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ABSTRACT

We propose Segment Convolutional Neural Networks (Seg-CNNs) for classifying relations from clinical notes.

Seg-CNNs use only word-embedding features without manual feature engineering. Unlike typical CNN models,

relations between 2 concepts are identified by simultaneously learning separate representations for text seg-

ments in a sentence: preceding, concept1, middle, concept2, and succeeding. We evaluate Seg-CNN on the i2b2/

VA relation classification challenge dataset. We show that Seg-CNN achieves a state-of-the-art micro-average

F-measure of 0.742 for overall evaluation, 0.686 for classifying medical problem–treatment relations, 0.820 for

medical problem–test relations, and 0.702 for medical problem–medical problem relations. We demonstrate the

benefits of learning segment-level representations. We show that medical domain word embeddings help im-

prove relation classification. Seg-CNNs can be trained quickly for the i2b2/VA dataset on a graphics processing

unit (GPU) platform. These results support the use of CNNs computed over segments of text for classifying

medical relations, as they show state-of-the-art performance while requiring no manual feature engineering.

Key words: natural language processing, medical relation classification, convolutional neural network, machine learning

INTRODUCTION AND RELATED WORK

It is now well established that automated extraction of knowledge from

biomedical literature or clinical notes involves accurately identifying not

only the conceptual entities, but also the varied relationships among

those concepts.1–4 The task generally involves annotating unstructured

text with named entities and classifying the relations between these an-

notated entities. Relation identification has received increasing attention

over the past decade, and is critical in applications including clinical

decision-making, clinical trial screening, and pharmacovigilance.5–12

Some of the advances in the state-of-the-art clinical natural lan-

guage processing (NLP) systems for classifying medical relations

were documented in the 2010 i2b2/VA challenge workshop, which

attracted international teams to address shared tasks on identifying

the possible relations between medical problems and treatments, be-

tween medical problems and tests, and between pairs of medical

problems.13 All participating systems in the 2010 i2b2/VA challenge

utilized heavy feature engineering for their machine learning mod-

els13; many also harvested features from existing NLP pipelines such

as cTakes,14 MetaMap,15 and GeniaTagger.16 All systems combined

lexical, syntactic, and semantic features. Some teams complemented

their machine learning systems with annotated and/or unannotated

external data.17–25 Others supplemented their machine learning sys-

tems with rules that capture linguistic patterns of relations.23,25,26

One of the top-performing teams17 performed a follow-up study by

employing a composite kernel–based model that consists of concept

kernels, connection kernels, and tree kernels in order to map lexical,
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semantic, and syntactic features onto higher-dimensional space.27

They reported an improvement of 0.01 micro-averaged F-measure

(0.731–0.742) on their overall challenge scores.

Unfortunately, systems that use human-engineered features often

do not generalize well to new datasets.3,28 Recent studies on applying

convolutional neural networks (CNNs) to clinical datasets aimed to

automatically learn feature representations to reduce the need for

engineered features and have achieved some success on specific tasks,

such as medical image analysis.29 Most recently, Sahu et al.30 applied

CNN to i2b2/VA relation classification and learned a single sentence-

level representation for each relation, making use of embedding, se-

mantic, and syntactic features; however, the top challenge participat-

ing systems still maintain state-of-the-art performance.17,19 Their

sentence-CNN learns a relation representation for the entire sentence

but does not explicitly distinguish the segments that form the relations

preceding, concept1, middle, concept2, and succeeding. This is incon-

sistent with the observation that the 5 segments of text have different

roles in determining the relation class.31,32 Thus the motivating ques-

tion for this study is whether we can design CNNs with only word-

embedding features and no manual feature engineering to effectively

classify the relations among medical concepts as stated in the clinical

narratives. Our system learns one representation for each segment,

uses only embedding features, attains an F-measure matching the

state-of-the-art system, and performs modestly better than the chal-

lenge participating systems.

