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ABSTRACT

Objectives: We sought to investigate the tissue specificity of drug sensitivities in large-scale pharmacological

studies and compare these associations to those found in drug clinical indications.

Materials and Methods: We leveraged the curated cell line response data from PharmacoGx and applied an

enrichment algorithm on drug sensitivity values’ area under the drug dose-response curves (AUCs) with and

without adjustment for general level of drug sensitivity.

Results: We observed tissue specificity in 63% of tested drugs, with 8% of total interactions deemed significant

(false discovery rate <0.05). By restricting the drug-tissue interactions to those with AUC>0.2, we found that in 52%

of interactions, the tissue was predictive of drug sensitivity (concordance index>0.65). When compared with clinical

indications, the observed overlap was weak (Matthew correlation coefficient, MCC¼0.0003, P> .10).

Discussion: While drugs exhibit significant tissue specificity in vitro, there is little overlap with clinical indica-

tions. This can be attributed to factors such as underlying biological differences between in vitro models and pa-

tient tumors, or the inability of tissue-specific drugs to bring additional benefits beyond gold standard treat-

ments during clinical trials.

Conclusion: Our meta-analysis of pan-cancer drug screening datasets indicates that most tested drugs

exhibit tissue-specific sensitivities in a large panel of cancer cell lines. However, the observed preclinical

results do not translate to the clinical setting. Our results suggest that additional research into showing paral-

lels between preclinical and clinical data is required to increase the translational potential of in vitro drug

screening.

BACKGROUND

Large projects such as the Cancer Genome Atlas1 and the Interna-

tional Cancer Genome Consortium2 have enabled the comprehen-

sive characterization of molecular aberrations in multiple cancer

types. The collection of mutations, copy number variations, gene ex-

pressions, and other features enables molecularly based patient strat-

ification across diverse tumor types, potentially creating a shift from

the traditional classification based on tissue type.3–5 However, tu-

mors with similar genomic aberrations may respond differently to

cytotoxic and targeted therapies, suggesting that tissue-of-origin is

unlikely to be supplanted by molecular stratification.6

Testing drug potency in large populations of patients with differ-

ent cancer types is an expensive and lengthy process.7 Cancer cell
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lines provide a safe and cost-efficient method by which to measure

drug response in multiple cancer types.8 However, translation of

these preclinical findings in animal studies9,10 and clinical settings11

is complex, as cancer cell lines may differ from the patient tumors

they originate from.12,13 This discrepancy has several causes.

Repeatedly culturing cell lines allows for the potential acquisition of

genomic aberrations, causing the cell lines to diverge from their ini-

tial samples.14 In addition, mislabeling, simple clerical mistakes in

cell line annotations, and cross-contamination can also cause skew-

ing of drug screening results.15–17 Despite these drawbacks, cell lines

are the only model systems currently enabling high-throughput drug

screening and will therefore remain the model of choice for drug de-

velopment and biomarker discovery.18–23

In a recent paper investigating a pharmacogenomic dataset of

59 cell lines (NCI60), Jaeger et al.24 observed that drugs designed

for specific tissue types, such as lapatinib for breast cancer, had

similar activity across all tested tissue types, rather than unique

sensitivity patterns for targeted tissue types. Despite the small num-

ber of cell lines in NCI60, the authors concluded that cancer-

specific drugs do not show higher efficacy in cell lines representing

the tissue of interest, raising doubts about the relevance of in vitro

screening for drug discovery and repurposing. If the results of this

seminal study were generalized to a larger panel of cell lines, this

would call for more curation of established cell lines to verify their

tissues of origin, and for generation of new cell lines or organoids

freshly derived from patients as better models for high-throughput

drug screening.10,25–27

The recent release of multiple large-scale pharmacogenomic datasets

enables analysis of sensitivities of thousands of cell lines to hundreds of

drugs.18–21,23 Subsequent evaluation of these datasets, however, found

only moderate inter-laboratory concordance in the drug response pheno-

types,20,28–31 highlighting the need for meta-analysis of these complex

yet valuable studies.32 Such meta-analysis is hindered by the lack of stan-

dardization in cell line and drug identifiers. We addressed this issue by

developing the PharmacoGx platform, which provides a computational

system to allow unified processing of pharmacogenomic datasets cu-

rated with standard cell line and drug identifiers.33

OBJECTIVES

We sought to investigate the tissue specificity of drug sensitivities in

large-scale pharmacological studies and compare these associations

to those found in drug clinical indications using our compendium of

curated cell line response data. We also sought to identify novel

tissue-drug associations, which may present new avenues for drug

repurposing.

