
Research and Applications

Reproducible Bioconductor workflows using

browser-based interactive notebooks and containers

Reem Almugbel,1,# Ling-Hong Hung,1,# Jiaming Hu,1 Abeer Almutairy,1

Nicole Ortogero,2 Yashaswi Tamta,1 and Ka Yee Yeung1

1Institute of Technology, University of Washington, Tacoma, WA, USA and 2Department of Clinical Investigation, Madigan Army

Medical Center, Tacoma, WA, USA

Corresponding Author: Ka Yee Yeung. Institute of Technology, University of Washington, Tacoma, WA, USA. E-mail:

kayee@uw.edu
#Co-first authors

Received 30 May 2017; Revised 31 August 2017; Editorial Decision 25 September 2017; Accepted 28 September 2017

ABSTRACT

Objective: Bioinformatics publications typically include complex software workflows that are difficult to

describe in a manuscript. We describe and demonstrate the use of interactive software notebooks to document

and distribute bioinformatics research. We provide a user-friendly tool, BiocImageBuilder, that allows users to

easily distribute their bioinformatics protocols through interactive notebooks uploaded to either a GitHub repos-

itory or a private server.

Materials and methods: We present four different interactive Jupyter notebooks using R and Bioconductor

workflows to infer differential gene expression, analyze cross-platform datasets, process RNA-seq data and

KinomeScan data. These interactive notebooks are available on GitHub. The analytical results can be viewed in

a browser. Most importantly, the software contents can be executed and modified. This is accomplished using

Binder, which runs the notebook inside software containers, thus avoiding the need to install any software and

ensuring reproducibility. All the notebooks were produced using custom files generated by BiocImageBuilder.

Results: BiocImageBuilder facilitates the publication of workflows with a point-and-click user interface. We dem-

onstrate that interactive notebooks can be used to disseminate a wide range of bioinformatics analyses. The

use of software containers to mirror the original software environment ensures reproducibility of results.

Parameters and code can be dynamically modified, allowing for robust verification of published results and

encouraging rapid adoption of new methods.

Conclusion: Given the increasing complexity of bioinformatics workflows, we anticipate that these interactive

software notebooks will become as necessary for documenting software methods as traditional laboratory

notebooks have been for documenting bench protocols, and as ubiquitous.

Key words: bioconductor workflows, containers, reproducibility, automated, data science

BACKGROUND AND SIGNIFICANCE

Bioinformatics is an interdisciplinary research area focused on devel-

oping and applying computational methods derived from mathemat-

ics, computer science, and statistics to analyze biological data.

Workflows typically involve executing a series of computational

tasks. Documenting workflows has become increasingly difficult,

given the growing complexity of workflows and rapidly evolving

methodologies. Traditional “Materials and Methods” sections are

not well suited for describing methodologies that are strongly depen-

dent on code and parameters. Recently, public software repositories

VC The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For Permissions, please email: journals.permissions@oup.com 4

Journal of the American Medical Informatics Association, 25(1), 2018, 4–12

doi: 10.1093/jamia/ocx120

Advance Access Publication Date: 28 October 2017

Research and Applications

https://academic.oup.com/
https://academic.oup.com/


such as GitHub have made it relatively straightforward to distribute

and update code. Data science notebooks such as Jupyter are the

software analogs of laboratory notebooks and document the param-

eters and code along with the results. Formal descriptors of work-

flows, such as Common Workflow Language,1 that describe how

different software components interact are also gaining acceptance.

While these steps go a long way toward documenting computational

workflows, it is estimated that >25% of computational workflows

cannot be reproduced.2

The problem is that even using the correct version of each code

component and executing them in the correct order and with the

correct parameters on identical data is still not sufficient to ensure

that the same results are obtained.3 Running the same software in a

different hardware and software environment can affect the out-

come. Even if this were not the case, from a practical viewpoint,

these dependencies can make installing the exact version of the same

components on a different system problematic. Using software suites

such as Bioconductor4 has become a popular way to manage multi-

ple packages and ensure proper installation and interoperability.

However, the rapid development of new tools has made it increas-

ingly difficult to define a base setup that is compatible with the

growing number of components that are potentially written in dif-

ferent programming languages.

A solution to this problem is to package software inside software

containers that provide all the requisite software dependencies.

Docker is a very popular software container technology that has

been used for large-scale deployment and re-analysis of biomedical

big data.5 JupyterHub6 allows users to run Jupyter notebooks inside

software containers deployed locally or through a server. Binder7

takes this a step further and generates and deploys Docker images of

notebooks from GitHub on its public servers. This allows users to

view and interact with notebooks in GitHub repositories without

having to compile code or install software. However, using Binder

or Jupyter requires writing custom Dockerfiles to specify the ele-

ments present in the Docker container.

In this paper, we demonstrate the utility of live notebooks for

documenting and distributing bioinformatics workflows by present-

ing 4 notebooks on GitHub that use Bioconductor. In addition, we

present a framework and a graphical user interface (GUI) designed

to automatically generate a Dockerfile for a custom Bioconductor

installation. This allows users without any technical knowledge of

Docker to generate and publish live Bioconductor notebooks.

Reproducibility of bioinformatics workflows using

Bioconductor
Reproducibility is essential for verification and advancement of sci-

entific research. This is true for computational analyses, which are

not reproducible in >25% of publications.2 Reproducibility in bio-

informatics research refers to the ability to re-compute the data ana-

lytics results given a dataset and knowledge of the data analysis

workflow.8 For this to happen, 3 elements must be available: (1)

datasets, (2) code and scripts used to perform the computational

analyses, and (3) metadata, details about how to obtain and process

datasets, including descriptions of software and hardware environ-

ment setups.9,10 Gentleman and Lang11 proposed a compendium

software framework for the distribution of dynamic documents con-

taining text, code, data, and any auxiliary content to recreate the

computations. Their framework forms the foundation of the Biocon-

ductor project,4 which provides an online repository for software

packages, data, metadata, workflows, papers, and training

materials, as well as a large and well-established user community.