METHODS AND MATERIALS

Dataset
This work utilized the corpus and target relations from the 2010 i2b2/

VA challenge,13 which include relations from the following 3 catego-

ries: medical problem–treatment (TrP) relations, medical problem–test

(TeP) relations, and medical problem–medical problem (PP) relations.

Each category contains a list of possible relations. For example, the PP

relation category includes problems that are related to each other (PIP)

and that have no relation (None). The supplementary material shows

detailed relation descriptions and statistics. For the i2b2/VA relation

classification task, the named entities are given, so there is no need to

run named entity recognition. The relation challenge data are publicly

available through i2b2/VA at https://www.i2b2.org/NLP/Relations/.

Word embeddings
The word embeddings are meaningful real-valued vectors where se-

mantically similar words usually have close embedding vectors. The

word embeddings learned by neural networks often capture linguistic

regularities and patterns that are useful in language modeling.33 Thus

using word-embedding vectors trained from an unsupervised neural

language model as features is a popular approach in NLP, especially

CNN-based methods.30,34–36 We applied word2vec33 to learn word

embeddings from different corpora using the continuous bag-of-words

method. We experimented with both the general domain New York

Times corpus37 containing 1.9 million documents and the Medical In-

formation Mart for Intensive Care (MIMIC)-III clinical notes corpus38

that contains 2 million clinical notes. Earlier studies aggregated (max-

or mean-aggregation) embedding vectors for feature generation,36

which we adopted as baseline models, as shown in Figure 1.

Sentence-CNN for relation classification
Previously, CNNs have been applied to modeling and classifying

sentences and short text.34,39 Relation classification needs finer

detail, because one sentence may contain multiple distinct mentions

of relations, each with its own concept text and context. One way to

represent context is to record the relative positions of individual

words to the 2 medical concepts being related.30,40 This approach

was used by Sahu et al.30 on i2b2/VA relations, which we reimple-

mented as a comparison model. Our reimplementation augments

the embedding vector of each word by appending 2 integers that in-

dicate its position relative to concept1 and concept2, denoted by p1

and p2, respectively. For example, in the sentence “Her [neuroimag-

ing studies] revealed evidence of [lumbar stenosis],” “Her” is at �1

distance and “revealed” is at þ1 distance away from “neuroimaging

studies” (concept1), hence their p1 values are �1 and þ1, respec-

tively. For all words in concept1 (“neuroimaging” and “studies”), p1

values are set to 0. We pass a sequence of [embedding; position] vec-

tors to the convolution layer and then a max-pooling layer, termed

as a convolution unit in Figure 2 (A). We then input mapped fea-

tures to a softmax classifier in order to classify the relations.

Figure 1. A simple embedding aggregation model.

Figure 2. The convolution units for (A) Sentence-CNN model and (B) Seg-

CNN model for relation classification. In the figure, w is the convolution

window size and nhf is the number of hidden features, as well as the number

of different filters. In (A), position features are appended to the embedding

features.
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Seg-CNN for relation classification
Sentence-CNN learns a relation representation for the entire sentence

but does not explicitly distinguish segments. This is inconsistent with

the observation that the 5 segments of text have different roles in deter-

mining the relation class.31 We therefore propose Seg-CNN, which

consists of multiple convolution units that process the preceding (toke-

nized words before the first concept), concept1 (tokenized words in the

first concept), middle (tokenized words between the 2 concepts), con-

cept2 (tokenized words in the second concept), or succeeding (toke-

nized words after the second concept) segment, respectively. Each

convolution unit uses a sliding window (eg, of size w1;w2; or w3) to

process a segment and consists of a convolution layer, then a max-

pooling layer, to produce multiple hidden features (see Figure 2 [B]). In

the following description, let k be the word-embedding dimension. A

segment with length T (number of words) is represented as a matrix

X 2 Rk�T , concatenating its word embeddings as columns.

In a convolution unit, one hidden feature is produced by one fil-

ter as follows (henceforth we use feature and filter interchangeably).

