage of noise filtering in 2-D projections, whose pro-
jection data have not yet undergone a reconstruction process and
are corrupted by Poisson noise, the following filters were used:

• directly filters (without AT): pointwise maximum a pos-
teriori (MAP)13 and Poisson nonlocal means (P-NLM);14

• using AT: NLM,15 BM3D,16 PWF,13 and some ones of
their contextual versions as generalized Wiener filter
(GWF),17 Wiener filters with isotropic (IWF),18 and sepa-
rable (SWF)18 Markov random fields (MRFs).

Getting the filtered 2-D projections, the next step is defined
by a 3-D tomographic reconstruction computed by the FBP

Fig. 1 Block diagram for double filtering in DBT.

Fig. 2 Block diagram for denoising in Anscombe domain.
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algorithm19 to reach the DBT reconstructed volumes. The main
reason to use this algorithm is due to its low computational cost
in comparison with iterative reconstruction methods, aiming to
identify a quick, suitable tool to a full DBT reconstruction
(filtering + reconstruction + filtering).

The reconstructed images are still corrupted by noise, whose
distribution can be approximated by a Gaussian (by invoking the
central limit theorem20) and, therefore, a 3-D noise filtering step
is required. For this step, we use the following filters suitable for
Gaussian noise:

• regarding information of each reconstructed slice sepa-
rately (as a 2-D image): BM3D,16 NLM,15,21 GWF,17

IWF,18 and SWF18 MRFs;22

• regarding information in volumetric data by using two or
more slices (as a 3-D image): 3-D version of PWF.23

So, we present in the next subsections, a brief description of
the filters used in this work.

2.1 Pointwise Wiener Filter

Defined as the linear minimum mean square error24 estimate of
a desired signal, through a noisy signal, the Wiener filter is
one of the more traditional methods for filtering images.

The definition in the 2-D case is based on the following
equation:

EQ-TARGET;temp:intralink-;e001;63;459gðx; yÞ ¼ fðx; yÞ þ vðx; yÞ; (1)

where gðx; yÞ is a noisy observed signal, fðx; yÞ is the noise-free
signal to be estimated, and vðx; yÞ describes the noise.

The Wiener filter equation of the proposal of Ref. 24 in
the pointwise version is presented below:

EQ-TARGET;temp:intralink-;e002;63;384f̂ði; jÞ ¼ μfði; jÞþ
σ2fði; jÞ

σ2fði; jÞþ σ2vði; jÞ
ðgði; jÞ− μgði; jÞÞ; (2)

where μfði; jÞ and μgði; jÞ are the local means of the original and
noisy images, in this order, and σ2fði; jÞ and σ2vði; jÞ denote the
local variances of the original and noisy images, respectively.

This filter was proposed to denoise an additive Gaussian
noise. So, in the stage of filtering projections, it was applied
in the Anscombe domain. The calculation of the local variance
and mean statistics is performed in a 2-D window for prefiltering
step and in a 3-D window for postfiltering.

2.2 Generalized Wiener Filter

The Wiener filter with Fisher information,17 also called GWF, is
a derivation of the PWF method previously mentioned, where
Fisher information represents the amount of information that
a certain observed random variable has on the parameter to
be estimated, as shown in Ref. 17. The equation that describes
this filter is as follows:17

EQ-TARGET;temp:intralink-;e003;63;151

f̂ði; jÞ ¼ μfði; jÞ þ
σ2fði; jÞ

σ2fði; jÞ þ σ2vði; jÞ
�
αðgði; jÞ − μgði; jÞÞ

þ ð1 − αÞ
X

gðk;lÞ∈ηði;jÞ
ðgðk; lÞ − μgði; jÞÞ

�
; (3)

where α ∈ ½0;1� represents a compromise between contextual
(α ¼ 0) and pointwise (α ¼ 1) filtering. For projection data,
it was applied in Anscombe domain.

2.3 Wiener Filters with Isotropic and Separable
Markov Random Fields

Considering an image in lexicographic notation, with the
estimate f̂ of the original image of N pixels defined as a linear
combination of g, being:18

EQ-TARGET;temp:intralink-;e004;326;645f̂ ¼
XN−1

n¼0

αng½n�; (4)

where g½n� is a pixel of the noisy image and αn are the weights
that minimize ϵ ¼ f − f̂. Thus, we expect to minimize the
expected value of kϵk2 based on the orthogonality principle.18

Thus, we obtain a system with N equations andN unknowns,
which admits a unique solution, described by18

EQ-TARGET;temp:intralink-;e005;326;542Rggα ¼ Rfg: (5)

Moreover, it is important to mention that Rfg is a vector
that indicates the autocorrelation between the central (current)
pixel of the original image f with all other values observed
in a window obtained from f and that each row of the matrix
Rgg represents the autocorrelation between each noisy pixel g
and another point of the noisy window.

According to this process, the difference between contextual
Wiener with SWF and IWF MRF is in the definition of auto-
correlation matrices.

