Skip to main content
. 2018 Nov 6;13(6):440–446. doi: 10.1159/000489565

Table 2.

Performance of nomograms from the setting of primary surgery (learning cohort, n = 75)

Nomograms AUC Standard error pa 95% CI of AUC
MSKCC 0.82 0.05 <0.001 0.72–0.92
MDA 0.71 0.06 0.002 0.60–0.83
Mayo 0.71 0.06 0.002 0.60–0.83
Cambridge 0.72 0.06 0.001 0.61–0.84
Tenon 0.75 0.06 <0.001 0.63–0.86
Stanford 0.71 0.06 0.002 0.59–0.82
SENTINAb 0.83 0.05 <0.001 0.74–0.92
Meta nomogram 0.84 0.05 <0.001 0.74–0.93
Full model 0.85 0.04 <0.001 0.76–0.93
a

Testing each nomogram against an AUC of 0.5 (Null hypothesis).

b

In addition, the SENTINA nomogram was validated in the validation subset (n = 168) with an AUC of 0.83 (95% CI 0.76–0.89, p < 0.001).

AUC = Area under the curve; CI = confidence interval.