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Abstract

Purpose of review—Sex differences are pervasive in metabolic and cardiovascular traits, yet 

they have often been ignored in human and animal model research. Sex differences can arise from 

reversible hormonal effects, from irreversible organizational (developmental) processes, and from 

gene expression differences from the X and Y chromosomes. We briefly review our current 

understanding of the impact of these factors in metabolic traits and disorders, with an emphasis on 

the recent literature.

Recent findings—Novel sex differences continue to be identified for metabolic and 

cardiovascular traits. For example, it is now clear that gut microbiota tend to differ between men 

and women, with potentially large implications for disease susceptibility. Also, tissue-specific 

gene regulation differs between men and women, contributing to differential metabolism. These 

new insights will open up personalized therapeutic avenues for cardiometabolic diseases.

Summary—Sex differences in body fat distribution, glucose homeostasis, insulin signaling, 

ectopic fat accumulation, and lipid metabolism during normal growth and in response to hormonal 

or nutritional imbalance are mediated partly through sex hormones and the sex chromosome 

complement. Most of these differences are mediated in a tissue-specific manner. Important future 

goals are to better understand the interactions between genetic variation and sex differences, and to 

bring an understanding of sex differences into clinical practice.
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INTRODUCTION

Sex differences in metabolic traits such as obesity, diabetes, and cardiovascular disease have 

been amply described in mice, humans, and other species, with females generally exhibiting 

more beneficial metabolic profiles [1–6,7■■,8]. While originally those differences were 
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attributed to the effect of sex hormones, recent studies suggest that both hormones and sex 

chromosome complement play a role [9,10■■]. The effects of sex hormones can be either 

reversible or irreversible (‘organizational’). Sex differences may be dependent upon the 

genetic background, environmental factors and the gut microbiome [11,12■]. Gene 

expression studies show a large proportion of genes differentially expressed in adipose, liver, 

brain, and other tissues [6,13■], and that sex hormones and also chromosome complement 

play a major role in modulation of gene expression [6,14–17]. It is important to understand 

sex differences for practical reasons. First, because sex affects the prevalence of most 

chronic diseases, in some cases as much as 10-fold, there is much to be learned about 

disease mechanisms. Second, as discussed below, disease symptoms and treatments will also 

differ between sexes, and sex differences are probably the most accessible target of the 

current Precision Medicine effort. An ultimate goal will be to understand sex differences at 

the level of biologic networks (the ‘sexome’) [18].

BODY COMPOSITION, ADIPOSE DISTRIBUTION AND OBESITY

Adipose tissue is now recognized as more than a mere fat storage organ. Through their 

secretion of several adipokines and cytokines such as leptin, adiponectin, tumor 

necrosisfactor (TNF)-α and interleukin (IL)-6, adipose tissue plays a major role in 

regulating metabolic and energy homeostasis [19]. The major form of adipose tissue in adult 

mammals is the white adipose tissue, and it occurs either under the skin as subcutaneous 

adipose tissue (SAT) or in the deep abdominal region as visceral adipose tissue (VAT). 

Understanding how normal adipose physiology differs between men and women will be key 

to deciphering how sex differences affect the pathology of disrupted metabolic homeostasis. 

Under normal physiological conditions, premenopausal women have higher overall fat mass 

percentage, whereas men have higher lean mass percentage [20]. However, premenopausal 

women store more fat in their SAT depots surrounding hips and thighs (also known as 

gynoid fat distribution), whereas men store fat in their VAT depots in the deep abdominal 

region (also known as android fat distribution) [20]. Increasing evidence shows that higher 

VAT in men is significantly associated with cardio-metabolic risk, whereas higher SAT in 

women might be involved in cardiometabolic protection [21–24]. Postmenopausal women 

lose this protection, as there will be a shift from gynoid fat to android fat accompanied by 

increased cardiometabolic risk compared to men [25–27]. This signifies that increased VAT 

confers more cardiometabolic risk in women compared to men.

Sex differences in adipose distribution are attributed partly to adipose depot-specific 

differences in lipoprotein lipase (LPL) activity, and also adrenergic receptor and estrogen 

receptor distribution. LPL plays a key role in fat accumulation in adipose. Although LPL is 

highly active in SAT of women compared to VAT, the converse is true in men [28]. Apart 

from this, testosterone also suppresses LPL activity in SAT of men [29]. Adipose tissues 

express both lipolytic β1–2-adrenergic receptor and antilipolytic α2-adrenergic receptor, 

thereby regulating balance between lipolysis and lipogenesis leading to fat storage. 