For the Wiener version with SWFMRF,18 the autocorrelation
matrices of each central pixel ði; jÞ of a W ×W window are
defined by

EQ-TARGET;temp:intralink-;e006;326;376Rgg ¼
�

σ2fði; jÞ þ σ2vði; jÞ; main diagonal

σ2fði; jÞρji
0−i 00 j

V ρjj
0−j 00 j

H ; remainder
; (6)

EQ-TARGET;temp:intralink-;e007;326;328Rff ¼ ðσ2fði; jÞρji
0−ij

V ρjj
0−jj

H Þ; (7)

where ρV and ρH are the vertical and horizontal correlation coef-
ficients, respectively, with values of 0.95 each and ði 0; j 0Þ and
ði 00; j 00Þ are pixel positions in a window.

The Wiener version with IWF MRF18 presents the following
definition for the autocorrelation matrices:

EQ-TARGET;temp:intralink-;e008;326;243Rgg ¼
� σ2fði; jÞ þ σ2vði; jÞ; main diagonal

σ2fði; jÞρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði 0−i 00Þ2þðj 0−j 00Þ2

p
; remainder

; (8)

EQ-TARGET;temp:intralink-;e009;326;196Rff ¼
�
σ2fði; jÞρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði 0−iÞ2þðj 0−jÞ2

p �
; (9)

where ρ is the correlation coefficient with a value of 0.95.
Finally, IWF and SWF were applied in the Anscombe

domain for prefiltering stage.

2.4 Pointwise Maximum a Posteriori

In order to obtain a point estimator of the signal and when we
know their statistics, the MAP13 estimation can be used. In this
work, we use a version of this filter derived from a Poisson and
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Gaussian densities modeling likelihood and an a priori knowl-
edge, respectively. The MAP estimator is given by the following
equation:13

EQ-TARGET;temp:intralink-;e010;63;719ĝ ¼ μ − σ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσ2 − μÞ2 þ 4σ2y

p
2

; (10)

where μ, σ2, and ĝ are the mean, variance, and estimated value,
respectively.

Remember that this filter was used to filter data on projection
domain, applied directly on the data corrupted by Poisson noise.

2.5 Nonlocal Means

Based on the redundancy of regions/patches (may have different
forms) in an image, the NLM method was created by Ref. 21.

Its filtering parameters are a patch size (P) and a search window
size (W), whose values in our applications were 3 × 3 and 11 ×
11 sizes, respectively, as well as a parameter h to handle the filter
smoothing.

To obtain the estimated value of the noise-free pixel,
NLM calculates a weighted average of the noisy pixels in a
given region. The equation of this method is represented as14

follows:

EQ-TARGET;temp:intralink-;e011;326;664ûs ¼
P

t∈Wωðs; tÞvtP
t∈W

ωðs; tÞ ; (11)

where ûs is the noise-free estimate of one pixel of the image,
W represents the search window, vt is a noisy pixel in that
window, and ωðs; tÞ represents the weights/similarity between

Table 1 PSNR results for virtual phantoms.

Methods FS Mean SD MBB I

Noisy image — 23.92 3.13 — —

MAP Pre 27.89 3.24 25.33 2.20

P-NLM Pre 26.83 2.24 23.73 0.59

AT-NLM Pre 26.94 2.24 23.82 0.68

AT-BM3D Pre 28.68 2.14 25.15 2.01

AT-2D-PWF Pre 29.91 2.51 26.31 3.17

AT-GWF Pre 29.64 2.56 26.08 2.94

AT-SWF Pre 29.80 2.71 26.29 3.15

AT-IWF Pre 29.79 2.71 26.28 3.14

NLM Post 26.48 3.25 29.02 0.16

3D-PWF Post 23.92 3.13 28.86 0.00

GWF Post 10.13 2.44 8.91 −19.95

IWF Post 23.92 3.13 28.86 0.00

SWF Post 23.92 3.13 28.86 0.00

BM3D Post 29.14 2.32 27.74 −1.12

AT-2D-PWF + NLM Both 30.01 2.31 — —

AT-IWF + NLM Both 29.98 2.47 — —

AT-2D-PWF + 3D-PWF Both 29.91 2.51 — —

AT-GWF + NLM Both 29.72 2.36 — —

AT-GWF + 3D-PWF Both 29.64 2.56 — —

P-NLM + BM3D Both 26.25 2.40 — —

Note: Significance test by calculating p-values in Microsoft Excel.
Only one method for each filtering stage (FS) was used. p-values
should be <0.05 for a significant difference.
Based on PSNR:
1. AT-2D-PWF + NLM versus AT-2D-PWF: 0.918 (not significant).
2. AT-2D-PWF + NLM versus BM3D: 0.331 (not significant).
3. AT-2D-PWF versus BM3D: 0.406 (not significant).

Bold values represent the best results achieved for each filtering
stage (FS). For column I, bold values represent the methods that con-
tributed most in a double filtering scheme.

Table 2 SSIM results for virtual phantoms.