Let Wj 2 Rk�w be the convolution weight of the jth filter

(1 � j � nhf, where hf stands for hidden features) with a window

size of w. Let * denote the operation of element-wise matrix multi-

plication and sumð�Þ the summation operation across matrix entries.

Let bj be the convolution bias and f xð Þ ¼ maxð0; xÞ the rectified lin-

ear unit activation function. Sliding the convolution window across

a length-T segment gives

hj
i ¼ f sum X:;i:iþw�1 �Wj

� �
þ bj

� �
(1)

where i 2 ½1;T �wþ 1�, comma (,) separates different dimensions,

colon (:) denotes a span, and, in particular, a stand-alone colon indicates

an entire span of a dimension. Note the difference between convolution

in Figure 2 (B) and simple aggregation in Figure 1. The output of the

convolutional layer varies in length depending on the number of words

in the segment. We then apply a max-pooling operation to produce

cj ¼ max
1�i� T�wþ1ð Þ

ðhj
iÞ (2)

as the resulting hidden feature of this filter. The intuition of max-

pooling is to capture the most important feature, ie, the one with the

highest value, for each feature map, effectively filtering out less in-

formative compositions of words. Max-pooling also guarantees that

the extracted features are independent of their location and the seg-

ment length.

Figure 3 shows how convolution units are constructed and orga-

nized in Seg-CNN. For a specific convolution unit of a segment,

each filter can be considered as a linguistic feature detector that

learns to recognize a specific feature cj over w-grams. With nhf such

filters, we have a hidden layer of feature vector ds
w ¼ ½c1; . . . ; cnhf �

for the segment s. With m different window sizes, we have a

5 �m � nhf-dimensional vector g:

g ¼ ½dprec
w1

; dprec
w2

. . . dprec
wm

; dc1
w1
;dc1

w2
. . . dc1

wm
; dmid

w1
; dmid

w2
. . . dmid

wm
;

tdc2
w1
; dc2

w2
. . . dc2

wm
;dsucc

w1
; dsucc

w2
. . . dsucc

wm
�

(3)

The vector g concatenates the hidden features for all segments of

a relation. We input g to a fully connected layer (with weight W and

bias b) to produce a size-n vector z ¼Wgþ b, where n is the number

of relation classes. We then apply a softmax layer to compute the

probability for the lth class Pl as in

Pl ¼
ezl

XN

n¼1
ezn

(4)

Then the relation class is chosen as argmaxlPl.

EXPERIMENTS AND RESULTS

The top systems from i2b2/VA challenge participants still represent

the state of the art for this dataset.17,19 In order to fairly compare

Seg-CNN with those systems, we used the same training and test

datasets. To optimize the hyperparameters for our models, we ran-

domly selected 10% of the training dataset as the validation set. We

trained word embeddings on the New York Times and MIMIC-III

corpora, respectively, with multiple embedding dimensions from

300 to 600. We chose [3–5] as convolution window sizes. When

inspecting relation categories, we found that the PP relation category

had a highly imbalanced class ratio (nearly 8 times more None labels

Figure 3. Segment convolutional neural network (Seg-CNN). Concept and context text are divided into 5 segments: before the first concept (preceding), of the first

concept (concept1), between the 2 concepts (middle), of the second concept (concept2), and after the second concept (succeeding). Each concept is processed by

the convolution unit as shown in Figure 2 (B).
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than PIP labels). Following de Bruijn et al.,17 we down-sampled the

training set to a PIP/None ratio of 1:4. In both sentence- and Seg-

CNN models, we experimented with multiple numbers of hidden

features (100, 150, and 200).

Some concepts are annotated on the head word (eg, single-word

annotations), others include preceding and succeeding modifiers (eg,

spanning>20 words). To overcome these annotation inconsistencies,

we allowed the concept text to be padded, backward and forward,

with neighboring words (experimenting with padding sizes from 3 to

10). Although padding introduces redundancy between concepts and

context, the downstream fully connected layer acts as a feature selector.