SIGNIFICANCE

While there is strong evidence that tissue context significantly im-

pacts therapy response in the clinical setting,6 tissue specificity of

drug sensitivity in immortalized cancer cell lines remains unclear,

with contradictory reports.23,24 Our meta-analysis of 732 experi-

mental and approved drugs screened in up to 1527 unique cancer

cell lines originating from 20 different tissue types indicates that tis-

sue of origin is strongly predictive of drug response in vitro. How-

ever, we found that, except for a few drugs, these preclinical

associations did not concur with results from clinical trials, calling

for further investigations of the relevance of cancer cell lines for

drug sensitivities in specific tissue types.

MATERIALS AND METHODS

The overall analysis design is represented in Figure 1.

Pharmacogenomic datasets
We curated the 4 largest pharmacogenomic datasets within our Phar-

macoGx platform33: the Cancer Cell Line Encyclopedia (CCLE),18 the

Genomics of Drug Sensitivity in Cancer (GDSC1000),19,23,34 the Can-

cer Therapy Response Portal (CTRPv2),21,35 and the Genentech Cell

Line Screening Initiative20 (Table 1). Cell lines were annotated using

the Cellosaurus annotation database,36 while drugs were annotated us-

ing SMILES structures,37 PubChem IDs,38 and InChiKeys.39 All cu-

rated data were stored as PharmacoSet objects within our

PharmacoGx platform (version 1.4.3).33

Tissue of origin of cancer cell lines
We used the Catalog of Somatic Mutations in Cancer nomenclature

to consistently annotate cancer cell lines with their tissues of ori-

gin.40 Tissues with <15 cancer cell lines were removed in each data-

set to ensure sufficient sample numbers for subsequent analysis.

Drug sensitivity
To ensure consistent evaluation of drug sensitivity, we used our

PharmacoGx platform to reprocess the drug dose-response curves in

our compendium of pharmacogenomic datasets.33 All dose-response

curves were fitted to the equation

y ¼ 1

1þ ðx=EC50ÞHS
;

where y¼0 denotes death of all cancer cells within a sample,

y¼ y(0)¼1 denotes no effect of the drug dose on the cancer cell sam-

ple, EC50 is the concentration at which viability is reduced to half of

the viability observed in the presence of an arbitrarily large concentra-

tion of drug, and HS (Hill slope) is a parameter describing the coopera-

tivity of binding. HS<1 denotes negative binding cooperativity,

HS¼1 denotes noncooperative binding, and HS>1 denotes positive

binding cooperativity. The parameters of the curves were fitted using

the least squares optimization framework. This fitting normalizes drug

response data, reducing the effects of drug-dependent variables such as

dosage and differences in administration. We used the area above the

dose-response curve (AUC 2 [0,1]) to quantify drug sensitivity across

cell lines, as AUC is always defined (as opposed to IC50) and combines

the potency and efficacy of a drug into a single parameter.41 In this

work, high AUC is indicative of sensitivity to a given drug.

To adjust for the general level of drug sensitivity of each cell line,

we corrected the AUC values using the approach proposed by Gee-

leher et al.42 Briefly, to correct the AUC values for drug d, the prin-

cipal component of AUC values for the 25% least correlated drugs

was computed for each cell line and subtracted from the original

AUC values.

Tissue specificity of drug sensitivity
Identification of drug-tissue associations using enrichment analysis

For each drug, cell lines were first ranked based on their drug sensi-

tivity (original and adjusted AUC values, separately) in each dataset.

