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Prediction of lncRNA-disease associations
by integrating diverse heterogeneous
information sources with RWR algorithm
and positive pointwise mutual information
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Abstract

Background: Long non-coding RNAs play an important role in human complex diseases. Identification of lncRNA-
disease associations will gain insight into disease-related lncRNAs and benefit disease diagnoses and treatment.
However, using experiments to explore the lncRNA-disease associations is expensive and time consuming.

Results: In this study, we developed a novel method to identify potential lncRNA-disease associations by
Integrating Diverse Heterogeneous Information sources with positive pointwise Mutual Information and Random
Walk with restart algorithm (namely IDHI-MIRW). IDHI-MIRW first constructs multiple lncRNA similarity networks and
disease similarity networks from diverse lncRNA-related and disease-related datasets, then implements the random
walk with restart algorithm on these similarity networks for extracting the topological similarities which are fused
with positive pointwise mutual information to build a large-scale lncRNA-disease heterogeneous network. Finally,
IDHI-MIRW implemented random walk with restart algorithm on the lncRNA-disease heterogeneous network to
infer potential lncRNA-disease associations.

Conclusions: Compared with other state-of-the-art methods, IDHI-MIRW achieves the best prediction performance.
In case studies of breast cancer, stomach cancer, and colorectal cancer, 36/45 (80%) novel lncRNA-disease
associations predicted by IDHI-MIRW are supported by recent literatures. Furthermore, we found lncRNA LINC01816
is associated with the survival of colorectal cancer patients. IDHI-MIRW is freely available at https://github.com/
NWPU-903PR/IDHI-MIRW.

Keywords: Long noncoding RNA, Disease, lncRNA-disease association, Heterogeneous network, Random walk with
restart algorithm

Background
Long non-coding RNAs (lncRNAs) are the biggest part of
non-coding RNAs with at least 200 nucleotides and no
observed potential to encode proteins [1, 2]. To date,
15,778 lncRNA genes and 27,908 lncRNA transcripts have
been annotated in human genome by the GENCODE v27.
Increasing evidences have revealed that lncRNAs have key

roles in gene regulations, affecting cellular proliferation,
survival, migration and genomic stability [3–7]. Therefore,
there is no surprise that mutation and dysregulation of
lncRNAs could contribute to the development of various
human complex diseases [8–10], such as HOTAIR in
breast cancer [11] and MALAT1 in early-stage non-small
cell lung cancer [12]. On the other hand, lncRNAs can
drive many important cancer phenotypes through their in-
teractions with other cellular macromolecules including
DNA, protein, and RNA [4]. For example, lncRNA
PCGEM1 and PRNCR1 are associated with androgen re-
ceptor in prostate cancer cells [6]. And lncRNA PTCSC3
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could be a tumor suppressor in thyroid cancer cells by
interacting with miR-574-5p [13].
In recent years, the number of experimentally verified

lncRNA-disease associations is gradually increasing. Sev-
eral databases for lncRNA functions and disease associa-
tions have been published, such as LncRNAdb [14],
LncRNADisease [15], Lnc2Cancer [16] and NONCODE
[17]. However, known lncRNA-disease associations still
involve a small part of lncRNAs and diseases. Computa-
tional methods have been developed to predict the po-
tential lncRNA-disease associations that can be used as
candidates for biological experiment verifications, which
would greatly reduce the experiment cost and save time
for finding new lncRNA-disease associations. Existing
computational methods can mainly be categorized into ma-
chine learning-based methods [18–29] and network-based
methods [30–41]. The machine learning-based methods,
such as LRLSLDA [18], LDAP [26], and MFLDA [27], have
been developed to predict the potential lncRNA-disease as-
sociations. LRLSLDA [18] combined optimal classifiers in
lncRNA space and disease space into a single classifier to
predict lncRNA-disease associations based on lncRNA ex-
pression profiles and known lncRNA-disease associations.
But how to combine the classifiers reasonably needs to fur-
ther study. LDAP [26] employed two lncRNA similarity
measures and five disease similarity measures to calculate
lncRNA similarities and disease similarities, respectively,
then used the bagging SVM to predict lncRNA-disease as-
sociations. However, this method suffered from fusing mul-
tiple similarities effectively. Fu et al. [27] developed a
lncRNA-disease associations prediction model (MFLDA)
with matrix factorization by integrating seven relational
data sources between six object types (e.g. lncRNAs, miR-
NAs, genes, Gene Ontology, Disease Ontology, and drugs).
Yet, MFLDA can only predict the potential lncRNA-disease
associations which share both lncRNAs and diseases with
known associations in training set.
The network-based methods, such as RWRlncD [30],

RWRHLD [32], KATZLDA [33] and GrwLDA [40], use
lncRNA-disease association, disease similarity, lncRNA
similarity, and other molecular similarity to construct
the lncRNA similarity networks, or lncRNA-disease het-
erogeneous network, then implement global network
models (such as random walk and various propagation
algorithms) to predict potential lncRNA-disease associa-
tions [10]. RWRlncD [30] constructed a lncRNA similarity
network based on known lncRNA-disease associations,
i.e., each lncRNA in their network has at least one known
lncRNA-disease association, for predicting potential
lncRNA-disease associations. So, the major limitation of
RWRlncD is that it cannot predict lncRNA-disease associ-
ations for lncRNAs and diseases without any known
lncRNA-disease associations. RWRHLD [32] calculated
lncRNA similarities and disease similarities based on

crosstalk between lncRNAs and miRNAs and directed
acyclic graph in the disease ontology, respectively. One
weakness of RWRHLD is that lncRNAs interacting with
similar miRNAs do not always mean related with similar
diseases, and only a small fraction of lncRNA-miRNA inter-
actions is used [25]. KATZLDA [33] integrated lncRNA ex-
pression similarity, lncRNA functional similarity, Gaussian
interaction profile kernel similarity for diseases and lncRNAs,
disease semantic similarity, and known lncRNA-disease asso-
ciations to build a lncRNA-disease heterogeneous network,
then used KATZ algorithm to calculate potential association
probability of each lncRNA-disease pair. GrwLDA [40] intro-
duced a global network random walk method to predict po-
tential lncRNA-diseases association by integrating disease
semantic similarity, lncRNA functional similarity and known
lncRNA-disease associations. Overall, the results of existing
network-based methods show that integrating diverse
lncRNA-related and disease-related information can boost
the prediction accuracy of the lncRNA-disease association.
However, most existing methods are limited to a small num-
ber of lncRNAs and diseases. For example, the network built
in RWRHLD involves 697 lncRNAs and 126 diseases, while
the network built in GrwLDA just involves 78 lncRNAs and
113 diseases. In addition, most existing methods calculate
the lncRNA/disease similarities only on those that have at
least one known lncRNA-disease association.
To address the aforementioned issues (or limitations) and

