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Abstract

We developed a computational method based on polyploid phasing of long sequence reads to 

resolve collapsed regions of segmental duplications within genome assemblies. The approach, 

Segmental Duplication Assembler (SDA), constructs graphs where paralogous sequence variants 

define the nodes and long-read sequences provide attraction and repulsion edges allowing us to 

partition and assemble long reads corresponding to distinct paralogs. We apply it to single-

molecule, real-time sequence data from three human genomes and recover 33–79 Mbp of 

duplications where approximately half of the loci are diverged (<99.8%) when compared to the 

reference genome. We show that the corresponding sequence is highly accurate (>99.9%) and that 

the diverged sequence corresponds to copy number variable paralogs that are absent from the 

human reference. Our method can be applied to other complex genomes to resolve the last gene-

rich gaps, improve duplicate gene annotation, and better understand copy number variant genetic 

diversity at the base-pair level.
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INTRODUCTION

Advances in sequencing technologies and the development of novel computational assembly 

algorithms are central to the complete characterization of the content of complex genomes. 

Recent developments in long-read sequencing technology have dramatically improved the 

contiguity and speed at which de novo assemblies of complex genomes can be generated1–8. 

Individual labs, for example, can now accurately assemble >90% of the euchromatin in less 

than 1,000 contigs within a few months5,6,9,10. Despite these recent advances, significant 

portions of the genome remain unresolved. This is especially true for larger, highly identical 

repetitive regions, including heterochromatin and gene-rich regions associated with 

segmental duplications (SDs), which are larger than majority of long reads11–17.

SDs in most mammalian genomes are organized into complex regions typically >100 kbp in 

length and, by definition, are present at multiple locations. They contribute to dosage 

imbalance associated with disease18,19 and are ten times more likely to contribute to normal 

copy number variation20. They are also a reservoir for gene innovations associated with 

species adaptations21–23. The size, copy number, and sequence identity of SDs means that 

they are usually the last regions of the genome to be sequenced and assembled often using 

large-insert BAC (bacterial artificial chromosomes)24,25. More than half the gaps that remain 

in FALCON-based genome assemblies of single-molecule, real-time (SMRT) sequence data 

correspond to regions of SD. We estimate that the architecture of only 29.2% of SD bases 

are resolved in an assembly of CHM1 (Figure S1, Table S1, Methods) with most disease-

associated regions unresolved (Table S2)18,26. Similarly, an assembly of NA12878 using 

longer Oxford Nanopore Technologies (ONT) ultra-long reads27 shows moderate 

improvement (32.9% resolved) but leaves most SDs unresolved (Figure S1, Table S1).

Here, we develop and apply the Segmental Duplication Assembler (SDA) method that takes 

advantage of paralogous sequence variants (PSVs) and correlation clustering28 to uniquely 

assemble different paralogs of SDs that were previously collapsed in long-read human 

genome assemblies. We apply it to actual SMRT and ONT long-read datasets to resolve SDs 

in recent assemblies and generate >30 Mbp of highly accurate, novel human genome 

sequence data. This method is computationally tractable and a generalizable solution for 

resolving collapsed repeat content in de novo assemblies of other mammalian genomes.

RESULTS

The problem: Unresolved SDs

While ONT and PacBio sequencing platforms generate long sequence reads, they also 

typically suffer from high error rates between 10–15%16,17. The predominant long-read 

assembly methods for whole-genome shotgun sequence assembly (WGSA) are based on 

read correction and overlapping corrected reads to construct larger sequence contigs, e.g., 
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Canu and FALCON7,8. The high error rate of long-read sequencing platforms is particularly 

problematic for distinguishing paralogous and allelic sequence because the duplications are 

highly identical (>95%) and well within the range of error from long-read sequencing. This 

leads to sequence reads being recruited and merged from both paralogs and alleles during 

the assembly process creating collapses (Figure 1) where the assembled sequence and 

corrected sequence contig are in error. To quantify the effect of collapse and misassembly, 

we compared several recent assemblies generated using both ONT and SMRT sequence data 

(Figure S1, Supplementary Note). Requiring a 50 kbp extension into unique sequence, we 

estimate that only 49.0–51.3 Mbp of SDs are fully resolved (Figure S2) leaving 71% 

(~125/175 Mbp) of SDs associated with gaps. We note that even without requiring an 

extension into unique sequence, 59.5–69.8% of SDs remain unresolved (Figure S1). We 

estimate that ~50 Mbp of the duplications correspond to regions where the assembly 

algorithm has collapsed highly identical duplications into the same contig. Analysis of an 

ONT assembly generated with ultra-long reads (2.5-fold coverage of reads over 100 kbp)27 

showed a modest 8% improvement in SD assembly; however, most of the SDs still remained 

unresolved (Figure S1). As expected, the largest (>10 kbp) and most identical duplications 

(>95% identity) are particularly enriched in unresolved SDs (Figure S2a) and frequently 

correspond to annotated human genes (Figure S2b).