We then adapted the gene set enrichment analysis43 implemented in

the piano package44 to test whether this ranked list was enriched in

sensitive cell lines belonging to specific tissue types (Supplementary

Figure S1). Our tissue enrichment analysis (TEA) therefore allowed

us to compute the significance of the association between each tissue
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and drug sensitivity using 10 000 cell line permutations in the tissue

set for each drug separately. It is worth noting that TEA compares

the tissue-specific distributions of drug sensitivity data (AUC) and,

as such, is not restricted to detection of the largest mode and lowest

variance of AUC values. However, TEA is a conservative approach,

as drugs exhibiting high sensitivity for all tissue types will not yield

any significant drug-tissue associations, although they may show

therapeutic effects in multiple cancer types.

Meta-analysis of drug-tissue associations

Applying TEA to each dataset generates a set of P values for each

drug-tissue association. These P values were combined using the

weighted Z method45 implemented in the combine.test function of

our survcomp package (version 1.24.0).46 Weights were defined as

the number of cell lines in a given tissue type in each dataset from

which the P value has been computed. These combined P values

were subsequently corrected for multiple testing using the false

Table 1. Characteristics of the pharmacogenomic datasets

Pharmacogenomic datasets CCLE GDSC1000 CTRPv2 gCSI

No. of cell lines 1061 1124 887 410

No. of tissue types 24 36 23 23

No. of drugs 24 251 545 16

No. of drug dose-response curves 11 670 225 480 395 263 6455

Pharmacological Assay CellTiter Glo Syto60 CellTiter Glo CellTiter Glo

Data source broadinstitute.org/ccle/ cancerrxgene.org/ broadinstitute.org/ctrp/ research-pub.gene.com/gCSI-cellline-data

Reference 18 23 21 20

Figure 1. Schematic representation of data input and analysis pipeline.
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discovery rate procedure47 for all drugs. To focus on the drug-tissue

associations that are reproducible across 2 or more datasets, the

associations found in only 1 dataset were discarded from further

analysis.

Predictability of significant drug-tissue associations

To estimate the predictive value of tissue t for sensitivity to drug d,

we created a binary variable b set to 1 for cell lines belonging to tis-

sue t and 0 otherwise. We then assessed the predictive value of the

variable b by computing the concordance index48 between b and the

adjusted AUC values, as implemented in the Hmisc package (version

4.0.2). Drug-tissue associations with concordance index �0.65 are

considered predictable.

Clinical drug-tissue associations
Known clinical drug applications were mined from DrugBank (ver-

sion 5.0)49 using the XML R package (version 3.98-1.5). We down-

loaded all the drug entries in DrugBank (www.drugbank.ca/releases/

5-0-6/downloads/target-all-uniprot-links) to uniquely map each

drug to a unique DrugBank identifier. These identifiers can be ap-

pended to the URL www.drugbank.ca/drugs/ to get the web page

showing the drugs of interest, which we then scraped using the

XML R package to extract the corresponding clinical indications,

an example indication being “Metastatic Non-Small Cell Lung Can-

cer.” Anticancer drugs were selected by matching their clinical indi-

cations to the list of cancer terms provided in Supplementary File

S1. The list of anticancer drugs was then restricted to clinical indica-

tions matching the tissue types present in PharmacoGx (Supplemen-

tary File S2).

Comparison of drug-tissue associations between

preclinical and clinical settings
To test whether drug-tissue associations extracted from clinical indi-

cations were recapitulated in vitro, we compared the sets of preclini-

cal and clinical associations by restricting our analysis to the

associations tested in our meta-analysis of the pharmacogenomic

data. We visualized the associations observed in preclinical or clini-

cal settings or both as a network with colored edges in a Circos

plot.50 The MCC51 was used to quantify the level of concordance

between preclinical and clinical drug-tissue associations, and the sig-

nificance was computed using a permutation test as implemented in

the PharmacoGx R package.33

Research reproducibility
This study complies with the standards of research reproducibility

published by Sandve et al.52 The datasets are freely available

through our PharmacoGx platform.33 The code to replicate the

analysis results, figures, and tables is open access and available on

GitHub (github.com/bhklab/DrugTissue). In addition, we have set

up a Docker virtual environment53 online with all required R pack-

ages and tools preinstalled to facilitate reproduction of the study re-

sults. Detailed descriptions of the software environment and the

main steps to replicate the figures and tables are provided in Supple-

mentary Information.