Methods FS Mean SD MBB I

Noisy image — 0.25 0.06 — —

MAP Pre 0.41 0.07 0.40 0.12

P-NLM Pre 0.26 0.03 0.24 −0.04

AT-NLM Pre 0.27 0.03 0.25 −0.03

AT-BM3D Pre 0.40 0.06 0.36 0.08

AT-2D-PWF Pre 0.51 0.06 0.46 0.18

AT-GWF Pre 0.51 0.06 0.46 0.18

AT-SWF Pre 0.50 0.06 0.46 0.18

AT-IWF Pre 0.50 0.06 0.46 0.18

NLM Post 0.35 0.06 0.43 0.01

3D-PWF Post 0.25 0.06 0.42 0.00

GWF Post 0.20 0.05 0.33 −0.09

IWF Post 0.25 0.06 0.42 0.00

SWF Post 0.25 0.06 0.42 0.00

BM3D Post 0.40 0.05 0.31 −0.10

AT-2D-PWF + NLM Both 0.51 0.06 — —

AT-IWF + NLM Both 0.51 0.06 — —

AT-2D-PWF + 3D-PWF Both 0.51 0.06 — —

AT-GWF + NLM Both 0.51 0.06 — —

AT-GWF + 3D-PWF Both 0.51 0.06 — —

P-NLM + BM3D Both 0.22 0.03 — —

Note: Significance test by calculating p-values in Microsoft Excel.
Only one method for each filtering stage (FS) was used. p-values
should be <0.05 for a significant difference.
Based on SSIM:

1. AT-2D-PWF + NLM versus AT-2D-PWF: 0.773 (not significant).
2. AT-2D-PWF + NLM versus BM3D: 2.70 × 10-06 (significant).
3. AT-2D-PWF versus BM3D: 1.29 × 10-05 (significant).

Bold values represent the best results achieved for each filtering
stage (FS). For column I, bold values represent the methods that
contributed most in a double filtering scheme.
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the patches centered in s and t. The weights of this average
can be calculated based on the Euclidean distance to measure
the similarity of the central patch with their neighbors. The
following equation shows how to obtain these weights:14

EQ-TARGET;temp:intralink-;e012;63;708ωðs; tÞ ¼ exp

�
−
1

h

X
k∈P

jvs;k − vt;kj2
�
; (12)

where k symbolizes the k’th elements of patches vs and vt.
The original version of the NLM was proposed for additive

white Gaussian noise, being used in the Anscombe domain to
perform the filtration in the prereconstruction stage. In addition,
an adapted version of the NLM for for Poisson noise (P-NLM)
proposed by Ref. 14 was also used. In this method, the main
difference from original NLM is that the similarity measure to
obtain the weights was derived based on a Poisson distribution.
This measure for P-NLM is defined by14

EQ-TARGET;temp:intralink-;e013;326;752

ωðs; tÞ ¼
X
k∈P

�
vs;k log vs;k þ vt;k log vt;k

− ðvs;k þ vt;kÞ log
�
vs;k þ vt;k

2

��
: (13)

2.6 Block-Matching and 3-D Filtering

The BM3D was proposed by Ref. 16 and it is now considered the
most important method for Gaussian noise filtering. The BM3D
filtering approach consists of the union of wavelet thresholding,
Wiener filtering, and nonlocal filtering approaches.

The method performs a collaborative filtering in a grouping
model, in which mutually similar d-dimensional patches are
stacked in a (dþ 1)-dimensional array and filtered together
in a transformation domain.

Table 3 PSNR results for physical phantoms.

Methods FS 50% 70% 85% Mean SD MBB I

Noisy image — 25.07 26.41 27.12 26.20 1.04 — —

MAP Pre 28.83 30.07 30.83 29.91 1.01 28.80 2.01

P-NLM Pre 28.25 28.82 29.26 28.78 0.51 27.19 0.41

AT-NLM Pre 28.41 29.06 29.56 29.01 0.58 27.38 0.59

AT-BM3D Pre 30.58 31.77 32.48 31.61 0.96 29.47 2.69

AT-2D-PWF Pre 30.11 31.35 32.08 31.18 0.99 29.35 2.57

AT-GWF Pre 29.54 30.86 31.73 30.71 1.10 28.89 2.10

AT-SWF Pre 30.03 31.30 32.04 31.12 1.02 29.35 2.57

AT-IWF Pre 30.08 31.33 32.06 31.16 1.00 29.39 2.61

NLM Post 28.73 29.96 30.70 29.80 0.99 30.60 0.16

3D-PWF Post 25.07 26.41 27.12 26.20 1.04 30.44 0.00

GWF Post 19.98 20.77 21.24 20.66 0.64 20.30 −10.13

IWF Post 25.07 26.41 27.12 26.20 1.04 30.44 0.00

SWF Post 25.10 26.43 27.14 26.22 1.04 30.44 0.00

BM3D Post 30.77 31.76 32.30 31.61 0.78 30.16 −0.28

AT-BM3D + 3D-PWF Both 30.58 31.77 32.48 31.61 0.96 — —

AT-IWF + NLM Both 30.39 31.56 32.24 31.40 0.94 — —

MAP + BM3D Both 30.51 31.46 32.00 31.32 0.76 — —

AT-2D-PWF + 3D-PWF Both 30.11 31.35 32.08 31.18 0.99 — —

AT-GWF + 3D-PWF Both 29.54 30.86 31.73 30.71 1.10 — —

P-NLM + BM3D Both 27.73 28.24 28.64 28.20 0.46 — —

Note: Significance test by calculating p-values in Microsoft Excel. Only onemethod for each filtering stage (FS) was used. p-values should be<0.05
for a significant difference.
Based on PSNR:
1. AT-BM3D + 3D-PWF versus AT-BM3D: 1.000 (not significant).
2. AT-BM3D + 3D-PWF versus BM3D: 0.999 (not significant).
3. AT-BM3D versus BM3D: 0.999 (not significant).