However, in premenopausal women, estradiol increases α2-adrenergic receptor only in SAT, 

thereby shifting the balance toward gynoid fat accumulation [30–32]. In contrast, men have 

higher α2-adrenergic receptor in their VAT contributing to android fat [31]. Animal studies 

revealed that women are resistant to diet-induced obesity, whereas ovariectomy reverses this 
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protective effect [33,34]. Nevertheless, estrogens can rescue ovariectomized women from 

obesity in an estrogen receptor α-dependent manner [35–37]. Women have lower estrogen 

receptor α distribution in SAT, whereas men have lower estrogen receptor α in VAT, thereby 

partly contributing to their differential fat depot accumulation. Adipose-specific estrogen 

receptor α deletion increases diet-induced adiposity in both men and women, specifically 

increasing VAT deposition [38]. Estrogens mediate their antiobese effect by decreasing food 

intake and increasing energy expenditure in women [39–43].

Apart from these mechanisms, adipose-mediated sex hormone metabolism also contributes 

in dimorphic adipose distribution. For instance, compared to VAT, SAT has higher levels of 

aromatase enzyme that converts androgens to estrogens [44,45]. In contrast, VAT has higher 

levels of 17β-hydroxysteroid dehydrogenase (17βHSD) that converts less active hormones to 

their more active counterparts, for example, androstenedione to testosterone [44,45]. As a 

consequence, higher VAT results in higher 17βHSD-mediated local androgen production 

[44,45]. Furthermore, aromatase deletion in animal models leads to metabolic dysfunction 

such as increased adiposity, hyperinsulinemia and hepatic steatosis that can be partly rescued 

by estradiol treatment [46–48].

Genetic tools available in mouse models such as the four core genotypes (FCGs) enable 

better understanding of the role of sex chromosome complement in regulating obesity 

independent of sex hormones [49]. FCGs dissociate sex chromosome complement from sex 

hormones, and include XX men or women and XY men or women [49]. Studies on FCG 

mouse model revealed that X chromosome complement is positively associated with 

increased adiposity in a dose-dependent manner [50]. Comparing their observations with the 

most common human chromosomal anomaly (~1/600 live births), namely Klinefelter 

syndrome (XXY), revealed that compared to XY men, XXY men had higher incidence of 

visceral adiposity-associated metabolic abnormalities [51]. Genes that escape X inactivation, 

genes on Y chromosome and distinct epigenetic imprinting inherited from maternal or 

paternal parents are hypothesized to contribute to these differential chromosomal effects [9].

GLUCOSE HOMEOSTASIS, INSULIN RESISTANCE AND DIABETES

Glucose homeostasis is primarily regulated by skeletal muscle through basal and insulin-

stimulated glucose uptake. Men have more muscle mass compared to women [52,53]; 

however, premenopausal women show similar insulin sensitivity compared to men. This 

difference was attributed to enhanced skeletal muscle-mediated glucose uptake in women 

compared to men [54]. Moreover, women tend to have increased insulin secretion compared 

to men as measured by postprandial insulin and C-peptide levels [55]. It is proposed that 

estradiol may partly mediate this mechanism [56■■]. On the contrary, sex differences also 

affect prediabetic conditions such as impaired fasting glucose and impaired glucose 

tolerance. Population studies have shown that women have lower fasting glucose, but 

impaired glucose tolerance compared to men [57–60]. Estrogen therapy in menopausal 

women decreases fasting glucose, but impairs glucose tolerance [56■■,59]. Sex differences 

also exist in diabetic prevalence. Population studies have shown that both type 1 and 2 

diabetes have a male predominance [61–63]. Global survey on diabetic populations revealed 

that sex-specific diabetic prevalence reverses depending on the reproductive stages [64]. 
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Specifically, more men have diabetes prepuberty, whereas more women have diabetes 

postmenopause [64].