RESULTS

Given the increasingly prominent use of high-throughput in vitro

testing in biomedical research, we sought to test whether cancer cell

lines originating from specific tissues responded differently to a large

set of cytotoxic and targeted therapies. Such associations between

drugs and tissues based on in vitro sensitivity data can be derived

based on 2 pharmacological aspects: (1) the associated tissues are

enriched in cell lines specifically sensitive to the drug of interest,

while other tissues are not, or (2) the cell line in an associated tissue

could be highly sensitive to most of the drugs, and the association is

therefore not limited to the drug of interest. While discriminating

between these 2 categories of drug-tissue associations is difficult in

the clinical setting, such discrimination can be made using preclini-

cal model systems screened with a large number of drugs, as is the

case for the pharmacogenomic datasets used in this study. We de-

signed an analysis pipeline to identify drug-tissue associations in

each category and assessed the overlap of these associations with the

clinical indications provided in the DrugBank database.

We collected and curated the 4 largest pharmacogenomic data-

sets published to date, namely CCLE, GDSC1000, CTRPv2, and

gCSI (Table 1), and integrated them into our PharmacoGx plat-

form.33 These datasets contain 732 drugs, 1527 cancer cell lines,

and 20 tissue types represented by at least 15 cell lines across all

datasets (Figure 2A and Table 1). Importantly, our curation28,31,33

revealed that these studies investigated many identical cell lines and

drugs, including 303 cell lines and 3 drugs – erlotinib, paclitaxel,

and crizotinib – screened in all 4 datasets (Figure 2B and Supplemen-

tary File S3).

We leveraged our compendium of pharmacogenomic datasets to

identify statistically significant drug-tissue associations in vitro using

our TEA (Supplementary Figure S1). To control for the general level

of drug sensitivity of each cancer cell line, we used the approach re-

cently proposed in42 and adjusted the drug sensitivity data (AUC)

accordingly. As previous studies reported that cell lines originating

from the hematopoietic and lymphoid tissue are highly sensitive to

chemical perturbations,54,55 we discarded this tissue from subse-

quent analyses to avoid bias in our enrichment analysis. TEA was

performed with original and adjusted AUC values for each drug-

tissue association (Supplementary File S4). Given the high level of

noise in the drug sensitivity data,20,28,29,31 we restricted our analysis

to the set of drugs and tissues that were assessed in at least 2 datasets

to focus on the associations that are reproducible across datasets.

This filtering resulted in a set of 85 drugs and 18 tissue types Supple-

mentary File S4). Out of these 85 drugs, we found that 63% (54)

yielded significantly higher sensitivities in at least 1 tissue type, with

8% of all the drug-tissue associations assessed in our study (170/

2226) being significant (false discovery rate <5%; Supplementary

File S4). Among the drug-tissue associations identified in vitro, we

found targeted therapies associated with the tumor types enriched

for the corresponding drug target. For example, erlotinib, which tar-

gets the epidermal growth factor receptor (EGFR),56,57 is associated

with non–small-cell lung cancer, where mutations in EGFR are fre-

quent.58 Moreover, we observed an association between breast can-

cer and lapatinib, a dual tyrosine kinase inhibitor that interrupts the

HER2/neu and EGFR pathways commonly used in HER2-positive

breast cancer.59 The association of imatinib with the large intestine

is another example of concordance between in vitro associations

and clinical indications, as imatinib is widely used to treat gastroin-

testinal stromal tumors.60 These results support the relevance of our

TEA for discovery of drug-tissue associations in a preclinical setting

that are potentially relevant for clinical use.