Bioconductor also works with the broader R repository, the Com-

prehensive R Archive Network (CRAN),12 which also contains

useful bioinformatics packages that are not included with

Bioconductor.

Using software containers to enhance reproducibility of

bioinformatics workflows
Unfortunately, re-running published code and data to reproduce

published results is nontrivial even when using Bioconductor. Bio-

conductor is not static: new packages are constantly being added

and other packages downgraded. Correct versioning is thus essential

for reproducibility. Although Bioconductor is cross-platform, it

achieves this by cross-compilation, which does not completely insu-

late the computation from differences in local hardware and soft-

ware. The solution is to run the software in a virtual environment

that is the same regardless of the underlying hardware or host oper-

ating system.

Docker is a well-established container technology to increase the

reproducibility of bioinformatics workflows.3,10,13 The Docker plat-

form allows for virtualized application deployments within a light-

weight, Linux-based wrapper or container.14 Essentially, containers

are virtual environments that encapsulate only the minimum neces-

sary dependencies, which can be quickly deployed on most major

platforms in a reproducible fashion.14 Docker uses a Dockerfile that

contains all the instructions to build a Docker image starting from

scratch or from another Docker image. Docker images can be down-

loaded from repositories like Docker Hub (https://hub.docker.com/).

See Supplementary File S1 for a Docker tutorial.

While Docker provides an easy, modular method to build, dis-

tribute, and replicate complex pipelines and workflows across multi-

ple platforms, widespread adoption in the biomedical field has been

hampered by the level of technical knowledge presently required to

use the technology. Docker was developed for computer professio-

nals with programming and systems administration experience who

are able to write Dockerfiles to script the installation of the software

environment for containers. Our group has worked on enabling

graphical interfaces to interact with containers to make Docker

more accessible to less technical users.10,15,16

Data science notebooks
All laboratories use notebooks to document experimental proce-

dures and protocols. The software counterparts are data science

notebooks that combine text, code, data, mathematical equations,

visualizations, and rich media into a single document that can be

accessed through a web browser. These software notebooks first

gained popularity in mathematics research, and the Jupyter open

source project has expanded the scope and audience to include

many heavily computational research areas such as bioinformatics,

neuroscience, and genomics.17 Project Jupyter was a spinoff project

from iPython that supports the Python programming language and

now maintains multiple kernels for >50 programming languages, in-

cluding Ruby, Javascript, Cþþ, and Perl.18,19 Each Jupyter note-

book document is divided into individual cells that can be run

independently.18 This format records every step of a computational

analysis along with the scientific narrative, which makes it easier to

understand, share, reproduce, and extend a published computa-

tional workflow.

To facilitate notebook sharing and reusability, Jupyter project

supports nbconvert, a tool to convert notebooks to various formats

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1 5

https://hub.docker.com/


such as Hypertext Markup Language (HTML), Portable Document

Format (PDF), and LaTex.20 It also supports nbviewer, a similar

web service, to view and download any Jupyter notebook publicly

published on the web.21 In 2015, GitHub (https://github.com/), a

web-based version control code repository, started supporting the

Jupyter Notebook format by making it possible to render Jupyter

notebooks written in any programming language on GitHub,22

which brings GitHub’s features of sharing, version control, and col-

laboration into the Jupyter platform. Today, there are >1 089 265

Jupyter notebooks rendered on GitHub.23 R Notebook is a similar

tool that comes as part of the RStudio development environment

and supports literate programming.24 It can be created and edited

within RStudio IDE and can be saved in several formats, including

HTML and PDF. The advantage of Jupyter Notebooks over R Note-

books is that they can be turned into executable live notebooks using

JupyterHub or Binder without any extra modification needed (see

detailed explanation in the next section). R Notebooks, on the other

hand, can be made interactive by converting the code inside a code

cell to a web application using Shiny. This process requires writing

additional code to define the interactions.

Sharing live notebooks using JupyterHub and Binder
While static Jupyter notebooks can be shared and viewed using a

browser without any setup via nbviewer and GitHub, sharing inter-

active dynamic Jupyter notebooks in which the user can execute and

modify the analyses requires downloading the notebooks and instal-

ling Jupyter and a kernel to run R in the code cells. JupyterHub6

addresses this limitation and allows multiple readers access to one

or more notebooks dynamically in a browser at the cost of a setting

up a web server to serve the notebooks. The Binder open source

project (http://mybinder.org/) goes further and provides a public

server to run Jupyter notebooks hosted on GitHub. The Binder envi-

ronment allows scientists to share live interactive Jupyter notebooks

that are reproducible and verifiable using a web browser, with no

data download or software installation requirements.17 To manage

computational environments, Binder’s underlying architecture takes

advantage of 2 open source projects: Docker, which builds the envi-

ronments from a project’s dependencies, and Kubernetes, which

schedules resources for these environments on a Google Compute

Engine cluster.25 To build and launch an executable binder, a

Jupyter notebook must be uploaded to a public GitHub repository,

along with an environment specification such as a Dockerfile.7 See

Supplementary File S2 for a tutorial to create interactive R Jupyter

notebooks using Binder.

Scientists have used Binder as a publishing medium to share re-

producible computational workflows.26 However, most of the use

cases of Binder have been limited to the iPython kernel. An example

is the Laser Interferometer Gravitational-Wave Observatory, which

used iPython Jupyter notebooks and Binder to demonstrate the com-

putational workflow corresponding to the first direct detection of

gravitational waves that Einstein predicted decades ago.27,28

Although many bioinformatics workflows use R and Bioconduc-

tor, the use of interactive notebooks has been mostly restricted to

Python-based workflows due to the difficulties in setup. The soft-

ware dependencies required for Binder must be reconciled with the

strict dependencies required for the base installation of R and Bio-

conductor. Any customization steps must also be included in the

setup files. To enable more widespread adoption of interactive note-

books in bioinformatics, we need a more accessible method to pre-

pare an interactive notebook as provided by BiocImageBuilder.