further improve the prediction accuracy, we proposed a
novel network-based method, namely IDHI-MIRW, to pre-
dict the potential lncRNA-disease associations by con-
structing a large-scale lncRNA-disease heterogeneous
network with Random Walk with Restart (RWR) algorithm
and the positive pointwise mutual information (PPMI). In-
stead of constraining lncRNA and disease on those with at
least one known lncRNA-disease association, IDHI-MIRW
calculates the lncRNA similarities for all the lncRNAs in-
volved in lncRNA expression profiles, lncRNA-miRNA in-
teractions, and lncRNA-protein interactions, and also
calculates the diseases similarities for all the diseases in-
volved in disease ontology, disease-miRNA associations,
and disease-gene associations. Then, IDHI-MIRW uses the
RWR algorithm on each similarity network to capture net-
work topological structural features for measuring the
lncRNA/disease topological similarity through the PPMI.
By integrating the lncRNA/disease topological similarity,
and introducing the known lncRNA-disease association in-
formation, a large-scale lncRNA-disease heterogeneous net-
work is built. Finally, the random walk with restart on
heterogeneous network (RWRH) algorithm [42] is applied
on the lncRNA-disease heterogeneous network to predict
the potential lncRNA-disease associations. The computa-
tional results show that IDHI-MIRW cannot only better
predict the known lncRNA-disease associations, but also
can effectively predict the potential lncRNA-disease
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associations, providing more candidates for experimental
verification. Most of the new predicted lncRNA-disease as-
sociations are supported by recent literatures. By analyzing
nine unvalidated lncRNAs, we found that six lncRNAs were
differentially expressed in corresponding cancers. We also
found that lncRNA LINC01816 is associated with the sur-
vival of colorectal cancer patients, which provides evidence
that this lncRNA is disease-related.

Results
In this section, we first introduced the evaluation
method and metrices for evaluating the performance of
the IDHI-MIRW method. Then, we compared our
IDHI-MIRW method with other existing state-of-the art
methods on a small-scale lncRNA-disease heterogeneous
network, explored the predictive power of IDHI-MIRW on
a large-scale lncRNA-disease heterogeneous network, and
discussed the effect of different parameters. In the end, we
analyzed several predicted potential lncRNA-disease associ-
ations with our IDHI-MIRW.

Evaluation method and metrices
The leave-one-out cross validation (LOOCV) test
method was used to evaluate the performance of the
IDHI-MIRW method. In LOOCV test method, each
known lncRNA-disease association in the dataset is sin-
gled out in turn as a test sample, and the remaining
lncRNA-disease associations are used as training sam-
ples. That is, for a given disease di, each known lncRNA
associated with di is left out in turn as a test sample, and
corresponding association edge between test lncRNA
and di is removed, and the remaining lncRNAs associ-
ated with di are considered as training samples.
The area under the receiver operating characteristic

(ROC) curve (AUC) and the area under the precision-recall
(PR) curve (AUPR) were used as evaluation metrices in our
experiments. The ROC curve is the plot of the true-positive
rate (TPR, or Recall) versus the false-positive rate (FPR) at
different rank cutoffs. The PR curve is the plot of the ratio
of true positives among all positive predictions for each
given recall rate.

Comparison with other methods
We compared our IDHI-MIRW method with other six
state-of-the-art methods of LRLSLDA [18], LNCSIM
[19], RWRlncD [30], IRWRLDA [34], KATZLDA [33]
and GrwLDA [40] on the small-scale lncRNA-disease
heterogeneous network (HNetS) which contains 362
lncRNAs, 370 diseases, and 2169 known lncRNA-disease
associations. Most existing methods often built this
small-scale lncRNA-disease heterogeneous network in
which each lncRNA (or disease) has at least an associated
disease (or lncRNA) to predict the potential lncRNA-disease
associations. LRLSLDA [18] and LNCSIM [19] adopt the

semi-supervised learning frameworks with Laplacian regu-
larized least squares. RWRlncD [30], IRWRLDA [34],
KATZLDA [33] and GrwLDA [40] are the network-based
methods. All methods were executed on a win10 system pc
with i7–6700 CPU and 16.0G memory. Figure 1 shows the
AUC and AUPR values of IDHI-MIRW and other six
methods. IDHI-MIRW achieved a better performance than
other six methods in terms of AUC and AUPR. The AUC of
IDHI-MIRW is 0.866, which is 0.337, 0.108, 0.350, 0.245,
0.197 and 0.061 higher than that of LRLSLDA, LNCSIM,
RWRlncD, IRWRLDA, KATZLDA and GrwLDA, respect-
ively. The AUCPR of IDHI-MIRW is 0.318, which is 0.143,
0.213, 0.296, 0.172, 0.194 and 0.166 higher than that of
LRLSLDA, LNCSIM, RWRlncD, IRWRLDA, KATZLDA
and GrwLDA, respectively. The recall values of seven
methods at different rank cutoffs are listed in Table 1, from
which we can see that the recall value of IDHI-MIRW is
higher than that of other six existing methods at 10, 20, 50,
and 100 ran cutoff. These results show that our
IDHI-MIRW can effectively predict the lncRNA-disease
associations.
To further evaluate the performance of IDHI-MIRW

for predicting the associated lncRNAs for new diseases
without any known lncRNA association information, we
removed all the known lncRNA associations for the
query disease in the small-scale lncRNA-disease hetero-
geneous network. Due to RWRlncD implemented the
RWR algorithm on an lncRNA similarity network, we
just compared our IDHI-MIRW method with other five
methods of LRLSLDA, LNCSIM, IRWRLDA, KATZLDA
and GrwLDA for predicting the associated lncRNAs of
the query diseases. The comparison results are shown in
Fig. 2, which shows that our IDHI-MIRW method can
better predict the associated lncRNAs for the new dis-
ease than other existing prediction methods.

Effectiveness of introducing multiple information sources
In order to illustrate the effectiveness of introducing mul-
tiple information sources, we collected 7637 lncRNAs and
6453 diseases from EMBL-EBI (E-MTAB-5214), starBase
v2.0 [43], NPInter v3.0 [44], RAID v2.0 [45], Diseases ontol-
ogy [46], HMDD v2.0 [47], and DisGeNet [48] to construct
a large-scale lncRNA-disease heterogeneous network
(HNetL) by introducing 2169 known lncRNA-disease associ-
ations, then implemented our IDHI-MIRW method on
HNetL. Additional files 1 and 2 provided the data processing
procedure for lncRNAs and diseases. The results of
IDHI-MIRW on HNetS and HNetL heterogeneous networks
in LOOCV test are listed in Table 2, from which we can see
that introducing more lncRNAs and diseases can effectively
improve the predictive performance of IDHI-MIRW and
can predict the potential lncRNAs/diseases for new disease/
lncRNA without any known disease/lncRNA association in-
formation. All these results show that IDHI-MIRW can
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obtain a more reliable performance for predicting lncRNA-
disease associations.

