Skip to main content
. 2019 Feb 20;7:24. doi: 10.1186/s40478-019-0668-8

Fig. 9.

Fig. 9

Diagnostic algorithm for ependymomas. In our diagnostic practice ependymomas in adults are infrequent. We first stratify the tumours by location and histological appearance. Identification of subependymomas is histologically straightforward and these tumours undergo no further testing (column 1). Supra- and infra-tentorial ependymomas are directly tested with methylation array (column 2). RELA and YAP fusions (and p65 and L1CAM IHC) may be further tested depending on the Classifier result. In our practice, EPN_PF_A are practically non-existent in the adult population, but H3 K27me3 expression status is technically straightforward and affordable and can be tested with IHC for completeness. A small proportion of supratentorial ependymomas with “classical” histology may be reclassified as subependymoma. Spinal tumours (column 3) are clinically low risk and their outcome is mainly determined by the extent of the surgical removal. Unless there is a specific clinical need or unusual histology, spinal tumours are not further tested with methylation arrays. Abbreviations: EPN_ST_SE: supratentorial subependymoma; EPN_PF_SE: posterior fossa subependymoma; EPN_ST_RELA: supratentorial ependymoma with RELA fusion; EPN_ST_YAP: supratentorial ependymoma with YAP fusion; EPN_PF_A: posterior fossa ependymoma group A; EPN_PF_B: posterior fossa ependymoma group B; EPN_SP_SE: spinal subependymoma; EPN_SP_E: spinal ependymoma; EPN_SP_MPE: spinal myxopapillary ependymoma