OUR CONTRIBUTIONS

We present a novel software tool, BiocImageBuilder, that automates

the technical step of creating Dockerfiles for live Jupyter notebooks

using Bioconductor. A web-based graphical interface allows the user

to choose the Bioconductor packages that need to be installed and

whether the Dockerfile is to be used with Binder on GitHub or in a

local installation. Additional R packages from CRAN can also be in-

cluded. The tool then builds the appropriate Dockerfile for the user

to upload with his or her notebook. While it is possible to use a ge-

neric image and embed install commands within the code cells to

specify the R/Bioconductor environment, building a customized im-

age or Dockerfile avoids wasteful package downloads at runtime

that would occur each time the code is run by the reader. The gener-

ated Dockerfile can be verified in 3 ways depending on how it is

used. If a JupyterHub server is being used to author notebooks, the

Dockerfile can be used to construct the author’s code cells, so that

by default, any shared notebook with the same Dockerfile will be

identical. If a local installation of Jupyter is being used for author-

ing, the Dockerfile can be tested by serving the notebook using a lo-

cal JupyterHub installation and verifying that the code cells produce

the expected output. Alternatively, one can create a GitHub/Binder

repository and create and click on a binder badge to launch and test

the served notebook. This is described in Supplementary File S2.

We illustrate the feasibility of our tool in 4 case studies: differen-

tial expression analysis for ectopic pregnancy, pattern discovery of

gene expression data across human cell lines, a published RNA se-

quencing workflow, and drug signature prediction using KINOMEs-

can data. All of our case studies use the R programming language

and software packages from Bioconductor/CRAN. The live Jupyter

notebooks for these case studies represent new work. Figure 1 shows

an overview of our approach.

Table 1 summarizes differences between options for installing

and using data science notebooks. Installing Jupyter and R/Biocon-

ductor does not allow readers to run R/Bioconductor in Jupyter

notebooks – downloading and installing a kernel to support R is re-

quired. The functionality added by JupyterHub is to allow multiple

readers to run notebooks interactively within their browser at the

cost of setting up a server (or using a Docker container to run the

server locally). Binder provides the server, but the user needs to have

the files available on GitHub. In both cases, the author needs to pro-

vide a Dockerfile specifying his/her environment. Where BiocImage-

Builder comes in is to help the author provide a customized

Dockerfile. Specifically, BiocImageBuilder moves the R/Bioconduc-

tor package installation instructions into the Dockerfile. Since our

default option is to specify the versions of R/Bioconductor packages

in the Dockerfile, reproducibility of results is ensured even between

R/Bioconductor releases.

AUTOMATIC GENERATION OF DOCKERFILES
FOR BIOCONDUCTOR WORKFLOWS

Bioconductor compiles and tests each component of its suite on a set

of stock Windows, MacOS, and Linux machines. This ensures that

all components in Bioconductor are compatible and should install

on most hardware configurations. In addition, the Bioconductor

core team provides Docker containers for the release and develop-

ment versions of the complete suite.29 No facility exists, however,

for building custom images with a smaller, specified set of Biocon-

ductor components.

6 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1

https://github.com/
http://mybinder.org/


We have developed a GUI-based tool, BiocImageBuilder, for this

purpose. BiocImageBuilder starts with a base image that is based on

the stock Linux machine used by Bioconductor to test packages. The

base image is modified to include components for JupyterHub or

Binder compatibility and the kernels necessary to run R. For images

to be run by Binder, Dockerfile commands using the Linux Conda

utility are used to install the Bioconductor and CRAN packages.

Otherwise, commands using Bioconductor’s biocLite utility are used

to install the components. The notebook’s author simply starts up

the container with BiocImageBuilder and points his or her browser

to a local URL. The author will then see a form for choosing the de-

sired starting image, the desired components, and the option of spec-

ifying a custom startup script to be run as part of the container build

process (see Figure 2 and Supplementary File S3). BiocImageBuilder

will then produce a Dockerfile. This can be uploaded to GitHub,

along with a Jupyter notebook file, to create a repository that dis-

tributes an interactive notebook that can be viewed using Binder. Al-

ternatively, a Dockerfile can be produced that is suitable for private

deployment using JupyterHub. Users can also use the Dockerfile

themselves to directly build an actual image of their notebook to

use, store, or distribute on DockerHub and other repositories. Cur-

rently, we support R 3.4 and Bioconductor 3.5. We intend to add

support for other versions in the future so that downgraded pack-

ages can be run. Containerizing Jupyter notebooks ensures that they

will always be viewable, insulating the user from future changes to

Bioconductor or R.

BiocImageBuilder is written in Python3 using PyQt5 (https://

wiki.python.org/moin/PyQt), which is a Python binding for the

Quicktime engine that renders the graphical interface. Although

PyQt5 is meant to be cross-compatible over different platforms, the

installation of many dependencies can be quite complicated for

some user environments. To avoid these problems, BiocImage-

Builder is packaged using our GUIdock-noVNC container.15 This

container creates a mini–web server that serves the rendered

graphics through a local port and can be run on any Docker-

compatible platform (Windows, MacOS, Linux). Most modern

browsers that support HTML5 (eg, Chrome, Firefox, Safari, Opera)

can be used to access the BiocImageBuilder.

Note that BiocImageBuilder is designed for those who wish to

author an interactive Bioconductor notebook – it is not required for

Figure 1. Overview of our approach. The author of the Bioconductor workflow uses BiocImageBuilder to generate a Dockerfile that describes the Bioconductor

and CRAN packages installed. The Dockerfile and the notebook files are uploaded to a server or GitHub repository. A custom container is then built with the de-

fault Linux base image for Bioconductor, dependencies for Jupyter, JuptyerHub, and/or Binder, and the Bioconductor packages. For GitHub installations, the

Binder server builds the container and provides a link to run the container on its public cluster. JupyterHub provides the same functionality locally or on a private

server. Using the container, the end user is able to view the notebook and execute, modify, and save the code on his or her local machine regardless of whether it

uses Linux, MacOS, or Windows. In the case where the container is run remotely, no additional installation of software is required on the part of the end user.