Bold values represent the best results achieved for each filtering stage (FS). For column I, bold values represent the methods that contributed most
in a double filtering scheme.
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With the transformation of the 3-D group, the local correla-
tion between pixels in each block and the nonlocal one between
the corresponding pixels of different blocks takes place at the
same time.

In this way, the artifacts present in the group are very scarce,
which results in a very efficient separation of noise and signal,
using coefficient shrinkage. After the inverse transformation,
we obtain estimates of each grouped block, which are then
aggregated adaptively in their original locations.

The method is divided into two main parts. In the first one,
named basic estimate, similar regions are determined using
the BM algorithm. Then, wavelet thresholding is performed
using hard-thresholding in the wavelet 3-D domain, thus
creating several noise-free estimates for each block. Then, an
aggregation (nonlocal weighted mean) of the filtered blocks
is performed.

In the second one, named final estimate, the procedure is
practically the same, except that instead of the wavelet thresh-
olding, the Wiener filtering is used, considering the previous
estimate as an initial estimate of the noise-free image.

Finally, it is important to remember that it is a suitable filter
for Gaussian noise. Thus, it was necessary to use the AT in the
prefiltering stage. Also, it is noteworthy that the BM3D was
adapted to operate in the Anscombe domain by the definition
of variance equal to 1.

3 Experimental Evaluation
To evaluate the use of a double denoising in DBT, we developed
all filters used in this work (prereconstruction, postreconstruc-
tion, or double filtering) as well as the experiments by using the
MATLAB. In addition, it is important to highlight that we used

Table 4 SSIM results for physical phantoms.

Methods FS 50% 70% 85% Mean SD MBB I

Noisy Image — 0.25 0.28 0.31 0.28 0.03 — —

MAP Pre 0.36 0.39 0.42 0.39 0.03 0.38 0.08

P-NLM Pre 0.24 0.24 0.25 0.24 0.01 0.24 −0.06

AT-NLM Pre 0.24 0.26 0.26 0.25 0.01 0.25 −0.06

AT-BM3D Pre 0.36 0.38 0.39 0.37 0.02 0.35 0.05

AT-2D-PWF Pre 0.40 0.42 0.44 0.42 0.02 0.39 0.09

AT-GWF Pre 0.40 0.42 0.44 0.42 0.02 0.39 0.09

AT-SWF Pre 0.39 0.42 0.44 0.42 0.02 0.39 0.09

AT-IWF Pre 0.39 0.42 0.44 0.42 0.02 0.39 0.09

NLM Post 0.34 0.38 0.40 0.38 0.03 0.36 0.00

3D-PWF Post 0.25 0.28 0.31 0.28 0.03 0.37 0.00

GWF Post 0.25 0.29 0.32 0.29 0.03 0.36 −0.01

IWF Post 0.25 0.28 0.31 0.28 0.03 0.37 0.00

SWF Post 0.25 0.28 0.31 0.28 0.03 0.37 0.00

BM3D Post 0.29 0.31 0.31 0.31 0.01 0.26 −0.10

AT-BM3D + 3D-PWF Both 0.36 0.38 0.39 0.37 0.02 — —

AT-IWF + NLM Both 0.40 0.42 0.43 0.41 0.02 — —

MAP + BM3D Both 0.29 0.30 0.31 0.30 0.01 — —

AT-2D-PWF + 3D-PWF Both 0.40 0.42 0.44 0.42 0.02 — —

AT-GWF + 3D-PWF Both 0.40 0.42 0.44 0.42 0.02 — —

P-NLM + BM3D Both 0.19 0.20 0.20 0.20 0.01 — —

Note: Significance test by calculating p-values in Microsoft Excel. Only onemethod for each filtering stage (FS) was used. p-values should be<0.05
for a significant difference.
Based on SSIM:
1. AT-2D-PWF + 3D-PWF versus AT-2D-PWF: 1.000 (not significant).
2. AT-2D-PWF + 3D-PWF versus NLM: 0.104 (not significant).
3. AT-2D-PWF versus NLM: 0.104 (not significant).

Bold values represent the best results achieved for each filtering stage (FS). For column I, bold values represent the methods that contributed most
in a double filtering scheme.
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the version of FBP implemented available in an open source
distribution.25

Our dataset has noisy and noise-free projection data
from 15 phantoms generated by a virtual clinical trial
software called OpenVCT,26 developed by the University of
Pennsylvania.

For each phantom, 2-D projections are acquired in 15 differ-
ent angles with a total range of 15 deg. Each 2-D projection
has 2048 × 1792 pixels and the volume has 2048 × 1792 ×
64 voxels, with 0.1 mm × 0.1 mm × 1.0 mmper voxel. In

addition, in this phantom, some lesions, such as masses or
microcalcifications, were inserted by OpenVCT software.