Optimal padding size, number of hidden features, and embedding

dimensions were chosen based on validation set performance. For regu-

larization on the CNN models, we used the 50% random dropout41

on the output of the max-pooling layer. Dropout randomly drops the

values of a portion (50% in our experiment) of hidden units, thus pre-

venting co-adaptation of these hidden units and reducing overfitting.42

For evaluation, we computed the same micro-averaged precision,

recall, and F-measure as used in the challenge (see Table 1). Com-

paring the micro-averaged F-measure, Seg-CNN ranks first in all re-

lation classification tasks compared with the challenge participating

systems with heavily engineered features from the i2b2/VA chal-

lenge, even though Seg-CNN uses only word embeddings without

feature engineering. Moreover, Seg-CNN outperforms all compari-

son models, including max- and mean-aggregation of embedding

and sentence-CNN. This is consistent with our intuition on the ben-

efits of learning separate feature representations for different seg-

ments. As the follow-up study by Zhu et al.27 that attained the state

of the art only reported the overall evaluations – 0.755 (precision),

0.726 (recall), and 0.742 (F-measure) – we also report the overall

metrics from Seg-CNN as 0.748 (precision), 0.736 (recall), and

0.742 (F-measure). Seg-CNN matches the state-of-the-art F-measure

while using only word embedding and minimal feature engineering.

Note that the performance shows considerable difference over the 3

categories of relations (TrP, TeP, and PP), which is true for both our

CNN models and the challenge participating systems. This is likely

due to multiple issues, including the number of labels to classify

(6 labels for the TrP relation category and 3 labels for the TeP rela-

tion category) and the class imbalance (the highest imbalance for the

PP relation category). The observation that Seg-CNN consistently

performs modestly better than challenge participating systems across

the 3 categories suggests that Seg-CNN is not less robust to these

issues than the contrasting systems.

We implemented our models using the Theano package43 and

ran them on an NVidia Tesla GPU with cuDNN library enabled.

We have made our codes available on a public repository (https://

github.com/yuanluo/seg_cnn). Table 2 shows the training time re-

quired by the Seg-CNN and Sentence-CNN using medical word

embeddings. The training times are within a reasonable 7-min win-

dow for all the model-task combinations.

DISCUSSION

In order to evaluate the impact of the corpus used to train word

embeddings, we report in Table 1 the performance of Seg-CNN using

a general domain embedding. Comparing these results to Seg-CNN

with medical word embeddings, we see about a 2% drop in micro-

averaged F-measure. This drop is consistent with the distinct charac-

teristics of clinical narratives, many of which are fragmented text

abundant with acronyms (eg, CABG for coronary artery bypass

grafting) and abbreviations (eg, s/p for status post). CNNs with gen-

eral domain embeddings likely miss critical information carried by

such words. For example, “The patient developed [medical problem]

Table 1. Performance of the CNN models with word embedding trained on the MIMIC-III corpus (when not explicitly noted) or on the general

domain New York Times corpus (NYT)

System Medical problem–treatment relations Medical problem–test relations Medical problem–medical problem relations