We investigated whether these significant associations in vitro

were uniformly distributed across tissue types. Skin and small-cell

lung cancer had the largest numbers of associated drugs, totaling

>21% of the significant interactions (Figure 3). Interestingly, when
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controlling for the general level of drug sensitivity of each cell line,

the majority of tissue types lost their association with drugs (stom-

ach, esophagus, central nervous system, non–small-cell lung cancer,

autonomic ganglia, bone, and soft tissues), suggesting that these cell

lines undergo a nonspecific response to chemical perturbations. On

the other hand, kidney, breast, upper aerodigestive tract, large intes-

tine, small-cell lung cancer, and skin tissues were associated with

drugs only when drug sensitivity was adjusted, indicating that their

response to (class of) therapeutic compounds is more specific. There

was no significant correlation between the number of significant

drug-tissue associations and the number of cell lines in each tissue

type (Spearman correlation coefficient q¼0.006, P¼ .78, although

TEA controls for the size of tissue sets during the permutation test-

ing procedure).

Although our meta-analysis leverages the 4 largest pharmacoge-

nomic studies published to date, these datasets vary in terms of the

number of drug dose-response curves actually measured (Table 1).

We therefore assessed which dataset contributed the most to the dis-

covery of statistically significant in vitro drug-tissue associations. As

expected, the 2 largest datasets, GDSC1000 and CTRPv2, contrib-

uted several times more associations than gCSI and CCLE (Figure

4). Importantly, a substantial proportion of associations were not

significant in each individual dataset but were selected during the

meta-analysis phase based on their consistent trend to significance

(Figure 4). These results support the benefit of combining multiple

pharmacogenomic datasets in a meta-analysis framework.

Given the significant tissue specificity of most drugs in vitro, we

sought to assess whether these associations were consistent with

clinical observations regarding the efficacy of drugs in specific tissue

types. For drugs to be considered for further clinical testing, they

must yield sufficient growth inhibition in a subset of preclinical

models. We therefore selected drug-tissue associations where at least

25% of the cell lines exhibited a minimum level of sensitivity

(AUC>0.2) and where the drug had at least 1 clinical indication for

treatment of cancer, as extracted from DrugBank (see Materials and

Methods section). This selection resulted in a set of 10 drugs signifi-

A

B

Figure 2. Composition and overlap of our compendium of pharmacogenomic datasets. (A) Number of cell lines representing each tissue type with respect to

their source dataset. Tissue types represented by <5 cell lines in a given dataset were removed for the dataset. (B) Overlap for drugs, cell lines, and tissue types

across datasets.
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cantly associated with 9 tissues in vitro (Supplementary File S5). We

further assessed how well drug sensitivity could be predicted from

the associated tissue. We computed, for each drug-tissue association,

the concordance index between the binary value representing the

tissue of interest and drug sensitivity (Supplementary File S5). In 70

drug-tissue associations (52%), the tissue was predictive of drug sen-

sitivity (concordance index�0.65). We then extracted clinical indi-

cations for the set of anticancer drugs from DrugBank49 and

identified 5 drug-tissue associations that were consistent across the

preclinical and clinical settings (Table 2 and Figure 5). However, the

observed overlap was weak at best, as this represents a very small

set of associations (MCC¼0.0003, P> .10; Supplementary Figure

S2A and Table 2). We also compared our results with the drug-

tissue associations reported by Jaeger et al.24 but only found a small

overlap (Supplementary Figure S2B)

DISCUSSION

One of the main challenges in precision cancer medicine is to select

drugs likely to yield responses for individual patients. Most of the

current treatment regimens for cancer are based on the tissue of

origin, as therapies are being designed for specific tissues.6,61 Recent

high-throughput in vitro drug screening studies investigating large

panels of cancer cell lines from multiple tissues18–21,23 provide a

unique opportunity to assess the association between drug sensitivity

and tissue types.61 However, it remains unclear to what extent

cancer cell lines originating from different tissue types respond to a

variety of cytotoxic and targeted drugs.24,29,54,55,62,63 If these drug-

tissue associations recapitulated the differential drug response across

tissues observed in the clinic, this would open a new avenue of re-

search for tissue-based drug repurposing. In this study, we addressed

this issue in the largest meta-analysis of pan-cancer in vitro drug

screening data to date.