Moreover, DBT projection data acquired from an anthropo-
morphic physical breast phantom using a clinical DBT machine
(Selenia Dimensions, Hologic, Bedford, Massachusetts) gener-
ated by Ref. 8 were also tested. These DBT data comprise three
different radiation doses: 50%, 70%, and 85% of the standard
radiation dose. In addition, ground-truth is defined as an
approximation given by averaging data from 10 acquisitions
with standard radiation dose.

Fig. 3 Some filtering results for a RoI from a virtual phantom containing microcalcifications: (a) ideal,
(b) noisy, (c) MAP, (d) P-NLM, (e) AT-NLM, (f) AT-BM3D, (g) AT-2D-PWF, (h) AT-GWF, (i) AT-IWF,
(j) AT-SWF, (k) NLM, (l) 3D-PWF, (m) GWF, (n) IWF, (o) SWF, (p) BM3D, (q) AT-2D-PWF + NLM,
(r) AT-IWF + NLM, (s) AT-2D-PWF + 3D-PWF, (t) AT-GWF + NLM, (u) AT-GWF + 3D-PWF, and
(v) P-NLM + BM3D.
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We performed quantitative and qualitative evaluations. For
the quantitative evaluation, a mean of peak signal-to-noise ratio
(PSNR) and structural similarity index (SSIM)27 was used,
always calculated in regions of interest (RoIs) about final
processing (after the reconstruction process or postfiltering).
Comparisons were made in results achieved regarding only pre-
reconstruction filters, only postreconstruction filters, and double
denoising steps.

Finally, in order to obtain the noise variance that was used in
the postfiltering stage for all the images used, the method

proposed in Ref. 28 was employed after FBP algorithm.
Remember that only NLM does not use noise variance.

4 Results
Tables 1–4 show the results of mean of PSNR and SSIM mea-
surements calculated on RoIs from breast region, comparing
ideal, noisy, and filtered reconstructed images. We recall that
the measurements are calculated on the reconstructed 3-D vol-
ume and the RoIs were selected from a slice of interest, mainly

Fig. 4 Some filtering results for a RoI from a virtual phantom containing masses: (a) ideal, (b) noisy,
(c) MAP, (d) P-NLM, (e) AT-NLM, (f) AT-BM3D, (g) AT-2D-PWF, (h) AT-GWF, (i) AT-IWF,
(j) AT-SWF, (k) NLM, (l) 3D-PWF, (m) GWF, (n) IWF, (o) SWF, (p) BM3D, (q) AT-2D-PWF + NLM,
(r) AT-IWF + NLM, (s) AT-2D-PWF + 3D-PWF, (t) AT-GWF + NLM, (u) AT-GWF + 3D-PWF, and
(v) P-NLM + BM3D.
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those containing some lesion. In the case of virtual phantoms,
the slice of interest was the center slice.

In addition, some definitions are necessary to understand
Tables 1–4, where column FS defines a filtering stage that a
given method was applied, SD is a standard deviation of the
PSNR and SSIM results for a given method. In turn, column
MBB corresponds to a mean by base method, which are calcu-
lated by a mean of PSNR or SSIM results regarding the use of
a certain method. For instance, MBB for MAP in Table 1 was
averaged regarding all PSNR results, whose MAP was the filter
used in projection domain in a double filtering scheme. In turn,
I represents an improvement given by a current method in
a double filtering scheme related to the expected value of
pre- or postfiltering steps only, dependent on the stage that the
respective method was applied. For instance, regarding the mean
of PSNR results for all postfiltering methods (named by MPost),
I for MAP in Table 1 was calculated as difference between
the mean of PSNR (mean column) for MAP and MPost. For
a postfiltering method, the mean column was compared with
a mean of PSNR results for all prefiltering methods (MPre) to
determine I value. It should be noted that negative values for
I represent that a method affects negatively in a double filtering

scheme by reducing the balance between noise reduction and
detail preservation.

Moreover, Tables 1–4 include results for all pre- and post-
filtering methods, but only the best five methods and the
worse method in terms of PSNR and SSIM for a double denois-
ing scheme. It is important to mention that 3D-PWF, IWF, and
SWF show very similar results. So, only one of these methods
was selected in results.

4.1 Results for Virtual Phantoms

As we can see in quantitative terms for virtual phantoms (see
Tables 1 and 2), the AT-2D-PWF + NLM (double filtering)
achieves the best overall results in terms of both SSIM and
PSNR. However, several other methods achieve the same
value in terms of SSIM, such as AT-IWF + NLM, AT-GWF
+ NLM, AT-GWF + 3D-PWF for double denoising approach
and AT-2D-PWF and AT-GWF for prefiltering methods. In
terms of PSNR, AT-2D-PWF + NLM was only 0.1 dB superior
to AT-2D-PWF, which is insignificant. It should be noted that
BM3D was the best postfiltering method, but it was 0.87 dB
lower in terms of PSNR and 0.11 in terms of SSIM than