Sex-specific adipose distribution is partly attributed to the observed differential glucose 

homeostasis between men and women. For instance, insulin resistance is associated with 

increased VAT through pro-inflammatory cytokines. Apart from this, increased VAT 

lipolysis results in higher free fatty acid flux delivered to liver leading to hepatic insulin 

resistance such as hyperinsulinemia and increased glucose production [65]. Moreover, 

insulin resistance and diabetes are improved by surgical removal of VAT in both animals and 

humans [66,67]. In contrast, selective SAT removal is associated with worse metabolic 

profiles in both animals and humans, indicating that SAT acts as a metabolic sink and 

protects against metabolic syndrome [68,69]. This is further exemplified by adipose 

redistribution from SAT to VAT following liposuction [70]. Studies in premenopausal 

women show that SAT through its highly active LPL takes up most of the fatty acids from 

circulation and meals, acting as a metabolic sink preventing ectopic fat accumulation in liver 

and muscle [71]. As a consequence, SAT adipocytes are larger, yet remain insulin-sensitive 

[72].

Studies have also shown that deregulated adipose expansion and their inability to store lipids 

lead to ectopic fat accumulation followed by insulin resistance [65]. Normal adipose tissue 

expansion happens through either increased cell number by recruitment of new adipocytes 

(hyperplasia) or increased cell size in pre-existing adipocytes (hyper-trophy). Hyperplastic 

expansion results in improved metabolic health, whereas hypertrophic expansion leads to 

systemic metabolic dysfunction [73,74]. Animal studies have shown that SAT expands 

predominantly via hyperplasia, whereas VAT expands primarily through hypertrophy 

following high-fat feeding [75,76]. A similar trend was observed in women as well [77]. It 

was proposed that estrogens play a role in this, but the precise mechanism for this 

differential fat expansion is unknown. Apart from this, vascular supply influences both 

hyperplasia and hypertrophy. Human samples have shown that SAT has increased capillary 

density and angiogenic growth compared to VAT [78]. Reduced vascular supply during fat 

expansion leads to hypoxia and activation of hypoxia inducible factor (HIF) that enhances 

adipose inflammation and fibrosis, leading to insulin resistance [79]. In contrast, estrogen 

through estrogen receptor a promotes HIF ubiquiti-nation and degradation through 

transcriptional up-regulation of prolyl hydroxylase enzyme, thereby reducing adipose 

inflammation and fibrosis [80]. Apart from this, adipocyte-specific deletion of estrogen 

receptor α in mice has demonstrated its protective role against adipose inflammation, 

fibrosis, and insulin resistance in animal models [38].

Apart from these mechanisms, mouse population studies revealed extensive gene-by-sex 

regulation in insulin resistance [3]. Furthermore, studies on FCG mice revealed that high fat/

high carbohydrate feeding resulted in similar fasting glucose levels in all four genotypes; 

however, XX mice produced nearly twice as much insulin to maintain normal glucose levels 

compared to XY mice [50]. This suggests that, similar to adiposity, X chromo-some 

complement contribute to insulin resistance and can lead to type 2 diabetes. Likewise, 

human studies have revealed that compared to XY men, XXY men have higher incidences of 

insulin resistance and type 2 diabetes [81–84].
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HEPATIC STEATOSIS

Another major obesity complication is nonalcoholic fatty liver disease (NAFLD). NAFLD is 

the most common chronic liver disorder, which comprises of a spectrum of hepatic 

abnormalities ranging from simple steatosis (intrahepatic triglyceride accumulation) to 

steatohepatitis (NASH), fibrosis, and cirrhosis, in the absence of excessive alcohol 

consumption [85–87]. Population studies revealed that NAFLD is more prevalent in men 

than women, with men exhibiting more severe NAFLD symptoms [86,88–92]. Also, 

NAFLD was found to be more prevalent in postmenopausal compared to premenopausal 

women, suggesting hormonal regulation [93]. In addition, mouse population studies also 

revealed that, in response to high fat/high sucrose feeding, male mice generally had higher 

hepatic steatosis, and that genetic variation played a major role in sex differences [94■]. 

Additionally, the FCG mice revealed that, similar to obesity and insulin resistance, X 

chromosome complement increased hepatic triglyceride accumulation in a dose-dependent 

manner [50]. The observed sex differences in both humans and animals were attributed 

partly due to genes escaping X inactivation and differences in genetic regulation, differential 

body fat distribution, and sex hormone metabolism between men and women. Nevertheless, 

the mechanisms underlying these sex differences in NAFLD prevalence are poorly 

understood.

Intrahepatic ceramide accumulation was implicated as one of the causal mechanisms for sex-

specific differences observed in hepatic steatosis and insulin resistance. Using a mouse 

reference population, we observed that different ceramide species were prevalent between 

sexes, thereby differentially regulating hepatic steatosis and/or insulin resistance [95■]. 