Table 1. Comparison of different options to install and use data science notebooks.

Platform Author requirements Reader requirements R/Bioconductor Multi-user share

Jupyter Python, Jupyter Python, Jupyter No No

Jupyter/IRkernel Python, Jupyter, IRkernel Python, Jupyter, IRkernel Yes No

R Notebook Rstudio Rstudio Yes No

JupyterHub Docker server, Dockerfile Browser Yes Yes

Binder GitHub repository, Dockerfile Browser Yes Yes

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1 7

https://wiki.python.org/moin/PyQt
https://wiki.python.org/moin/PyQt


end users who wish to interact with a published notebook. The

source code of BiocImageBuilder is publicly available at https://

github.com/Bioconductor-notebooks/BiocImageBuilder and its

Docker image is publicly available at https://hub.docker.com/r/biode

pot/bioc-builder/.

CASE STUDIES

In this section, we present 4 case studies in which we illustrate the

use of R and Bioconductor packages within Jupyter notebooks.

Static snapshots of these notebooks are included as Supplementary

Files S4–7. The corresponding fully interactive notebooks are avail-

able from https://github.com/Bioconductor-notebooks. In case study

1, we extended the published differential expression analyses of ec-

topic pregnancy. In case study 2, we created our own workflows for

cross-platform omics data. In case study 3, we replicated a published

RNA sequencing workflow in our proposed framework. In case

study 4, we demonstrated the utility of these live interactive note-

books when applied to KINOMEscan data. None of these case stud-

ies overlap with any case studies in our previously published work.

These case studies span different applications and illustrate general

analytical techniques, such as clustering and data visualization, that

are generally applicable to high-throughput data.

All the case studies are available on GitHub as static notebooks.

However, to increase the reproducibility and turn them into live exe-

cutable notebooks using Binder, environmental specifications need

to be uploaded in the form of a Dockerfile for each case study. To

achieve that, BiocImageBuilder was used to create Binder-

compatible Dockerfiles, and for each case study the list of specific

required packages was chosen from the checklist menus. These

Dockerfiles are saved and uploaded to GitHub, along with Jupyter

notebooks and data. Binder uses these Dockerfiles to create tempo-

rary executable environments for each case study that can be rerun

using only a browser, without any further installations.

Case study 1: Identifying differentially expressed genes

for ectopic pregnancy
Motivation and overview

When a woman’s pregnancy test result is positive, initial testing of

the uterus is visualized on a transvaginal ultrasound scan (TVS). As

shown in Figure 3, the possible outcomes of the TVS are: (1) intra-

uterine pregnancy (IUP), which is normal pregnancy with fertilized

egg implanted inside the uterus; (2) ectopic pregnancy (EP), where

the fertilized egg can be seen in the TVS scan, but it is implanted out-

side the uterus; or (3) pregnancy of unknown location (PUL), when

the pregnancy test is positive, but no evidence of pregnancy is seen

on TVS.30

Cases of PUL can subsequently lead to one of the following out-

comes: (1) failing PUL (miscarriage): majority of cases (50%–70%);

(2) normal IUP: it is too early to visualize the fertilized egg on TVS;

(3) EP: 7%–20% of PUL cases; the EP was not seen on the initial

TVS examination.30,31

In the case of PUL, close surveillance is required, consisting of se-

rial office visits, ultrasounds, and blood draws over a period as long

as a 6 weeks.32 During this surveillance period, no medical or surgi-

cal intervention is taken until a conclusive diagnosis of EP is reached

and the nonviability of the embryo is concluded.32 Thus, the clini-

cians’ objectives are to: (1) diagnose EP as early as possible to avoid

health risks and (2) ensure that this early diagnosis is correct, to

Figure 2. Screenshot of BiocImageBuilder. The user selects from a menu the Bioconductor and CRAN packages required for his or her notebook. BiocImage-

Builder then generates the Dockerfile describing a minimal Linux container that contains these packages. The Dockerfile can be uploaded to GitHub, where it can

be viewed interactively using Binder.

8 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1

https://github.com/Bioconductor-notebooks/BiocImageBuilder
https://github.com/Bioconductor-notebooks/BiocImageBuilder
https://hub.docker.com/r/biodepot/bioc-builder/
https://hub.docker.com/r/biodepot/bioc-builder/
https://github.com/Bioconductor-notebooks


avoid ending a viable pregnancy erroneously.33 Delayed diagnosis of

EP is the most common life-threatening emergency in early preg-

nancy.32 Despite the high frequency of this serious condition, early

diagnosis of EP can be challenging. In practice, there are several

methods used to detect EP in the case of PUL, and they largely de-

pend on biochemical markers such as serum progesterone34 and se-

rum human chorionic gonadotrophin levels.35 However, the

biochemical markers used are not consistent,36 and the International

Society of Ultrasound in Obstetrics and Gynecology encourages the

use of mathematical models to expedite EP detection.37

In this case study, we aimed to identify differentially expressed

genes among patients with EP by analyzing gene expression data.

Differentially expressed genes are the subset of genes that exhibit ex-

pression patterns associated with EP.

Data

Duncan et al.38 collected gestation-matched endometrial tissue from

women with EP (n ¼ 11) and IUP (n ¼ 13), and samples were pro-

filed using the Affymetrix Human Genome U133 Plus 2.0 platform.

The resulting CEL files were normalized using Robust Multi-array

Average38 and are publicly available from ArrayExpress (www.ebi.

ac.uk/arrayexpress) under accession number E-MTAB-680.