Fig. 5 Some filtering results for a RoI from a physical virtual phantom acquired with 50% of full dose:
(a) ideal, (b) noisy, (c) MAP, (d) P-NLM, (e) AT-NLM, (f) AT-BM3D, (g) AT-2D-PWF, (h) AT-GWF,
(i) AT-IWF, (j) AT-SWF, (k) NLM, (l) 3D-PWF, (m) GWF, (n) IWF, (o) SWF, (p) BM3D, (q) AT-BM3D +
3D-PWF, (r) AT-IWF + NLM, (s) MAP + BM3D, (t) AT-2D-PWF + 3D-PWF, (u) AT-GWF + 3D-PWF, and
(v) P-NLM + BM3D.
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Fig. 6 Distribution fit testing for some noise models from a physical phantom data. (a) Noisy image,
(b) MAP, (c) P-NLM, (d) AT-BM3D, and (e) AT-2D-PWF.
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Fig. 7 Distribution fit testing for some noise models from a virtual phantom data. (a) Noisy image,
(b) MAP, (c) P-NLM, (d) AT-BM3D, and (e) AT-2D-PWF.
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AT-2D-PWF + NLM. In addition, it can be noted that, in gen-
eral, prefiltering methods achieve better results than postfiltering
methods.

In turn, in terms of improvement, AT-2D-PWF achieves the
best results in both SSIM and PSNR terms (but similar to other
Wiener filters applied on prefiltering step) while BM3D and
mainly GWF negatively affect the double denoising results.
Besides, P-NLM and AT-NLM were also not performed well.

Finally, looking at the images in Figs. 3 and 4 for a quali-
tative evaluation, it can be noted that P-NLM, AT-NLM,
AT-BM3D, BM3D, and P-NLM + BM3D show an excessive
blurring in images while GWF changes the image contrast.
That can justify the performance achieved by these methods in
quantitative terms. In addition, the best methods in terms of
SSIM show similar visual results among them.

4.2 Results for Physical Phantom

Analyzing Tables 3 and 4 for the physical phantom, AT-BM3D
(prefiltering method), BM3D (postfiltering method), and AT-
2D-PWF + NLM (double filtering method) achieved the best
results in terms of PSNR (31.61 dB), which is only 0.21 dB
higher than the fourth method AT-IWF + NLM (postfiltering
method). In terms of SSIM, the best results were achieved by
AT-2D-PWF, AT-GWF, AT-SWF, AT-IWF for prefiltering meth-
ods and AT-GWF + NLM and AT-GWF + 3D-PWF for double
filtering approach (0.42), which is 0.04 higher than the best
result for a postfiltering method, which was achieved by NLM.
In addition, it can be noted that, in general, prefiltering methods
achieve better results than postfiltering methods.

In turn, in terms of improvement, AT-2D-PWF, AT-GWF,
AT-SWF, and AT-IWF achieved the best results in terms of
SSIM. In terms of PSNR, the best improvement was achieved
by AT-BM3D (2.69 dB), but this improvement is about 0.1 dB
higher than 2D-PWF, AT-SWF, AT-IWF, whose difference is
negligible. However, mainly BM3D and GWF, in terms of
SSIM and PSNR, affect negatively the double denoising results,
respectively. In addition, P-NLM and AT-NLM were also not
performed well.

Finally, looking at the images in Fig. 5 for a qualitative evalu-
ation, it can be noted that P-NLM, AT-NLM, BM3D, and
P-NLM + BM3D show an excessive blurring in images
while GWF changes the image contrast. That can justify the per-
formance achieved by these methods in quantitative terms. In
addition, the best methods in terms of SSIM are shown similar
visual results among them.

4.3 Analysis of Noise Model in DBT Reconstructed
Images

As discussed in previous Secs. 4.1 and 4.2 about the achieved
results in quantitative and qualitative terms from virtual and
physical phantoms, a double denoising scheme did not show
a significant improvement in comparison with prefiltering meth-
ods. In fact, prereconstruction filtering seems to define the
behavior of the result. This situation does not correspond to
the achieved results for CT, as shown in paper,11 where a double
denoising scheme seems to improve the results achieved by pre-
filtering methods only, which motivated its evaluation for DBT.

So, investigating a possible reason to justify this performance
for double denoising in DBT, the following question arose:
would Gaussian distribution be the most suitable noise model
to describe the noise in DBT reconstructed images? It is

important to note that a model for noise in DBT image domain
is still an open problem in the literature.

Thus, to evaluate this question, a distribution fit testing was
performed on data after FBP algorithm, regarding the following
distributions: Gaussian (normal), beta, exponential, gamma,
generalized extreme value, logistic, log normal, Nakagami,
Rayleigh, Rician, Weibull, Burr, Birnbaum–Saunders. It evalu-
ated reconstructed images from noisy or filtered projections
(prefiltering step). Graphics represent these distribution fit
tests, shown in Figs. 6 and 7, for physical and virtual phantoms,
respectively. Basically, only the seven most fitted distributions
are shown.

By analyzing the results, as displayed in Figs. 6 and 7, the
Burr distribution29,30 (also known as Burr type XII distribution
or Singh–Maddala distribution31) seems to present a better
fitting than Gaussian (normal) distribution, regarding recon-
structed images from any prefiltering method or noisy projec-
tion, as well as in physical and virtual phantoms. This is a
surprising result since Burr distribution is not usually considered
as a model for image denoising problems. Finally, it should be
noted that only FBP was tested as a DBT reconstruction method.
That would need to be validated for other reconstruction
methods.

5 Conclusion
In summary, this work presented a comprehensive study of
denoising in DBT, evaluating a set of filters to denoise on pro-
jection or image domains, as well as in both domains (double
filtering scheme), recalling that most of these noise filters had
not yet been analyzed for DBT.