Follow-up gonadectomy studies on three different common inbred mouse strains revealed 

that these differences were partly due to testosterone-mediated inhibition of ceramide 

synthase 6 in the liver [95■].

With no available pharmacological treatment, it is imperative that we need to understand the 

underlying sex-specific mechanisms modulating hepatic steatosis as it will lead to improved 

personalized therapeutics for NAFLD treatment and prevention.

CARDIOVASCULAR TRAITS

The prevalence of coronary heart disease (CHD) and myocardial infarction increases with 

age in both sexes, but is delayed by about 10 years in women as compared to men. 

Moreover, the symptoms, treatment, and outcomes of CHD differ between sexes [96■■,97]. 

The underlying causes of these differences are unclear. Blood lipoprotein levels are strongly 

associated with CHD, with LDL-cholesterol and triglyceride levels directly correlated, and 

disease and HDL-cholesterol levels inversely correlated. Men and women have similar levels 

of LDL-cholesterol, but women have about 20% higher HDL-cholesterol and about 15% 

lower triglyceride levels. Lp(a) is an LDL-like lipoprotein that is highly proatherogenic. A 

relatively small but potentially interesting recent epidemiologic study suggests that Lp(a) 

concentrations are correlated with angio-graphic scores in men but not women [98]. There 

are also sex differences in hypertension and thrombosis risk, two other CHD risk factors. 

The sex differences in hypertension are complex and age-dependent, being more prevalent in 
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men below 45 years of age, but more prevalent in women above 55 years of age. Women 

have elevated thrombosis risk as compared to men, which may be related to the fact that 

strokes comprise a larger fraction of cardiovascular events in women than men [99].

Differences in endogenous gonadal hormones have been hypothesized to play a role in CHD 

sex differences. In particular, the cardioprotection in women is lost once menopause occurs. 

Female sex hormones have been intensively investigated in the context of hormone 

replacement therapy, whereas male sex hormones have received less attention. Glisic et al. 
[100■] recently examined the relationship of gonadal hormones with carotid plaque 

composition in 2100 older men and women. Men exhibited increased carotid atherosclerosis 

and increased likelihood of lipid cores and intraplaque hemorrhage. Both estrogen and 

testosterone levels were associated with carotid plaque composition. Increased estradiol was 

associated with a lipid core in both sexes, whereas testosterone was associated with reduced 

lipid cores in women, but was unrelated in men. Increased estradiol levels were also 

associated with stroke in women.

It has been hypothesized that some of the differences in metabolic and cardiovascular 

disorders could involve gut microbiota (collectively termed the ‘microbiome’). Studies over 

the last two decades have convincingly shown that gut microbiota play a significant role in 

many disorders, including obesity, inflammatory bowel disease, and cardiovascular disease. 

There are significant sex differences in gastrointestinal permeability and susceptibility to 

intestinal injury, and recent studies have also shown that the gut microbiome differs between 

sexes. In addition to intestinal properties, potential mechanisms include sex differences in 

bile acid metabolism and gut microbe effects on the levels and potency of estrogen 

metabolites [101■■].

CONCLUSION

In reviewing the current literature, we find that there are many reports of sex differences in 

cardiovascular and metabolic traits, but relatively few basic studies directed at understanding 

the underlying mechanisms. For example, as yet very little is known about the epigenetic 

differences in men and women, and few genome-wide association studies examine the sexes 

separately. Such basic studies will be critical for the implementation of Precision Medicine. 

We summarize some important questions for the future in Table 1. Also, quite surprising, 

given the attention that has been raised about sex differences in recent years, is that many 

animal model studies include only one sex, most often males.
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KEY POINTS

• Sex differences contribute to majority of cardiometabolic traits and are 

mediated mostly in a tissue-specific manner.

• Sex differences are mediated through reversible sex hormones, irreversible 

developmental processes, and sex chromosome complement.

• Gene-by-sex interactions must be understood for a better understanding of sex 

differences and development of personalized treatment.
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Table 1.

Key questions in understanding sex differences in metabolic and cardiovascular traits

1. How do different tissues and cell types differ in hormonal responses between sexes?

2. What genes on the X or Y chromosomes are involved in sex differences?

3. How do tissues differ in epigenetic organization during sexual development?

4. Are sex-specific differences well conserved between humans and animal models?

5. How do men and women differ in drug responses? For example, statin use is associated with diabetes, but more so in women than men.

6. How prevalent are gene-by-sex interactions?
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