Effectiveness of using the topological similarity network
to construct the lncRNA-disease heterogeneous network
In order to evaluate the effectiveness of using the topo-
logical similarity network to construct the lncRNA-disease
heterogeneous network for improving the predictive per-
formance, we designed another method of IDHI-AVG by
adopting the strategy of averaging three lncRNA similarity
matrices of LncNet1, LncNet2 and LncNet3 to form the
lncRNA integration network (i.e., LncINet), averaging of
three disease similarity matrices of DisNet1, DisNet2, and
DisNet3 to form the disease integration network (i.e.,
DisINet). IDHI-AVG combines these two integration simi-
larity networks of LncINet and DisINet with known

lncRNA-disease bipartite network to construct the
lncRNA-disease heterogeneous network on which RWRH
algorithm is implemented to predict the potential
lncRNA-disease associations. The compared results of
IDHI-AVG and IDHI-MIRW on the small-scale lncRNA-
disease heterogeneous network (HNetS) and large-scale
ncRNA-disease heterogeneous network (HNetL) in
LOOCV test are shown in Table 3. We can see the AUC
and AUPR values of IDHI-MIRW are higher than that of
IHDI-AVG. These results demonstrate that the strategy of
using RWR and PPMI to form lncRNA/disease topo-
logical similarity networks and further constructing the
lncRNA-disease heterogeneous network is effective. It can
improve the performance of predicting lncRNA-disease
associations.

The effect of parameters
There are four main parameters in our method, which
are the restart probability α in RWR, and the restart
probability β, jumping probability γ, parameter η in
RWRH. η is used to weight the importance of lncRNA
topological similarity subnetwork and disease topological
similarity subnetwork. To evaluate the effect of parame-
ters, we implemented our IDHI-MIRW on HNetL het-
erogeneous network in LOOCV test with different α, β,
γ, and η values (varying from 0.1 to 0.9 with scale 0.1).
Additional file 3 shows the AUC and AUPR values of
IDHI-MIRW with different parameters. We can see that
the performance of IDHI-MIRW is robust to the value

Fig. 1 Results of IDHI-MIRW, LRLSLDA, LNCSIM, RWRlncD, IRWRLDA, KATZLDA and GrwLDA on a small-scale lncRNA-disease heterogeneous
network in LOOCV test. a AUC values. b AUPR values

Table 1 Recalls of seven methods at different cutoffs on a small-
scale lncRNA-disease heterogeneous network in LOOCV test

Top10 Top20 Top50 Top100

LRLSLDA 0.320 0.406 0.447 0.462

LNCSIM 0.217 0.402 0.595 0.704

RWRlncD 0.005 0.012 0.038 0.161

IRWRLDA 0.273 0.344 0.432 0.563

KATZLDA 0.251 0.382 0.554 0.661

GrwLDA 0.276 0.437 0.652 0.721

IDHI-MIRW 0.461 0.623 0.766 0.845
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of these four parameters. Additional file 4 presents the
AUC and AUPR values of IDHI-MIRW on HNetS het-
erogeneous network in LOOCV test. In this work, we
selected α = 0.9, γ = 0.9, η = 0.2, and β = 0.6.

Case studies and the potential lncRNA-disease
associations analysis
We used breast cancer, stomach cancer, and colorectal can-
cer as the cases to predict their potential associated
lncRNAs with our IDHI-MIRW. For a given disease, all
known lncRNAs associated with this given disease were
considered as the seed nodes, and other remaining lncRNAs
(i.e., without known association with the given disease) were
considered as the candidates associated with the given dis-
ease. By implementing our IDHI-MIRW algorithm on the
large-scale lncRNA-disease heterogeneous network, and ac-
cording to the lncRNA-disease associations ranking scores
from large to small, we extract top 15 potential association
lncRNAs for each cancer. These top potential association
lncRNAs are listed in Additional files 5, 6, and 7.

For breast cancer which is one of most common cancers
and the second leading cause of cancer death [49], 13 out
of 15 potential association lncRNAs are supported by re-
cent literatures. For example, Diego Chacon-Cortes et al.
[50] investigated six SNPs (i.e. rs1888138, rs7336610,
rs9589207, rs17735387, rs4248505, rs1428) in the lncRNA
MIR17HG, and identified significant association between
rs4248505 at the allele level and rs4248505/ rs7336610 at
the haplotype level susceptibility to breast cancer, which
means that lncRNA MIR17HG plays the main role in the
pathophysiology of breast cancer. Fu et al. [51] found
lncRNA SNHG1, SNORD28 and sno-miR-28 are all sig-
nificantly upregulated in breast tumors. LncRNA can be
used as the biomarkers and therapeutic targets in combat-
ting breast cancer [52].
For stomach cancer (or gastric cancer) which is the third

leading cause of cancer mortality in the world [53, 54], 11
out of 15 potential association lncRNAs can be supported
by recent literatures. For example, Hu et al. [55] discov-
ered that lncRNA CRNDE increases gastric cancer cell
viability and promotes proliferation by targeting miR-145.

Fig. 2 Prediction results for diseases without any known disease association information. a AUC values. b AUPR values

Table 2 Results of IDHI-MIRW on the small-scale lncRNA-disease
heterogeneous network and large-scale lncRNA-disease
heterogeneous network in LOOCV test

Network AUC AUPR Recall

Top10 Top20 Top50 Top100

HNetS 0.866 0.318 0.461 0.623 0.766 0.845

HNetL 0.952 0.350 0.449 0.614 0.790 0.851

Table 3 Compared results of IDHI-MIRW and IDHI-AVG on the
small-scale lncRNA-disease heterogeneous network and large-
scale lncRNA-disease heterogeneous network in LOOCV test

HNetS HNetL

IDHI-AVG IDHI-MIRW IDHI-AVG IDHI-MIRW

AUC 0.829 0.866 0.942 0.952

AUPR 0.238 0.318 0.317 0.350
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Pan et al. [56] found that lncRNA DANCR is activated by
SALL4 and promotes the proliferation and invasion of
gastric cancer cells. Specially, lncRNA LINC01816 (also
known as LOC100133985) associated with stomach can-
cer has been confirmed by Tian et al. [57]. LncRNA
LINC01816 is down-regulated and might be protective
factor in gastric cancer.
For colorectal cancer which is the third most commonly

diagnosed cancer in males and the second in females [58],
12 out of 15 potential association lncRNAs can be sup-
ported by recent literatures. For example, Zhao et al. [59]
found that lncRNA SNHG1 promotes cell proliferation by
affecting P53 in colorectal cancer. Zhang et al. [60] found
that lncRNA CYTOR (also known as LINC00152)
down-regulated by miR-376c-3p restricts viability and
promotes apoptosis of colorectal cancer cells.
To further discover the evidences for the predicted

lncRNAs associated with cancers, we analyzed the RNA-
seq and clinical data from TCGA for breast cancer,
stomach cancer and colorectal cancer. For colorectal
cancer, the RNASeq data including 19,676 protein cod-
ing genes, 15,513 lncRNA genes in 41 normal samples
and 474 tumor samples were downloaded from TCGA.
Using DESeq2 [61] algorithm, we found 1230 signifi-
cantly upregulated lncRNAs and 568 downregulated
lncRNAs by setting log2FC > 1 (or < − 1), FDR < 0.001.
Among three unvalidated lncRNA, lncRNA SNHG7
(14th) is significantly upregulated in tumor samples
(Fig. 3a). Meanwhile, we downloaded the clinical data of