The qualitative and quantitative results achieved from virtual
and physical phantoms show that the double filtering approach
had no significant improvement in comparison with prefiltering
methods, which is an unexpected result since a similar approach
applied on CT data11 shows superior results for the double filter-
ing approach.

This unexpected result led us to investigate the noise model
of DBT image domain after FBP algorithm from noisy or
filtered projections (prefiltering). By using a distribution fit
test, it was shown that a Burr distribution fit better than a
Gaussian distribution on DBT image data, therefore suggesting
that the noise in DBT image domain could be more suitably
modeled by a Burr distribution. This is a primary contribution
of this work. It is important to note that this contribution could
enable the emergence of denoising methods involving a Burr
noise model.

Finally, future works include the development of denoising
methods for Burr noise model, validation of double denoising
with postfiltering performed by these methods, evaluation of the
noise in image domain regarding different DBT reconstruction
algorithms, evaluation of denoising methods in terms of spatial
resolution preserving, and evaluation of additional filters found
in literature (e.g., based on deep neural networks).

Disclosures
We have no conflict of interests to declare.

Acknowledgments
The authors are grateful to São Paulo Research Foundation—
FAPESP (Grant Nos. 2016/09714-4, 2017/17811-2, and
2017/25908-6) and Brazilian National Council for Scientific
and Technological Development - CNPq (Grant No. 308194/

Journal of Medical Imaging 031410-12 Jul–Sep 2019 • Vol. 6(3)

Scarparo et al.: Evaluation of denoising digital breast tomosynthesis. . .



2017-9) for the financial support and to reviewers of this paper
for the important contributions.

References
1. L. T. Niklason et al., “Digital tomosynthesis in breast imaging,”

Radiology 205(2), 399–406 (1997).
2. A. Kak and M. Slaney, Principles of Computerized Tomographic

Imaging, Classics in Applied Mathematics, Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania (1988).

3. L. R. Borges et al., “Pipeline for effective denoising of digital mammog-
raphy and digital breast tomosynthesis,” Proc. SPIE 10132, 1013206
(2017).

4. E. Y. Sidky et al., “Image reconstruction in digital breast tomosynthesis
by total variation minimization,” Proc. SPIE 6510, 651027 (2007).

5. M. A. C. Vieira et al., “Investigating poisson noise filtering in digital
breast tomosynthesis,” in IX Workshop de Visão Computacional-WVC,
IX, Universidade Federal Fluminense (UFF) (2013).

6. M. A. C. Vieira, P. R. Bakic, and A. D. Maidment, “Effect of denoising
on the quality of reconstructed images in digital breast tomosynthesis,”
Proc. SPIE 8668, 86680C (2013).

7. G. Wu, J. G. Mainprize, and M. J. Yaffe, “Dose reduction for digital
breast tomosynthesis by patch-based denoising in reconstruction,”
Lect. Notes Comput. Sci. 7361, 721–728 (2012).

8. M. A. C. Vieira et al., “Feasibility study of dose reduction in digital
breast tomosynthesis using non-local denoising algorithms,” Proc.
SPIE 9412, 94122C (2015).

9. L. R. Borges et al., “Restoration of low-dose digital breast tomosynthe-
sis,” Meas. Sci. Technol. 29(6), 064003 (2018).

10. M. Ertas et al., “An iterative tomosynthesis reconstruction using total
variation combined with non-local means filtering,” BioMed. Eng.
Online 13, 65 (2014).

11. V. C. Assis et al., “Double noise filtering in CT: pre- and post-
reconstruction,” in 28th SIBGRAPI Conf. Graphics, Patterns and
Images, pp. 313–320 (2015).

12. F. J. Anscombe, “The transformation of Poisson, binomial and negative-
binomial data,” Biometrika 35, 246–254 (1948).

13. E. S. Ribeiro, “Novas propostas em filtragem de projeções tomográficas
sob ruído Poisson,” Master’s Thesis, UFSCar, São Carlos (in portu-
guese) (2010).

14. C.-A. Deledalle, F. Tupin, and L. Denis, “Poisson NL means: unsuper-
vised non local means for Poisson noise,” in 17th IEEE Int. Conf. Image
Process. (ICIP), IEEE, pp. 801–804 (2010).

15. C.-A. Deledalle, “Image denoising beyond additive Gaussian noise-
patch-based estimators and their application to SAR imagery,” PhD
Thesis, Telecom ParisTech (2011).

16. K. Dabov et al., “Image denoising by sparse 3-D transform-domain
collaborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095
(2007).

17. A. L. M. Levada and N. D. A. Mascarenhas, “Filtragem adaptativa de
ruído gaussiano em imagens através da minimização da informação de
fisher observada,” in VI Workshop de Visão Computacional (WVC),
pp. 7–12 (in portuguese) (2010).

18. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, Prentice-Hall, Inc., Upper Saddle River, New Jersey (1993).

19. L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,”
J. Opt. Soc. Am. A 1(6), 612–619 (1984).

20. C. Epstein, Introduction to the Mathematics of Medical Imaging, 2nd
ed., Other Titles in Applied Mathematics, Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania (2008).

21. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530
(2005).

22. D. H. P. Salvadeo, “Filtragem de ruído em imagens tomográficas
com baixa taxa de contagem utilizando uma abordagem Bayesiana
contextual,” PhD Thesis, UFSCar, São Carlos (in portuguese) (2013).

23. J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice
Hall, Englewood Cliffs, New Jersey (1990).

24. D. T. Kuan et al., “Adaptive noise smoothing filter for images with
signal-dependent noise,” IEEE Trans. Pattern Anal. Mach. Intell. 7(2),
165–177 (1985).

25. R. B. Vimieiro, L. R. Borges, and M. A. C. Vieira, “Open-source
reconstruction toolbox for digital breast tomosynthesis,” https://
github.com/LAVI-USP/DBT-Reconstruction (2018).

26. B. Barufaldi et al., “OpenVCT: a GPU-accelerated virtual clinical trial
pipeline for mammography and digital breast tomosynthesis,” Proc.
SPIE 10573, 1057358 (2018).

27. Z. Wang and A. C. Bovik, “Mean squared error: love it or leave it?
A new look at signal fidelity measures,” IEEE Signal Process. Mag.
26(1), 98–117 (2009).

28. X. Liu, M. Tanaka, and M. Okutomi, “Single-image noise level estima-
tion for blind denoising,” IEEE Trans. Image Process. 22, 5226–5237
(2013).

29. I. W. Burr, “Cumulative frequency functions,” Ann. Math. Stat. 13,
215–232 (1942).

30. P. R. Tadikamalla, “A look at the Burr and related distributions,”
Int. Stat. Rev. 48, 337–344 (1980).

31. S. K. Singh and G. S. Maddala, “A function for size distribution of
incomes,” Econometrica 44, 963–970 (1976).

Daniele Cristina Scarparo is currently an undergraduate student of
computer science at São Paulo State University (UNESP), Rio Claro,
Brazil. Her research interests include image processing, machine
learning, and medical images.

Denis Henrique Pinheiro Salvadeo received his BSc, MSc, and
PhD degrees in computer science from the Federal University of
São Carlos (UFSCar), São Carlos, Brazil, in 2007, 2009, and 2013,
respectively. He is a professor of computer science at São Paulo
State University (UNESP), Rio Claro, Brazil, and nowadays, he is
a visiting researcher at the University of Pennsylvania. His research
interests include image processing, computer vision, medical images,
random field models, and machine learning.

Daniel Carlos Guimarães Pedronette received his BSc degree in
computer science (2005) from São Paulo State University (Brazil)
and his MSc (2008) and PhD (2012) degrees in computer science
(2008) from the University of Campinas (Brazil). He is currently an
assistant professor at São Paulo State University, Rio Claro, Brazil.
His research interests involve content-based image retrieval, unsu-
pervised learning, reranking, rank aggregation, information retrieval,
digital libraries, and image analysis.

Bruno Barufaldi received his PhD degree from the University of São
Paulo in 2016 and he is currently in a postdoctoral researcher position
at the University of Pennsylvania. He has expertise in software devel-
opment for x-ray imaging systems. He works on radiation dose
analysis on x-ray imaging systems, and quality assessment of digital
mammography and digital breast tomosynthesis images. For the last
two years, he has been active in the field of virtual clinical trials.

Andrew Douglas Arnold Maidment received his BASc degree in
engineering science (1987) and PhD in medical biophysics (1993)
from the University of Toronto, Canada. He is an associate professor
of radiology at the Hospital of the University of Pennsylvania and chief
of the physics section of the Department of Radiology. He is the
author of more than 200 peer-reviewed papers. His research currently
focuses on the development of advanced imaging modalities to
improve breast cancer detection.

Journal of Medical Imaging 031410-13 Jul–Sep 2019 • Vol. 6(3)

Scarparo et al.: Evaluation of denoising digital breast tomosynthesis. . .

https://doi.org/10.1148/radiology.205.2.9356620
https://doi.org/10.1117/12.2255058
https://doi.org/10.1117/12.713663
https://doi.org/10.1117/12.2007804
https://doi.org/10.1007/978-3-642-31271-7
https://doi.org/10.1117/12.2082398
https://doi.org/10.1117/12.2082398
https://doi.org/10.1088/1361-6501/aab2f6
https://doi.org/10.1186/1475-925X-13-65
https://doi.org/10.1186/1475-925X-13-65
https://doi.org/10.1093/biomet/35.3-4.246
https://doi.org/10.1109/ICIP.2010.5653394
https://doi.org/10.1109/ICIP.2010.5653394
https://doi.org/10.1109/TIP.2007.901238
https://doi.org/10.1364/JOSAA.1.000612
https://doi.org/10.1137/040616024
https://doi.org/10.1109/TPAMI.1985.4767641
https://github.com/LAVI-USP/DBT-Reconstruction
https://github.com/LAVI-USP/DBT-Reconstruction
https://github.com/LAVI-USP/DBT-Reconstruction
https://doi.org/10.1117/12.2294935
https://doi.org/10.1117/12.2294935
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/TIP.2013.2283400
https://doi.org/10.1214/aoms/1177731607
https://doi.org/10.2307/1402945
https://doi.org/10.2307/1911538