Our large compendium of drugs and cancer cell lines, combined

with our TEA, allowed us to identify a large number of in vitro

drug-tissue associations that are reproducible across independent

datasets (113 associations; Figure 4 and Supplementary File S5).

Our results indicate that the majority of our diverse set of drugs

(71%) yielded higher sensitivity in at least 1 tissue type. Our meta-

analysis shed new light on the recent controversy regarding the tis-

sue specificity of drug sensitivity screens, where studies have re-

ported substantial tissue-specific drug response,54,55 and the

contrary.24 This apparent contradiction is partly due to the lack of a

consensus definition of tissue specificity. In our study and the previ-

ous work from Klijn et al.54 and Gupta et al.,55 tissue specificity is

defined as an association between drug sensitivity and any tissue

type, while Jaeger et al.24 only considered associations with the tis-

sues the drugs were developed for. The latter set of associations is

therefore a subset of all drug-tissue associations that can be identi-

fied in vitro. Using the broader definition of tissue specificity com-

bined with a meta-analysis of multiple pharmacogenomic datasets

allowed us not only to identify more drug-tissue associations, but
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Figure 4. Number of in vitro drug-tissue associations in each pharmacogenomic dataset and meta-analysis. The associations that are significant in a dataset

and in the meta-analysis are in blue. The associations found significant in a dataset but not selected after meta-analysis are in red. The associations found nonsig-

nificant in a dataset but ending up selected after meta-analysis are in green.
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also to discard the drug-tissue associations that were not consistent

across multiple datasets, increasing the robustness of our results.

While the tissue specificity of drug sensitivity in vitro is relevant

for drug development in the preclinical setting, its translational

potential in the clinical setting remains unclear. In this regard, the

study from Jaeger et al.24 was seminal, as the authors compared

in vitro drug response patterns to clinical observations in breast, co-

lorectal, and prostate cancer and found no concordance. Given that

our results indicate strong tissue specificity of in vitro drug sensitiv-

ity, we tested the concordance of preclinical and clinical observa-

tions in 9 tissue types. Although we found 5 drug-tissue associations

that were both significant in vitro and approved for clinical use

(Table 2), we found no significant global overlap in drug-tissue asso-

ciations between the preclinical and clinical settings (Supplementary

Figure S2). One possible explanation for the lack of overlap is the

failure of some drugs to progress beyond clinical trials due to a lack

of additional benefits beyond the gold standard treatments in clini-

cal settings or unforeseen side effects in patients. In addition, dis-

crepancies between cell lines and patient tumors because of

underlying biological and experimental factors could cause further

disconnects, leading to the observed lack of global overlap. Ulti-

mately, concurring with Jaeger et al.,24 our results call into question

the translational potential of the in vitro results.

This study has several potential limitations. First, we and others

have shown that pharmacological profiles are not consistent across

studies for all drugs.20,28,29,31 To mitigate this important issue, we

implemented a meta-analysis framework integrating 4 large pharma-

cogenomic datasets and limited our study to the drug-tissue associa-

tions assessed in at least 2 independent studies to improve

reproducibility across datasets. Second, the annotation of cell lines

is problematic, as these lines can be misidentified15 and there exists

no standard ontology for their metadata.16 We leveraged our Phar-

macoGx platform33 to check the DNA identity of the cancer cell

lines in each dataset31 and annotate these cell lines using the Catalog

of Somatic Mutations in Cancer40 and Cellosaurus36 resources.

Although these resources provide valuable metadata regarding all

the cell lines investigated in this study, there is no consensus regard-

ing tissue annotations. We recognize that alternative tissue nomen-

clature may affect the results of our study. Our analysis provides a

foundation for further exploration of this important question.