448 tumor samples, and Kaplan-Meier survival analysis
shows that lncRNA LINC01816 (10th) can divided the
448 colorectal cancer patients into high and low-risk
groups with different survival times (Fig. 3b). The results
of RNAseq and clinical data analysis for breast cancer
and stomach cancer are shown in.
Additional files 8 and 9. 5/6 unvalidated lncRNAs are sig-

nificantly differentially expressed in corresponding cancers.
In summary, 36 (13 for breast cancer, 11 for stomach

cancer, 12 for colorectal cancer) out of 45 potential asso-
ciation lncRNAs have been supported by recent litera-
tures. By analyzing the nine unvalidated potential
association lncRNAs, we found that six lncRNAs are dif-
ferentially expressed in corresponding cancers, and
lncRNA LINC01816 is associated with the survival of
patients with colorectal cancer. Results of these three
case studies show that IDHI-MIRW can effectively pre-
dict the new association lncRNAs for a disease.

Discussion
LncRNAs play important roles in the development of hu-
man complex diseases. More and more attentions have
been paid to discover the lncRNA functions related with
human complex disease. Most previous computational
methods only focus on the small-scale lncRNA-disease
heterogeneous network (i.e., involving small numbers of
lncRNAs and diseases) to predict the lncRNA-disease as-
sociations. To address this issue, IDHI-MIRW was devel-
oped to predict the potential lncRNA-disease associations

Fig. 3 Results of RNASeq and clinical data analysis for colorectal cancer. a boxplot of lncRNA SNHG7 expression in normal and tumor samples. b
survival curve for lncRNA LINC01816
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based on a large-scale lncRNA-disease heterogeneous net-
work (containing 7637 lncRNAs and 6453 diseases). In-
stead of calculating similarities of lncRNAs and diseases
only involving in known lncRNA-disease associations,
IDHI-MIRW used three lncRNA-related information (i.e.,
lncRNA expression profiles, lncRNA-miRNA interactions,
and lncRNA-protein interactions) to form three lncRNA
similarity networks, and three disease-related information
(i.e., disease semantic similarity, disease-miRNA associa-
tions, and disease-gene associations) to form three disease
similarity networks. Furthermore, instead of directly fus-
ing those similarity networks, IDHI-MIRW applied the
RWR algorithm on each lncRNA/disease similarity net-
work to capture the topological similarity, and the PPMI
to generate lncRNA/disease topological similarity net-
work. The large-scale lncRNA-disease heterogeneous net-
work was constructed by combing the lncRNA topological
similarity network, disease topological similarity network,
and the known lncRNA-disease bipartite graph. Then, the
RWRH algorithm was used to prioritize candidate
lncRNAs for each query disease. Our experiment results
show that IDHI-MIRW achieves a better performance
than other existing methods. We evaluated the effective-
ness of introducing multiple information sources and cap-
turing topological similarities, Tables 2 and 3 show that
those strategies are effective for improving the perform-
ance of predicting lncRNA-disease associations. In
addition, more novel lncRNA-disease associations pre-
dicted by IDHI-MIRW are supported by recent literatures,
which means that IDHI-MIRW can effectively predict the
novel association lncRNAs for a query disease. All the pre-
dicted lncRNA-disease associations are provided in
Additional file 10.
Although IDHI-MIRW can effectively predict potential

lncRNA-disease associations, there are still several issues
need to be further addressed in the future. First,
IDHI-MIRW used three lncRNA-related and three
disease-related information to generate similarity matri-
ces, we still expect to integrate more information (e.g.,
lncRNA GO annotations and disease MeSH annotation)
to better predict lncRNA-disease association. Second,
the averaging strategy was used to integrate the
lncRNA/disease topological similarity matrices, we ex-
pect to design better integration approaches in future
work to measure the different contributions of multiple
lncRNA/disease similarities.

Conclusions
In this study, we proposed a novel network-based
method (namely IDHI-MIRW) for identifying potential
lncRNA-disease associations. We built a large-scale
lncRNA-disease heterogeneous network by integrating
multiple lncRNA-related information (i.e. lncRNA ex-
pression profiles, lncRNA-miRNA interactions, and

lncRNA-protein interactions), multiple disease-related
information (i.e. disease semantic similarity, disease-
miRNA associations, and disease-gene associations), and
known lncRNA-disease association information using
RWR and PPMI. Our experimental results show that
IDHI-MIRW can achieve higher performance than other
state-of-the-art methods, and we found lncRNA LINC01816
is associated with the survival of colorectal cancer patients.
These results indicate that IDHI-MIRW will contribute to
the identification of potential lncRNA-disease associations.

Methods
Datasets
We collected lncRNA expression profile, lncRNA-miRNA
interaction, and lncRNA-protein interaction data for con-
structing the lncRNA similarity networks, and Diseases
Ontology (DO) information, disease-miRNA association,
and disease-protein association data for constructing the
disease similarity networks. All lncRNAs are annotated by
ensembl gene ID, and all diseases are annotated by Dis-
ease Ontology ID.
LncRNA expression profiles were downloaded from

EMBL-EBI (E-MTAB-5214), which includes the expression
profiles in 53 human tissue samples. LncRNA-miRNA inter-
actions and lncRNA-protein interactions were collected from
starBase v2.0 [43], NPInter v3.0 [44], and RAID v2.0 [45] da-
tabases. Diseases ontology terms were collected from the
Disease ontology [46]. Diseases-miRNAs associations were
collected from HMDD v2.0 [47]. Disease-gene associations
were collected from DisGeNet [48]. Known lncRNA-disease
associations were collected from lncRNAdisease [15],
lnc2Cancer [16], and GeneRIF [62]. Details and statistics of
these data are shown in Additional file 11.