Analysis

We filtered the Robust Multi-array Average normalized gene expres-

sion data to keep the probe sets that are common with prospective

validation samples profiled using Affymetrix genechip Human Gene

2.0 ST. AnnotationDbi39 and Stringr40 Bioconductor packages were

used to access, map, and process gene identifiers in specific chip an-

notation databases.41,42 Duncan et al.38 identified genes differen-

tially expressed in EP vs IUP using the t test, with multiple

comparison correction using the Benjamini-Hochberg false discov-

ery detection method with a corrected P< .05. In our analysis, we

started by performing a standard t test without corrections, with a

range of threshold values. We also performed other multiple test

correction methods, including the Bonferroni correction, SAM,43

and LIMMA.44 Our resulting lists of differentially expressed genes

showed considerable overlap with the results from Duncan et al. In

particular, Duncan’s top upregulated gene, CSH1, resulted from

most of our differential expression analyses, and Duncan’s top

downregulated gene, CRISP3, resulted from SAM analysis and the

Benjamini-Hochberg detection method. We also generated heatmaps

to visualize these differentially expressed genes. We observed that

EP and IUP samples were mostly assigned to distinct clusters, with

the exception of 2 IUP samples that clustered with EP samples,

which Duncan et al. referred to as the effect of decidualization de-

gree. Furthermore, we performed Gene Set Enrichment Analysis45 to

identify pathways and functional categories among the differentially

expressed genes. The details of the analyses are provided in Supple-

mentary File S4.

Case study 2: Cross-platform analysis of human cell line

genomics data
Motivation and overview

The Library of Integrated Network based Cellular Signatures

(LINCS) program, funded by the National Institutes of Health, gen-

erates different types of data, including gene expression, proteomic,

and cell imaging data, in response to drug and genetic perturbations

(http://lincsproject.org/).46 One of the main objectives of the LINCS

program is to study gene signatures resulting from perturbations ap-

plied to human cell lines. In particular, the LINCS L1000 gene ex-

pression data measure the expression level of approximately 1000

landmark genes in response to drug and genetic perturbation experi-

ments across multiple human cell lines. We aimed to study the simi-

larity of patterns in the L1000 data across different cell lines. The

LINCS L1000 gene expression data are publicly available from the

Gene Expression Omnibus (GEO) database under accession number

GSE70138.

Our goal was to study the consistency of cell line similarities

across the LINCS L1000 data and other data sources. In particular,

we used the LINCS L1000 gene expression data to explore similari-

ties between different cell lines using different analysis methods, in-

cluding clustering and dimension reduction techniques. Our work

was inspired by Zhang et al.,47 in which multiple datasets, including

Cancer Cell Line Encyclopedia (CCLE) data48 and Cancer Genome

Project data,49 were used to explore the similarities of cell lines and

drugs. The results of this study suggested that similar cell lines

would be expected to have similar drug responses, and similar drugs

would be expected to have similar effects on a cell line.

Data

We used L1000 data processed by the L1Kþþ pipeline, an alterna-

tive data-processing pipeline for the L1000 gene expression data

that we developed at the University of Washington Tacoma.

L1Kþþ is implemented in Cþþ using linear algorithms to make it

more than 1000� faster than the available pipelines.50 We substan-

tiated our results from L1Kþþ processed data using published cell

line gene expression data generated using microarray and RNA se-

quencing (RNA-seq) technology. The CCLE gene expression data

used Affymetrix microarrays to profile the genome-wide transcrip-

tion activities across approximately 1000 human cancer cell lines.48

The CCLE data are publicly available from the GEO database under

accession number GSE36133. Similarly, Klijn et al.51 used RNA-seq

technology to profile the expression across 675 untreated human

cancer cell lines. These data are publicly available from the ArrayEx-

press database under accession number E-MTAB-2706 (www.ebi.

ac.uk/arrayexpress/experiments/E-MTAB-2706/).

Analysis

In the Jupyter notebook (see Supplementary File S5), we read the 3

datasets (L1Kþþ, CCLE, RNA-seq), including all cell lines and

genes. Then we standardized each of the 3 datasets separately by

computing the z-score for gene expression across all cell lines. In or-

der to compare the results from the L1Kþþ data to those from the

Figure 3. Outcome of initial TVS scan. PUL¼pregnancy of unknown location;

TVS¼ transvaginal ultrasound scan; EP¼ectopic pregnancy.

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1 9

www.ebi.ac.uk/arrayexpress
www.ebi.ac.uk/arrayexpress
http://lincsproject.org/
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2706/
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2706/


other 2 datasets, we first computed the intersection of genes and cell

lines in common between L1Kþþ and CCLE, which resulted in 55

cell lines and the landmark genes. For L1Kþþ and RNA-seq, we

found 41 cell lines in common. Subsequently, we calculated the pair-

wise distances (including Euclidean distances and squared Mahala-

nobis distances) and correlation coefficients (including Pearson’s

correlation and rank-based Kendall’s correlation) between each pair

of cell lines based on their gene expression profiles. We then applied

hierarchical clustering and model-based clustering52 to cluster

L1Kþþ vs CCLE and L1Kþþ vs RNA-seq cell lines.

Case study 3: Alignment and differential analyses of

RNA-seq analysis workflows
Motivation and overview

With the rapidly decreasing costs of sequencing technology, RNA-

seq has become a well-established technology to measure gene ex-

pression. Here, we demonstrate the feasibility and merits of using an

interactive Jupyter notebook to document a published RNA-seq

data analysis workflow in Bioconductor53 (www.bioconductor.org/

help/workflows/rnaseqGene/).

Data

We used the RNA-seq data from the Bioconductor “airway” pack-

age, in which airway smooth-muscle cells were treated with dexa-

methasone, a synthetic glucocorticoid steroid with anti-

inflammatory effects.54 Glucocorticoids are used, for example, by

patients with asthma to reduce inflammation of the airways. In the

experiment, 4 primary human airway smooth-muscle cell lines were

treated with 1mM dexamethasone for 18 h. For each of the 4 cell

lines, we have a treated and an untreated sample. The data are also

publicly available in the GEO database under accession number

GSE52778.