R P F R P F R P F

Seg-CNN 0.685 .687 0.686 0.804 .836 0.820 0.704 .700 0.702

Sentence-CNN 0.642 .641 0.641 0.760 .812 0.785 0.679 .693 0.686

Embedding max 0.636 .645 0.641 0.770 .816 0.791 0.741 .554 0.634

Embedding mean 0.632 .618 0.625 0.770 .825 0.796 0.786 .533 0.635

Seg-CNN (NYT) 0.641 .690 0.665 0.790 .835 0.812 0.708 .681 0.694

Seg-CNN (NYTþMIMIC) 0.653 .706 0.678 0.788 .848 0.817 0.710 .689 0.700

Roberts et al.19 0.686 .672 0.679 0.833 .798 0.815 0.726 .664 0.694

deBruijn et al.17 0.583 .750 0.656 0.789 .843 0.815 0.712 .691 0.701

Grouin et al.26 0.646 .647 0.647 0.801 .792 0.797 0.645 .670 0.657

Patrick et al.24 0.599 .671 0.633 0.774 .813 0.793 0.627 .677 0.651

Jonnalagadda et al.21 0.679 .581 0.626 0.828 .765 0.795 0.730 .586 0.650

Divita et al.18 0.582 .704 0.637 0.782 .794 0.788 0.534 .710 0.610

Solt et al.20 0.629 .621 0.625 0.779 .801 0.790 0.711 .469 0.565

Demner-Fushman et al.23 0.612 .642 0.626 0.677 .835 0.748 0.533 .662 0.591

Anick et al.22 0.619 .596 0.608 0.787 .744 0.765 0.502 .631 0.559

Cohen et al.25 0.578 .606 0.591 0.781 .750 0.765 0.492 .627 0.552

Performance of i2b2/VA challenge participating systems are also included for comparison (gray). The Seg-CNN best performance is attained with the hyperpara-

meter combinations (200 embedding dimension, 100 hidden features, pad size 7) for TrP relations, (500, 150, 4) for TeP relations, and (400, 100, 10) for PP relations.

The comparison model Sentence-CNN attains best performance with (400 embedding dimension, 200 hidden features) for TrP relations, (500, 200) for TeP relations,

and (300, 150) for PP relations. Seg-CNN using New York Times embedding has best-performance hyperparameters at (600, 200, 8) for TrP relations, (500, 200, 4) for

TeP relations, and (500, 200, 10) for PP relations. Seg-CNN using embedding trained from the New York Times and MIMIC-III corpora has best-performance hyper-

parameters at (600, 200, 6) for TrP relations, (300, 150, 4) for TeP relations, and (600, 150, 9) for PP relations. Best micro-averaged F-measures are in bold.
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s/p [treatment]” usually indicates a treatment-cause-problem rela-

tion. A larger embedding corpus typically leads to better embed-

ding33; however, in this work, word embeddings from general plus

medical corpora did not outperform medical embeddings only. It is

our future work to explore whether the difference between the New

York Times corpus and the MIMIC-III corpus overshadows the ben-

efits of additional corpora, and whether other embedding methods

such as Skip-Gram33 could produce better embeddings.

The performance of Seg-CNN is better than that of Sentence-

CNN and embedding aggregations. Our Sentence-CNN is similar

to that of Sahu et al.,30 but does not use linguistic features such as

part of speech, phrase chunking, etc. In addition, Sahu et al.,30

combined the i2b2/VA training and test datasets and performed

cross-validation, and thus had considerably more training data. Al-

though the performance of Sentence-CNN is lower than the perfor-

mance of state-of-the-art i2b2/VA challenge participant models,

Seg-CNN’s performance is slightly higher. This observation con-

firms the intuition on the benefits of learning individual representa-

tions for different segments. Seg-CNN’s improvement over the

state-of-the-art systems was modest, indicating room for further

improvement. There may still be merit in the linguistic features (as

shown in Sahu et al.30) and domain-specific knowledge. The im-

pact of domain-specific knowledge is also evident from the fact

that Seg-CNN with medical embeddings outperformed Seg-CNN

with general-domain embeddings. We plan to investigate whether

tighter integration of linguistic features and domain knowledge

into CNNs could result in further improvements for relation

classification.

CONCLUSION

In this work, we showed that Seg-CNN achieved state-of-the-art

performance on the i2b2/VA relation classification challenge data-

sets, without manual feature engineering. We also showed that

Seg-CNN outperforms a Sentence-CNN model and embedding ag-

gregation models, which is consistent with the intuition that learning

individual representation for each of the preceding, concept1, mid-

dle, concept2, and succeeding segment can provide useful informa-

tion in discerning relations between concepts. We evaluated the

impact of word embeddings on the performance of Seg-CNN and

showed that medical word embeddings can help improve relation

classification. These results are not only encouraging, but also sug-

gestive of future directions, such as effective use of embedding cor-

pora and tighter integration of domain knowledge into CNN

models.
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