An overview of the IDHI-MIRW algorithm
Our IDHI-MIRW algorithm consists of the following four
steps. Step 1, build three lncRNA similarity networks (i.e.,
LncNet1, LncNet2, LncNet3) based on lncRNA expression
profiles, lncRNA-miRNA interactions, and lncRNA-protein
interactions, and also build three disease similarity net-
works (i.e., DisNet1, DisNet2, DisNet3) based on disease
ontology, disease-miRNA associations, and disease-gene as-
sociations. Step 2, form the lncRNA topological similarity
network (LncTSNet) and disease topological similarity net-
work (DisTSNet) by fusing lncRNA and disease multiple
topological similarities obtained through implementing
RWR on lncRNA similarity network (LncNet1, LncNet2,
LncNet3) and disease similarity network (DisNet1, DisNet2,
DisNet3), respectively. Step 3, construct a large-scale
lncRNA-disease heterogeneous network by integrating
lncRNA topological similarity network (LncTSNet), disease
topological similarity network (DisTSNet), and known
lncRNA-disease associations. Step 4, implement RWRH on
the lncRNA-disease heterogeneous network for predicting
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the potential lncRNA-disease associations. The flowchart of
IDHI-MIRW is shown in Fig. 4.

Building lncRNA/disease similarity networks
By calculating the Pearson correlation coefficient of any
lncRNA pair with expression profiles and fixing the P-value

threshold (< 0.01), we built the LncNet1 lncRNA similarity
weighted network. Based on Gaussian interaction profile
kernel similarity [18, 63] of lncRNA-miRNA and
lncRNA-protein interactions, we computed the Gaussian
interaction profile kernel similarity between any pair of
lncRNA li and lncRNA lj, then built the LncNet2 and

Fig. 4 Flowchart of the IDHI-MIRW. a building three lncRNA similarity networks and three disease similarity networks by calculating the Pearson
correlation coefficient and Gaussian interaction profile kernel similarity. b forming the lncRNA/disease topological similarity networks with RWR
and positive pointwise mutual information. c constructing the large-scale lncRNA-disease heterogeneous network by integrating lncRNA/disease
topological similarities and known lncRNA-disease associations. d predicting the potential lncRNA-disease associations by implementing RWRH
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LncNet3 lncRNA similarity weighted networks, respect-
ively. Gaussian interaction profile kernel similarity between
lncRNA li and lncRNA lj is calculated.

KD li; l j
� � ¼ Exp −κl IP lið Þ−IP l j

� ��� ��� � ð1Þ

κl ¼ 1=
1
Nl

X
i ¼ 1
Nl IP lið Þk k2Þ

�
ð2Þ

where, the interaction profile IP(li) is the binary vector
of lncRNA-miRNA (or lncRNA-protein) interactions en-
coding the presence or absence of interactions between
lncRNA li and miRNA (or protein) in the lncRNA-
miRNA (or lncRNA-protein) interaction dataset, κl con-
trols the kernel bandwidth, and Nl is the total number of
lncRNAs.
Based on the structure of a directed acyclic graph

(DAG) in Disease Ontology, we used the function
“doSim” form R package “DOSE” [64] to obtain the simi-
larity between any disease pair, then built the DisNet1
disease similarity weighted network. Based on Gaussian
interaction profile kernel similarity of disease-miRNA
and disease-gene associations, we computed the Gauss-
ian interaction profile kernel similarity between any pair
of disease di and dj, then built the DisNet2 and DisNet3
disease similarity weighted networks, respectively.

KD di; d j
� � ¼ exp −κd IP dið Þ−IP d j

� ��� ��� � ð3Þ

κd ¼ 1=
1
Nd

X
i ¼ 1
Nd IP dið Þk k2Þ

�
ð4Þ

where, the interaction profile IP(di) is the binary vector
of disease-miRNA (or disease-gene) associations encod-
ing the presence or absence of associations between di
and miRNA (or gene) in the disease-miRNA (or disease-
gene) association dataset. κd controls the kernel band-
width, and Nd is the total number of diseases.

Generating lncRNA/disease topological similarity
networks
Instead of directly fusing six similarity networks (i.e.,
LncNet1, LncNet2, LncNet3, DisNet1, DisNet2, and Dis-
Net3), we captured the network topological structural
features by implementing the RWR algorithm on each
similarity network. The RWR algorithm is a network dif-
fusion algorithm, which has been extensively applied to
analyze the complex biological network [65–69]. By con-
sidering both local and global topological connectivity
patterns within network, the RWR algorithm can fully
exploit the direct or indirect relation between nodes
[65]. The RWR algorithm can be formulated as:

Stþ1 ¼ 1−αð ÞStW þ αS0 ð5Þ

W i; jð Þ ¼ B i; jð ÞP
jB i; jð Þ ð6Þ

where, St is the distribution matrix in which the (i, j)-th
element denotes the distribution probability of node j
being visited from node i after t iterations in the random
walk process and S0 is the initial distribution matrix in
which S0(i, i) = 1, S0(i, j) = 0, ∀j ≠ i. α is restart probability
controlling the relative influence of local and global
topological information. B is the weighted adjacency
matrix of lncRNA (or disease).
When the L1 norm of ΔS = St + 1 − Stis less than a small

positive ε (we set ε = 10−10), we can obtain a stationary
distribution matrix S, which was referred as the diffusion
state of each node [70]. The element S(i, j) in diffusion
state matrix S represents the probability of RWR starting
node i and ending up at node j in equilibrium. When
the diffusion states of two nodes are close, which sug-
gests that they may have similar positions with respect
to other nodes in the network and they probably share
similar functions.
Motivated by Gligorijevic et.al. [69], we then calculated

the topological similarity of each node pair by using
PPMI, which is defined as:

MI i; jð Þ ¼ max 0; log2
S i; jð ÞPi

P
jS i; jð ÞP

iS i; jð ÞP jS i; jð Þ

 !
ð7Þ

The matrix MI is a non-symmetric matrix, thus we
use the average of MI(i, j) and MI(j, i) to represent the
topological similarity of node i and node j. After obtain-
ing three lncRNA topological similarity matrices X1

L , X
2
L ,

X3
L of LncNet1, LncNet2, LncNet3, and three disease

topological similarity matrices X1
D , X

2
D , X

3
D of DisNet1,

DisNet2, DisNet3, we can form the integration lncRNA
topological similarity matrix X 0

L by averaging three
lncRNA topological similarity matrices, and the disease
topological similarity matrix X 0

D by averaging three disease
topological similarity matrices, that is, X 0

L ¼ ðX1
L þ X2

L

þX3
LÞ=3 , X 0

D ¼ ðX1
D þ X2

D þ X3
DÞ=3 . Thus, we generated

the lncRNA topological similarity network LncTSNet, and
disease topological similarity network DisTSNet.

Constructing the lncRNA-disease heterogeneous network
By integrating the LncTSNet and DisTSNet networks
with known lncRNA-disease bipartite network, we can
construct the lncRNA-disease heterogeneous network
whose adjacency matrix can be defined as:

A ¼ AL ALD

ADL AD

� �
ð8Þ

where, AL and AD represent the weighted adjacency
matrices of LncTSNet and DisTSNet, respectively; ALD is
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the adjacency matrix of the lncRNA-disease bipartite
graph; ADL represents the transpose of ALD. If there is
association between lncRNA i and disease j in known
lncRNA-disease associations, ALD(i, j) = 1, otherwise,
ALD(i, j) = 0.