Analysis

We followed the steps of analysis published by Love et al.53 In par-

ticular, we started with the BAM files that provide the alignment

data in a binary format. After normalizing the table of read counts,

we performed differential expression analysis using DESeq,55 visual-

ization using heatmaps for sample distances, and a mean average

plot for the estimated model coefficients.

Case study 4: Drug signature prediction using

KINOMEscan data
Motivation and overview

Protein kinases are key regulators of cell function, and thus play crit-

ical roles in many biological processes. A protein kinase is an en-

zyme that transfers phosphate groups from molecules to specific

substrates. Kinases are important targets for therapeutic drugs.56

Many drugs have been developed to target kinases in the treatment

of cancer.57 However, the underlying biology of many of these kin-

ases is not yet fully elucidated. Therefore, drug-target interactions

profiling the binding of small-molecule drugs to kinases are of great

interest.

Data

The Harvard Medical School LINCS project measured kinase

biochemical profiles using a competition binding assay called

DiscoverRx KINOMEscan.58 Specifically, the researchers profiled a

panel of 478 kinases against 78 small molecule compounds.56 The

KINOMEscan data are publicly available from http://lincs.hms.har

vard.edu/kinomescan/.

Analysis

We aimed to identify protein targets of drug compounds using the

KINOMEscan data. We downloaded and parsed the KINOMEscan

data. We found 87 profiles of small-molecule drugs at 10 lM drug

concentration across 440 kinases. These data represent the percent-

age of kinase bound by ligand in the presence of a given drug con-

centration compared to the DMSO control reaction. The Harvard

Medical School web site graphed the results using percentage thresh-

olds of 35%, 5%, and 1%. In our Jupyter notebook (see Supplemen-

tary File S7), we established a threshold for the KINOMEscan data

at 35% and presented a heatmap of those data showing which com-

pounds are considered active among which kinases. Since there is no

established threshold for this “percent of control” – for example,

Vidovic et al.59 defined compounds as active if they inhibit a kinase

>90% – this case study illustrates the added value of these interac-

tive live notebooks by allowing the user to easily change the thresh-

old and update the drug-target interaction visualization results with

a few simple clicks.

DISCUSSION

We present a web-based framework and a GUI designed to automat-

ically generate a Dockerfile to create and publish live R and Biocon-

ductor notebooks for bioinformatics workflows without any

technical knowledge of Docker containers. These web-based note-

books can be published and viewed with modifiable and executable

code in a browser without having to install any software. We dem-

onstrate the applications of these interactive notebooks using 4 case

studies, in which we show the revolutionary aspects of dynamic live

notebooks compared to traditional static reports and visualizations

for data analysis. Notebooks generated in our framework ensure re-

producibility of analysis through the use of software containers. Our

interactive notebooks enable clinicians and biomedical scientists to

visually interact with the analyses while exploring the results

through different types of interactive visualizations (eg, Plotly60 in

case studies 2 and 4). In addition, parameters can be modified easily.

Our approach and BiocImageBuilder are not limited to bioinformat-

ics applications that use Bioconductor software packages, but can be

used for any applications that use the R programming language and

software packages from CRAN.

A limitation of Jupyter notebooks is that each notebook is lim-

ited to one kernel supporting a single programming language. All of

our 4 case studies used IRkernel, which assumes an R programming

environment. However, modern bioinformatics workflows consist

of modules that are potentially written in different programming

languages. Existing options to use both R and Python in the same

notebook include rpy2, which is an R interface embedded in a Py-

thon process61; Beaker, with individual cells supporting different

languages62; and the creation of custom hybrid kernels. Another

possibility is to use the Docker Python application programming in-

terface to launch containers within a custom cell, which would al-

low running workflows with components written in different

languages and with different software specifications. For future

work, we would like to explore these options to allow for a modular

structure consisting of different computing environments for bioin-

formatics applications.

10 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1

www.bioconductor.org/help/workflows/rnaseqGene/
www.bioconductor.org/help/workflows/rnaseqGene/
http://lincs.hms.harvard.edu/kinomescan/
http://lincs.hms.harvard.edu/kinomescan/


FUNDING

LHH and KYY are supported by National Institutes of Health grant U54-

HL127624. RA and AA gratefully acknowledge a full sponsorship from the

Saudi Arabian Cultural Mission scholarship program 2015–2017.

AUTHOR CONTRIBUTIONS

RA drafted the manuscript and was primarily responsible for figur-

ing out how Binder works. JH implemented and wrote documenta-

tion for BiocImageBuilder. LHH added the noVNC container to

BiocImageBuilder and refined the container. KYY designed and co-

ordinated the study. AA created the Jupyter notebooks for case stud-

ies 2 and 4. RA and YT created the Jupyter notebooks for case

studies 1 and 3, respectively. RA and NO performed the analysis of

the EP data. JH, LHH, and RA created the figures. JH created the

movie uploaded as Supplementary File S3. All authors tested BiocI-

mageBuilder and edited the manuscript.

CONFLICTS OF INTEREST

The authors have no competing conflicts of interest.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

ACKNOWLEDGMENT

We would like to thank Mr Yuvi Panda and Mr Chris Holdgraf from the

Berkeley Institute of Data Science for providing access to the latest version of

Binder.

REFERENCES

1. Peter A, Michael RC, Neboj�sa T, et al. Common Workflow Language, v

1.0. 2016.

2. Freedman LP, Cockburn IM, Simcoe TS. The economics of reproducibility

in preclinical research. PLoS Biol. 2015;13(6):e1002165.

3. Meiss T, Hung L-H, Xiong Y, Sobie E, Yeung KY. Software solutions for

reproducible RNA-seq workflows. bioRxiv. 2017:099028.

4. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software

development for computational biology and bioinformatics. Genome

Biol. 2004;5(10):R80.

5. Vivian J, Rao A, Nothaft FA, et al. Rapid and efficient analysis of 20,000

RNA-seq samples with Toil. bioRxiv. 2016:062497.