Lastly, we relied solely on DrugBank49 to extract known clinical in-

dications for the anticancer drugs in our study. Our results could be

further improved by mining other databases and manually curating

the scientific literature and clinical trial databases, such as Clinical-

Trials.gov, although such an analysis is beyond the scope our study.

We have come to recognize that cancer cell lines do not fully re-

capitulate the molecular features of patient tumors they originate

from,11,64 which may hinder the translation of in vitro drug develop-

ment to clinical settings.63,65–68 It is hoped that large panels of can-

cer cell lines will enable faithful representation of the molecular

diversity observed in patient tumors.18,19,23 However, recent studies

have identified cell lines exhibiting molecular phenotypes that are

not observed in patients,12,13 casting doubt on the relevance of these

model systems for biological investigation and drug screening.

Moreover, there is no consensus regarding the experimental proto-

cols used in large-scale in vitro drug screening studies,32 with drugs

being tested using different pharmacological assays and concentra-

tion ranges, increasing heterogeneity across datasets. Another funda-

mental problem in cancer cell line studies is the lack of a standard

Table 2. List of drug-tissue associations conserved across in vitro and clinical settings

Tissue Drug In vitro FDR In vitro efficacy In vitro predictability DrugBank

Non–small-cell lung cancer Erlotinib 0.011 0.18 0.60 DB00530

Breast Lapatinib 0.009 0.62 0.58 DB01259

Soft tissue Etoposide 0.006 0.43 0.64 DB00773

Skin Etoposide 1.3e-8 0.91 0.71 DB00773

Large intestine Imatinib 0.0002 0.56 0.67 DB00619

In vitro FDR: false discovery rate computed from the x for all drug-tissue associations investigated in our study; In vitro efficacy: upper quartile of the AUC dis-

tribution for the drug of interest in the associated tissue type (�0.2 indicative of lack of in vitro efficacy); In vitro predictability: concordance index of the binary

value representing the tissue in the association, testing how well the associated tissue can predict drug sensitivity; DrugBank: link to the DrugBank database for

the drug of interest.

Figure 5. Circos plot representing the significant associations for drugs with

clinical trial evidence. Light blue and orange boxes represent drugs and tis-

sues, respectively. Red lines represent drug-tissue associations observed

only in vitro (referred to as experimental). Pink lines indicate experimental re-

lationships with no clinical relevance. Green lines indicate a clinical applica-

tion not recognized in preclinical analysis. Blue lines indicate in vitro drug-

tissue associations supported by clinical indications.
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nomenclature to uniquely annotate cell lines to their tissue of ori-

gin,16,69,70 even though ontologies are under active develop-

ment.36,71 Lastly, cancer cell lines lack the tumor

microenvironment, which has recently been shown to have a sub-

stantial effect on drug response and resistance.72,73 For example, a

drug that might show sensitivity in a brain cancer cell line might be

completely ineffective in vivo due to the blood-brain barrier, or a

drug effective against liver cancer cell lines might be irrelevant to pa-

tients due to fundamental differences in metabolism. Patient-derived

organoids and xenografts are new models of choice for drug screen-

ing, and their usage might alleviate the current limitations of cancer

cell lines.9,10,25,27 These are key factors that are likely to contribute

to the discrepancy between preclinical and clinical observations

highlighted in this study. Although our meta-analysis provides the

largest repository of in vitro drug-tissue associations to date, our re-

sults call for further investigations to improve the translational po-

tential of cancer cell lines.

CONCLUSION

Our meta-analysis of pan-cancer in vitro drug screening datasets in-

dicates that most approved and experimental drugs exhibit tissue-

specific sensitivities in a large panel of cancer cell lines. However, it

is equally clear that the preclinical results do not translate to the

clinical setting, as the vast majority of in vitro drug-tissue associa-

tions are not recapitulated in clinical trials. Our results suggest that

additional research in showing parallels between preclinical and

clinical data is required to increase the translational potential of

in vitro drug screening.
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