Implementing RWRH algorithm for predicting lncRNA-
disease associations
To predict the association between lncRNA and disease,
we adopted the RWRH (random walk with restart on het-
erogeneous network) algorithm [42] to prioritize candi-
date lncRNAs associated with a given disease. The RWRH
algorithm is well-known heterogeneous network-based al-
gorithm to infer the gene-phenotype relationship. It can
effectively capture the complementarity of two kinds of
node within heterogeneous network, which is widely used
to predict the association problem [42, 71, 72]. The
RWRH algorithm on the lncRNA-disease heterogeneous
network can be formulated as:

ptþ1 ¼ 1−βð ÞptMþ βp0 ð9Þ

where, pt is a probability vector in which the i-th elem-
ent holds the probability of finding the random walker
at node i at step t; β ∈ (0, 1) is restart probability; p0 is
the initial probability vector for lncRNA-disease heteroge-

neous network which is defined as p0 ¼ η � u0
ð1−ηÞ � v0

� �
. u0

and v0 represent the initial probability of LncTSNet and
DisTSNet, respectively. The initial probability u0 of
LncTSNet network is set such that all the seed nodes are
assigned to the equal probabilities with the sum of prob-
abilities equal to 1. Similarity, the initial probability v0 of
DisTSNet network is given. The parameter η ∈ (0, 1) is
used to weight the importance of each subnetwork.

M ¼ ML MLD

MDL MD

� �
is the transition matrix of the

lncRNA-disease heterogenous network, where ML and
MD are the intra-subnetwork transition matrices, MLD
and MDL are the inter-subnetwork transition matrices.
Let γ be the jumping probability, that is, the probability
of random walker jumping from lncRNA network to dis-
ease network or vice versa. Thus, the transition prob-
ability ML(i, j) from lncRNA li to lncRNA lj and the
transition probability MD (i, j) from disease di to disease
dj are defined as

ML i; jð Þ ¼
AL i; jð Þ.X

j
AL i; jð Þ if

X
j
ALD j; ið Þ ¼ 0

1−γð ÞAL i; jð Þ.X
j
AL i; jð Þ otherwise

8>><
>>:

ð10Þ

MD i; jð Þ ¼
AD i; jð Þ.X

j
AD i; jð Þ if

X
j
ALD i; jð Þ ¼ 0

1−γð ÞAD i; jð Þ.X
j
AD i; jð Þ otherwise

8>><
>>:

ð11Þ
The transition probability from lncRNA li to disease dj

and the transition probability from disease di to lncRNA
lj are described as:

MLD i; jð Þ ¼
γALD i; jð Þ.X

j
ALD i; jð Þ if

X
j
ALD i; jð Þ≠0

0 otherwise

8<
:

ð12Þ

MDL i; jð Þ ¼
γADL i; jð Þ.X

j
ADL i; jð Þ if

X
j
ADL i; jð Þ≠0

0 otherwise

8<
:

ð13Þ
After some steps, the steady state probability vector p∗ =

p∞ can be obtained by performing the iteration until the
difference between pt and pt+ 1 (measured by the L1 norm)
fall below 10−10. p∗ gives the ranking score of every lncRNA
for a query disease. The lncRNAs with maximum in p∗ are
considered as the most probable associated lncRNAs of the
query disease.
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samples. (D) heatmap of lncRNA DLEU2 expression values. (E) boxplot of
lncRNA DLEU2 expression in normal and tumor samples. (F) heatmap of
lncRNA LINC00299 expression values. (G) boxplot of lncRNA LINC00299
expression in normal and tumor samples. (TIF 9211 kb)

Additional file 10: The predicted lncRNA-disease associations. (TXT 180 kb)

Additional file 11: Details and statistics of collected data. (DOCX 34 kb)

Abbreviations
AUC: The area under the receiver operating characteristic curve; AUPR: The
area under the precision-recall curve; DAG: Directed acyclic graph;
DO: Disease ontology; FPR: False-positive rate; lncRNAs: Long noncoding
RNAs; LOOCV: Leave-one-out cross validation; ROC: receiver operating
characteristic; PPMI: Positive pointwise mutual information; PR: Precision-
recall; RWR: Random walk with restart; RWRH: Random walk with restart on
heterogeneous network; TPR: True-positive rate

Acknowledgements
Not applicable.

Funding
This work was supported by the National Natural Science Foundation of
China under Grant No. 61873202, No. 61473232 and No. 91430111; and the
National Library of Medicine grants of United States under Grant No.
R00LM011673. The funding bodies did not play any roles in the design of
the study, in the collection, analysis, or interpretation of data, or in writing
the manuscript.

Availability of data and materials
IDHI-MIRW is available at https://github.com/NWPU-903PR/IDHI-MIRW, and
the datasets used and/or analyzed during the current study are available
from the corresponding references.

Authors’ contributions
XNF collected the dataset, performed the experiments, and wrote the initial
manuscript. SWZ and SL conceived and designed the experiments. XNF, SYZ
and KZ analyzed the results. XNF and SYZ developed the codes. SWZ revised
the manuscript. All authors participated in the definition of the process, the
discussion of relevant aspects, and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Key Laboratory of Information Fusion Technology of Ministry of Education,
School of Automation, Northwestern Polytechnical University, 127 West
Youyi Road, Xi’an 710072, Shaanxi, China. 2Department of Biomedical
Informatics, University of Pittsburgh, 5607 Baum Blvd, Pittsburgh, PA 15206,
USA. 3The First Affiliated Hospital and Clinical Medicine Research Institute,
Jinan University, Guangzhou, China.

Received: 13 December 2018 Accepted: 12 February 2019

References
1. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis

and function. Nat Rev Genet. 2016;17(1):47–62.
2. Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev

Biochem. 2012;81:145–66.

3. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21(11):
1253–61.

4. Schmitt AM, Chang HY. Long noncoding RNAs in Cancer pathways. Cancer
Cell. 2016;29(4):452–63.

5. Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between
gene regulation and nuclear organization. Trends Cell Biol. 2014;24(11):651–63.

6. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D,
Zhang J, et al. lncRNA-dependent mechanisms of androgen-receptor-
regulated gene activation programs. Nature. 2013;500(7464):598–602.

7. Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y,
Mendell JT. Noncoding RNA NORAD regulates genomic stability by
sequestering PUMILIO proteins. Cell. 2016;164(1–2):69–80.

8. Yan X, Hu Z, Feng Y, Hu X, Yuan J, Zhao SD, Zhang Y, Yang L, Shan W, He
Q, et al. Comprehensive genomic characterization of long non-coding RNAs
across human cancers. Cancer Cell. 2015;28(4):529–40.

9. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends
Cell Biol. 2011;21(6):354–61.

10. Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex
diseases: from experimental results to computational models. Brief
Bioinform. 2017;18(4):558–76.

11. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T,
Argani P, Rinn JL, et al. Long non-coding RNA HOTAIR reprograms chromatin
state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

12. Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N,
Brandt B, Buerger H, Bulk E, et al. MALAT-1, a novel noncoding RNA, and
thymosin beta4 predict metastasis and survival in early-stage non-small cell
lung cancer. Oncogene. 2003;22(39):8031–41.

13. Fan M, Li X, Jiang W, Huang Y, Li J, Wang Z. A long non-coding RNA,
PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer
cells. Exp Ther Med. 2013;5(4):1143–6.

14. Quek XC, Thomson DW, Maag JL, Bartonicek N, Signal B, Clark MB, Gloss BS,
Dinger ME. lncRNAdb v2.0: expanding the reference database for functional
long noncoding RNAs. Nucleic Acids Res. 2015;43(Database issue):D168–73.

15. Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, Zhang Q, Yan G, Cui Q.
LncRNADisease: a database for long-non-coding RNA-associated diseases.
Nucleic Acids Res. 2013;41(Database issue):D983–6.

16. Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, Gao Y, Guo M, Yue M, Wang
L, et al. Lnc2Cancer: a manually curated database of experimentally
supported lncRNAs associated with various human cancers. Nucleic Acids
Res. 2016;44(D1):D980–5.

17. Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ, et
al. NONCODE 2016: an informative and valuable data source of long non-
coding RNAs. Nucleic Acids Res. 2016;44(D1):D203–8.

18. Chen X, Yan GY. Novel human lncRNA-disease association inference based
on lncRNA expression profiles. Bioinformatics. 2013;29(20):2617–24.

19. Chen X, Yan CC, Luo C, Ji W, Zhang Y, Dai Q. Constructing lncRNA
functional similarity network based on lncRNA-disease associations and
disease semantic similarity. Sci Rep. 2015;5:11338.

20. Huang YA, Chen X, You ZH, Huang DS, Chan KC. ILNCSIM: improved lncRNA
functional similarity calculation model. Oncotarget. 2016;7(18):25902–14.

21. Chen X, Huang YA, Wang XS, You ZH, Chan KC. FMLNCSIM: fuzzy measure-
based lncRNA functional similarity calculation model. Oncotarget. 2016;
7(29):45948–58.

22. Liu MX, Chen X, Chen G, Cui QH, Yan GY. A computational framework to infer
human disease-associated long noncoding RNAs. PLoS One. 2014;9(1):e84408.

23. Chen X. Predicting lncRNA-disease associations and constructing lncRNA
functional similarity network based on the information of miRNA. Sci Rep.
2015;5:13186.

24. Zhao T, Xu J, Liu L, Bai J, Xu C, Xiao Y, Li X, Zhang L. Identification of
cancer-related lncRNAs through integrating genome, regulome and
transcriptome features. Mol BioSyst. 2015;11(1):126–36.

25. Wang J, Ma R, Ma W, Chen J, Yang J, Xi Y, Cui Q. LncDisease: a sequence
based bioinformatics tool for predicting lncRNA-disease associations.
Nucleic Acids Res. 2016;44(9):e90.

26. Lan W, Li M, Zhao K, Liu J, Wu FX, Pan Y, Wang J. LDAP: a web server for
lncRNA-disease association prediction. Bioinformatics. 2017;33(3):458–60.

27. Fu G, Wang J, Domeniconi C, Yu G. Matrix factorization-based data fusion for the
prediction of lncRNA-disease associations. Bioinformatics. 2018;34(9):1529–37.

28. Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: a comprehensive web-
based bioinformatics toolkit for exploring disease associations and ncRNA
function. Bioinformatics. 2018;34(11):1953–6.

Fan et al. BMC Bioinformatics           (2019) 20:87 Page 11 of 12

https://doi.org/10.1186/s12859-019-2675-y
https://doi.org/10.1186/s12859-019-2675-y
https://github.com/NWPU-903PR/IDHI-MIRW


29. Yu G, Wang Y, Wang J, Fu G, Guo M, Domeniconi C: Weighted matrix
factorization based data fusion for predicting lncRNA-disease associations.
In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM).
2018: 572–577.

30. Sun J, Shi H, Wang Z, Zhang C, Liu L, Wang L, He W, Hao D, Liu S, Zhou M.
Inferring novel lncRNA-disease associations based on a random walk model
of a lncRNA functional similarity network. Mol BioSyst. 2014;10(8):2074–81.

31. Yang X, Gao L, Guo X, Shi X, Wu H, Song F, Wang B. A network based
method for analysis of lncRNA-disease associations and prediction of
lncRNAs implicated in diseases. PLoS One. 2014;9(1):e87797.

32. Zhou M, Wang X, Li J, Hao D, Wang Z, Shi H, Han L, Zhou H, Sun J. Prioritizing
candidate disease-related long non-coding RNAs by walking on the
heterogeneous lncRNA and disease network. Mol BioSyst. 2015;11(3):760–9.

33. Chen X. KATZLDA: KATZ measure for the lncRNA-disease association
prediction. Sci Rep. 2015;5:16840.

34. Chen X, You ZH, Yan GY, Gong DW. IRWRLDA: improved random walk with
restart for lncRNA-disease association prediction. Oncotarget. 2016;7(36):
57919–31.

35. Cheng L, Shi H, Wang Z, Hu Y, Yang H, Zhou C, Sun J, Zhou M.
IntNetLncSim: an integrative network analysis method to infer human
lncRNA functional similarity. Oncotarget. 2016;7(30):47864–74.

36. Yu G, Fu G, Lu C, Ren Y, Wang J. BRWLDA: bi-random walks for predicting
lncRNA-disease associations. Oncotarget. 2017;8(36):60429–46.

37. Wang P, Guo Q, Gao Y, Zhi H, Zhang Y, Liu Y, Zhang J, Yue M, Guo M, Ning
S, et al. Improved method for prioritization of disease associated lncRNAs
based on ceRNA theory and functional genomics data. Oncotarget. 2017;
8(3):4642–55.

38. Yao Q, Wu L, Li J, Yang LG, Sun Y, Li Z, He S, Feng F, Li H, Li Y. Global
prioritizing disease candidate lncRNAs via a multi-level composite network.
Sci Rep. 2017;7:39516.

39. Ding L, Wang M, Sun D, Li A. TPGLDA: novel prediction of associations
between lncRNAs and diseases via lncRNA-disease-gene tripartite graph. Sci
Rep. 2018;8(1):1065.

40. Gu C, Liao B, Li X, Cai L, Li Z, Li K, Yang J. Global network random walk for
predicting potential human lncRNA-disease associations. Sci Rep. 2017;7(1):
12442.

41. Zhang J, Zhang Z, Chen Z, Deng L. Integrating multiple heterogeneous
networks for novel LncRNA-disease association inference. IEEE/ACM Trans
Comput Biol Bioinform. 2017.

42. Li Y, Patra JC. Genome-wide inferring gene-phenotype relationship by
walking on the heterogeneous network. Bioinformatics. 2010;26(9):1219–24.

43. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA,
miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-
Seq data. Nucleic Acids Res. 2014;42(Database issue):D92–7.

44. Hao Y, Wu W, Li H, Yuan J, Luo J, Zhao Y, Chen R: NPInter v3.0: an upgraded
database of noncoding RNA-associated interactions. Database (Oxford)
2016, 2016.

45. Yi Y, Zhao Y, Li C, Zhang L, Huang H, Li Y, Liu L, Hou P, Cui T, Tan P, et al.
RAID v2.0: an updated resource of RNA-associated interactions across
organisms. Nucleic Acids Res. 2017;45(D1):D115–8.

46. Schriml LM, Arze C, Nadendla S, Chang YW, Mazaitis M, Felix V, Feng G,
Kibbe WA. Disease ontology: a backbone for disease semantic integration.
Nucleic Acids Res. 2012;40(Database issue):D940–6.

47. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q. HMDD v2.0: a database for
experimentally supported human microRNA and disease associations.
Nucleic Acids Res. 2014;42(Database issue):D1070–4.

48. Pinero J, Bravo A, Queralt-Rosinach N, Gutierrez-Sacristan A, Deu-Pons J,
Centeno E, Garcia-Garcia J, Sanz F, Furlong LI. DisGeNET: a comprehensive
platform integrating information on human disease-associated genes and
variants. Nucleic Acids Res. 2017;45(D1):D833–9.

49. Cancer Genome Atlas N: Comprehensive molecular portraits of human
breast tumours. Nature 2012, 490(7418):61–70.

50. Chacon-Cortes D, Smith RA, Lea RA, Youl PH, Griffiths LR. Association of
microRNA 17-92 cluster host gene (MIR17HG) polymorphisms with breast
cancer. Tumour Biol. 2015;36(7):5369–76.

51. Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, Neilsen
PM. p53 represses the oncogenic Sno-MiR-28 derived from a SnoRNA. PLoS
One. 2015;10(6):e0129190.

52. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, Wang C, Hawke DH, Wang S,
Zhang Y, et al. The LINK-A lncRNA activates normoxic HIF1alpha signalling
in triple-negative breast cancer. Nat Cell Biol. 2016;18(2):213–24.

53. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;
66(1):7–30.

54. Ge S, Xia X, Ding C, Zhen B, Zhou Q, Feng J, Yuan J, Chen R, Li Y, Ge Z,
et al. A proteomic landscape of diffuse-type gastric cancer. Nat Commun.
2018;9(1):1012.

55. Hu CE, Du PZ, Zhang HD, Huang GJ. Long noncoding RNA CRNDE
promotes proliferation of gastric Cancer cells by targeting miR-145. Cell
Physiol Biochem. 2017;42(1):13–21.

56. Pan L, Liang W, Gu J, Zang X, Huang Z, Shi H, Chen J, Fu M, Zhang P, Xiao X,
et al. Long noncoding RNA DANCR is activated by SALL4 and promotes the
proliferation and invasion of gastric cancer cells. Oncotarget. 2018;9(2):1915–30.

57. Tian X, Zhu X, Yan T, Yu C, Shen C, Hong J, Chen H, Fang JY. Differentially
expressed lncRNAs in gastric Cancer patients: a potential biomarker for
gastric Cancer prognosis. J Cancer. 2017;8(13):2575–86.

58. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer
statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

59. Zhao Y, Qin ZS, Feng Y, Tang XJ, Zhang T, Yang L. Long non-coding RNA
(lncRNA) small nucleolar RNA host gene 1 (SNHG1) promote cell
proliferation in colorectal cancer by affecting P53. Eur Rev Med Pharmacol
Sci. 2018;22(4):976–84.

60. Zhang YH, Fu J, Zhang ZJ, Ge CC, Yi Y. LncRNA-LINC00152 down-regulated
by miR-376c-3p restricts viability and promotes apoptosis of colorectal
cancer cells. Am J Transl Res. 2016;8(12):5286–97.

61. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

62. Lu Z, Cohen KB, Hunter L. GeneRIF quality assurance as summary revision.
Pac Symp Biocomput. 2007:269–80.

63. van Laarhoven T, Nabuurs SB, Marchiori E. Gaussian interaction profile
kernels for predicting drug-target interaction. Bioinformatics. 2011;27(21):
3036–43.

64. Yu G, Wang LG, Yan GR, He QY. DOSE: an R/Bioconductor package for
disease ontology semantic and enrichment analysis. Bioinformatics. 2015;
31(4):608–9.

65. Luo Y, Zhao X, Zhou J, Yang J, Zhang Y, Kuang W, Peng J, Chen L, Zeng J. A
network integration approach for drug-target interaction prediction and
computational drug repositioning from heterogeneous information. Nat
Commun. 2017;8(1):573.

66. Cao M, Pietras CM, Feng X, Doroschak KJ, Schaffner T, Park J, Zhang H,
Cowen LJ, Hescott BJ. New directions for diffusion-based network
prediction of protein function: incorporating pathways with confidence.
Bioinformatics. 2014;30(12):i219–27.

67. Navlakha S, Kingsford C. The power of protein interaction networks for
associating genes with diseases. Bioinformatics. 2010;26(8):1057–63.

68. Liao CS, Lu K, Baym M, Singh R, Berger B. IsoRankN: spectral methods for global
alignment of multiple protein networks. Bioinformatics. 2009;25(12):i253–8.

69. Gligorijevic V, Barot M, Bonneau R. DeepNF: deep network fusion for protein
function prediction. Bioinformatics. 2018;34(22):3873–81.

70. Cho H, Berger B, Peng J. Diffusion component analysis: unraveling functional
topology in biological networks. Res Comput Mol Biol. 2015;9029:62–4.

71. Chen X, Liu MX, Yan GY. Drug-target interaction prediction by random walk
on the heterogeneous network. Mol BioSyst. 2012;8(7):1970–8.

72. Valdeolivas A, Tichit L, Navarro C, Perrin S, Odelin G, Levy N, Cau P, Remy E,
Baudot A. Random walk with restart on multiplex and heterogeneous
biological networks. Bioinformatics. 2018.

Fan et al. BMC Bioinformatics           (2019) 20:87 Page 12 of 12


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Evaluation method and metrices
	Comparison with other methods
	Effectiveness of introducing multiple information sources
	Effectiveness of using the topological similarity network to construct the lncRNA-disease heterogeneous network
	The effect of parameters
	Case studies and the potential lncRNA-disease associations analysis

	Discussion
	Conclusions
	Methods
	Datasets
	An overview of the IDHI-MIRW algorithm
	Building lncRNA/disease similarity networks
	Generating lncRNA/disease topological similarity networks
	Constructing the lncRNA-disease heterogeneous network
	Implementing RWRH algorithm for predicting lncRNA-disease associations

	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