6. Ragan-Kelley M, Kelley K, Kluyver T. JupyterHub: deploying Jupyter

notebooks for students and researchers. 2016. https://github.com/minrk/

jupyterhub-pydata-2016. Accessed April 27, 2017.

7. Binder. 2017. http://docs.mybinder.org/. Accessed April 29, 2017.

8. Leek JT, Peng RD. Opinion: Reproducible research can still be wrong:

adopting a prevention approach. Proc Natl Acad Sci USA.

2015;112(6):1645–46.

9. Buffalo V. Bioinformatics Data Skills: Reproducible and Robust Research

with Open Source Tools. Sebastopol, CA: O’Reilly Media; 2015.

10. Hung LH, Kristiyanto D, Lee SB, Yeung KY. GUIdock: using docker con-

tainers with a common graphics user interface to address the reproducibil-

ity of research. PLoS One. 2016;11(4):e0152686.

11. Gentleman RC, Lang DT. Statistical analyses and reproducible research.

J Comput Graphical Stats. 2007;16(1):1–23

12. The Comprehensive R Archive Network (CRAN). https://cran.r-project.

org/. Accessed January 4, 2017.

13. Boettiger C. An introduction to Docker for reproducible research. ACM

SIGOPS Operating Systems Review, Special Issue on Repeatability and

Sharing of Experimental Artifacts. 2015;49(1):71–79.

14. Schulz WL, Durant TJ, Siddon AJ, Torres R. Use of application

containers and workflows for genomic data analysis. J Pathol Inform.

2016;7:53.

15. Mittal V, Hung LH, Keswani J, Kristiyanto D, Lee SB, Yeung KY. GUI-

dock-VNC: Using a graphical desktop sharing system to provide a

browser-based interface for containerized software. Gigascience.

2017;6(4):1–6.

16. Hung L-H, Meiss T, Keswani J, Xiong Y, Sobie E, Yeung KY. Building

containerized workflows for RNA-seq data using the BioDepot-workflow-

Builder (BwB). bioRxiv. 2017:099010.

17. Kluyver T, Ragan-Kelley B, Pérez F, et al. Jupyter Notebooks – a publish-

ing format for reproducible computational workflows. In: Loizides F,

Schmidt B, ed. Positioning and Power in Academic Publishing: Players,

Agents and Agendas. Clifton, VA: IOS Press; 2016:87–90.

18. Perez F, Granger BE. IPython: A System for Interactive Scientific Comput-

ing. Computing Sci Eng. 2007;9(3):21–29.

19. Jupyter kernels. 2017. https://github.com/jupyter/jupyter/wiki/Jupyter-ker

nels. Accessed March 20, 2017.

20. Jupyter Notebook Conversion. 2016. https://github.com/jupyter/nbcon

vert. Accessed March 9, 2017.

21. nbviewer: A simple way to share Jupyter Notebooks. https://nbviewer.

jupyter.org/. Accessed March 17, 2017.

22. Rendering Notebooks on GitHub. 2015. https://blog.jupyter.org/render

ing-notebooks-on-github-f7ac8736d686. Accessed April 12, 2017.

23. Search results on GitHub. 2015. https://github.com/search?l=&q=nbfor

mat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C

%93. Accessed May 3, 2017.

24. R Notebook. 2016. http://rmarkdown.rstudio.com/r_notebooks.html.

Accessed May 12, 2017.

25. Toward publishing reproducible computation with Binder. 2016. https://

elifesciences.org/elife-news/toward-publishing-reproducible-computa

tion-binder. Accessed April 18, 2017.

26. Sofroniew NJ, Vlasov YA, Hires SA, Freeman J, Svoboda K. Neural cod-

ing in barrel cortex during whisker-guided locomotion. eLife.

2015;4:e12559.

27. Collaboration LS, Virgo C, Abbott BP, et al. GW151226: observation of

gravitational waves from a 22-solar-mass binary black hole coalescence.

Phys Rev Lett. 2016;116(24):241103.

28. PyCBC: Python Software for Astrophysical Analysis of Gravitational

Waves from Compact Object Coalescence. 2016. https://github.com/ligo-

cbc/. Accessed April 21, 2017.

29. Docker containers for Bioconductor. https://http://www.bioconductor.

org/help/docker/. Accessed March 10, 2017.

30. Kirk E, Bourne T. Predicting outcomes in pregnancies of unknown loca-

tion. Women’s Health. 2008;4(5):491–99.

31. Banerjee S, Aslam N, Woelfer B, Lawrence A, Elson J, Jurkovic D. Expec-

tant management of early pregnancies of unknown location: a prospective

evaluation of methods to predict spontaneous resolution of pregnancy.

BJOG. 2001;108(2):158–63.

32. Goldner TE, Lawson HW, Xia Z, Atrash HK. Surveillance for ectopic

pregnancy: United States, 1970–1989. MMWR. CDC surveillance sum-

maries 1993;42(6):73–85.

33. Boyraz G, Bozdag G. Pregnancy of unknown location. J Turkish German

Gynecol Assoc. 2013;14(2):104–08.

34. Mol BW, Lijmer JG, Ankum WM, van der Veen F, Bossuyt PM. The

accuracy of single serum progesterone measurement in the diagnosis of

ectopic pregnancy: a meta-analysis. Human Reproduction.

1998;13(11):3220–27.

35. Kadar N, Bohrer M, Kemmann E, Shelden R. The discriminatory human

chorionic gonadotropin zone for endovaginal sonography: a prospective,

randomized study. Fertility Sterility. 1994;61(6):1016–20.

36. Silva C, Sammel MD, Zhou L, Gracia C, Hummel AC, Barnhart K.

Human chorionic gonadotropin profile for women with ectopic preg-

nancy. Obstetrics Gynecol. 2006;107(3):605–10.

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1 11

https://github.com/minrk/jupyterhub-pydata-2016
https://github.com/minrk/jupyterhub-pydata-2016
http://docs.mybinder.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://github.com/jupyter/nbconvert
https://github.com/jupyter/nbconvert
https://nbviewer.jupyter.org/
https://nbviewer.jupyter.org/
https://blog.jupyter.org/rendering-notebooks-on-github-f7ac8736d686
https://blog.jupyter.org/rendering-notebooks-on-github-f7ac8736d686
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C%93
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C%93
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C%93
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C%93
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C%93
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C%93
https://github.com/search?l=&q=nbformat+extension%3Aipynb&ref=advsearch&type=Code&utf8=%E2%9C%93
http://rmarkdown.rstudio.com/r_notebooks.html
https://elifesciences.org/elife-news/toward-publishing-reproducible-computation-binder
https://elifesciences.org/elife-news/toward-publishing-reproducible-computation-binder
https://elifesciences.org/elife-news/toward-publishing-reproducible-computation-binder
https://github.com/ligo-cbc/
https://github.com/ligo-cbc/
https://http://www.bioconductor.org/help/docker/
https://http://www.bioconductor.org/help/docker/


37. Condous G, Timmerman D, Goldstein S, Valentin L, Jurkovic D, Bourne

T. Pregnancies of unknown location: consensus statement. Ultrasound

Obstet Gynecol. 2006;28(2):121–22.

38. Duncan WC, Shaw JL, Burgess S, McDonald SE, Critchley HO, Horne

AW. Ectopic pregnancy as a model to identify endometrial genes and

signaling pathways important in decidualization and regulated by local

trophoblast. PLoS One. 2011;6(8):e23595.

39. AnnotationDbi: Annotation Database Interface [program]. R package

version 1.36.2. version. 2017.

40. stringr: Simple, Consistent Wrappers for Common String Operations

[program]. R package version 1.2.0 version. 2017.

41. hgu133plus2.db: Affymetrix Human Genome U133 Plus 2.0 Array anno-

tation data (chip hgu133plus2). [program]. R package version 3.2.3. ver-

sion. 2016.

42. hugene20stprobeset.db: Affymetrix hugene20 annotation data (chip huge-

ne20stprobeset). [program]. R package version 8.5.0. version. 2016.

43. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays ap-

plied to the ionizing radiation response. Proc Natl Acad Sci USA.

2001;98(9):5116–21.

44. Smyth GK. Linear models and empirical Bayes methods for assessing dif-

ferential expression in microarray experiments. Stat Appl Genet Mol Biol.

2004;3:Article3.

45. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analy-

sis: a knowledge-based approach for interpreting genome-wide expression

profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

46. Musa A, Ghoraie LS, Zhang SD, et al. A review of connectivity map and

computational approaches in pharmacogenomics. Brief Bioinform. pii:

bbw112. doi: 10.1093/bib/bbw112 2017.

47. Zhang N, Wang H, Fang Y, Wang J, Zheng X, Liu XS. Predicting antican-

cer drug responses using a dual-layer integrated cell line-drug network

model. PLoS Comput Biol. 2015;11(9):e1004498.

48. Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Ency-

clopedia enables predictive modelling of anticancer drug sensitivity. Na-

ture. 2012;483(7391):603–07.

49. Cancer Genome Project. http://www.sanger.ac.uk/science/groups/cancer-

genome-project. Accessed January 25, 2017.

50. Hung LH. L1Kþþ: A Fast Pipeline that Increases the Accuracy of L1000

Gene Expression Data. YouTube video from BD2K-LINCS; 2015.

51. Klijn C, Durinck S, Stawiski EW, et al. A comprehensive transcriptional

portrait of human cancer cell lines. Nat Biotechnol. 2015;33(3):306–12.

52. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. Model-based clus-

tering and data transformations for gene expression data. Bioinformatics.

2001;17(10):977–87.

53. Love MI, Anders S, Kim V, Huber W. RNA-Seq workflow: gene-level ex-

ploratory analysis and differential expression. F1000Research.

2015;4:1070.

54. Himes BE, Jiang X, Wagner P, et al. RNA-Seq transcriptome profiling

identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cyto-

kine function in airway smooth muscle cells. PLoS One. 2014;9(6):e99625.

55. Anders S, Huber W. Differential expression analysis for sequence count

data. Genome Biol. 2010;11(10):R106.

56. McAllister FE, Niepel M, Haas W, Huttlin E, Sorger PK, Gygi SP. Mass

spectrometry based method to increase throughput for kinome analyses

using ATP probes. Analytical Chem. 2013;85(9):4666–74.

57. Gross S, Rahal R, Stransky N, Lengauer C, Hoeflich KP. Targeting cancer

with kinase inhibitors. J Clin Invest. 2015;125(5):1780–89.

58. DiscoverRx KINOMEscan technology. Secondary DiscoverRx KINO-

MEscan technology. http://www.discoverx.com/technologies-platforms/

competitive-binding-technology/kinomescan-technology-platform.

Accessed February 15, 2017.

59. Vidovic D, Koleti A, Schurer SC. Large-scale integration of small

molecule–induced genome-wide transcriptional responses, Kinome-wide

binding affinities and cell-growth inhibition profiles reveal global trends

characterizing systems-level drug action. Front Genet. 2014;5:342.

60. Plotly: visualize data together [program]. https://plot.ly. Accessed March

5, 2017.

61. rpy2. https://rpy2.bitbucket.io/. Accessed May 31, 2017.

62. Beaker. http://beakernotebook.com/. Accessed May 31, 2017.

12 Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1

http://www.sanger.ac.uk/science/groups/cancer-genome-project
http://www.sanger.ac.uk/science/groups/cancer-genome-project
http://www.discoverx.com/technologies-platforms/competitive-binding-technology/kinomescan-technology-platform
http://www.discoverx.com/technologies-platforms/competitive-binding-technology/kinomescan-technology-platform
https://plot.ly
https://rpy2.bitbucket.io/
http://beakernotebook.com/