The approach: Segmental Duplication Assembler (SDA)

Previously, we presented a computational algorithm28 that could, in principle, assemble 

multi-copy duplications de novo using polyploid phasing29–33 and demonstrated its efficacy 

based on simulated datasets. Here, we develop SDA and apply it to WGSA collapsed 

duplications generated within existing human genome datasets. We specifically develop 

SDA to deal with different long-read datasets (Supplementary Note) and the generation of 

high-quality sequence contigs. Our method (Figure 1) identifies high-confidence PSVs ab 
initio and groups them using correlation clustering with defined attraction and repulsion 

edges into PSV graphs. We then assemble the partitioned reads independently, 

distinguishing the paralogous copies. Empirically we observe that we are able to assemble 

large duplications with less than 0.5% sequence divergence (Supplementary Note). As a 

measure of reproducibility, we apply this method to four human genomes and validate the 

results and accuracy based on targeted BAC sequencing and analyses of specific duplicated 

loci.

We begin by identifying all collapsed duplications within each assembly based on an excess 

of sequencing read depth11,34 (Methods). Within the CHM1 assembly9, for example, we 

identify 283 regions of collapse averaging 43 kbp in length (Table 1). When the 12.2 Mbp of 

collapsed CHM1 duplications are mapped back to the reference, they span 52.3 Mbp of 

sequence—93% (48.6 Mbp) are annotated as SDs and 88% of which (45.9 Mbp) overlap 

with regions of unresolved SDs in CHM1. Next, we define PSVs corresponding to each 

collapsed segment. We define candidate PSVs by classifying the second most frequent base 

at every position within the collapsed alignment and requiring sequence coverages consistent 

with a single-copy locus in order to distinguish PSVs from allelic variants (Methods). We 

next apply correlation clustering to filter false positive variants arising from sequencing error 

and uniquely assign each remaining PSV to the paralog from which it originates. For each 
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collapsed region, we construct a graph where the PSVs define the nodes and the sequence 

reads define the edges. Attraction edges are formed when a read contains two or more PSVs 

connecting two or more nodes. Similarly, repulsion edges are formed when PSVs are 

mutually exclusive across all the sequence reads.

With this formulation of the problem, it is possible to address the correlation clustering 

objective, which is to minimize the number of repulsion edges within clusters and minimize 

the number of attraction edges between clusters. Correlation clustering offers a distinct 

advantage over many other clustering algorithms because it does not require the number of 

clusters as a starting input. It is therefore ab initio and defined entirely by the underlying 

sequence data. However, correlation clustering is an NP (nondeterministic polynomial) 

complete problem; thus, we developed a heuristic to approximate the solution modeling after 

previous work35. The heuristic randomly assigns PSVs to clusters and then iteratively 

increases the size of the cluster by following positive edges that decrease the score of the 

entire graph (Methods).

Resolving SDs using SDA

We applied correlation clustering to each of the 283 collapsed regions in the CHM1 WGSA 

and generated a total of 668 distinct groupings. We created separate assemblies 

corresponding to each PSV graph partition using Canu followed by Quiver error correction. 

We successfully generated 590 assemblies where a single contig was produced 

corresponding to 33.1 Mbp of assembled sequence (Table 1, Figure 2) with an average 

sequence contig length of 60.7 kbp. The median assembly length was 53.0 kbp (mean 60.7 

kbp), and the maximum sized assembly was 255.5 kbp. In general, the length of the 

assembly correlates (r = 0.67, Pearson’s correlation) with the size of the collapse (Figure 

S3). Of the 668 PSV graphs, 59 failed to generate an assembly and 19 assembled into 

multiple contigs. An inspection of those clusters that failed to assemble showed that the 

majority did so due to an insufficient number of reads while clusters with multiple contigs 

were the result of either incomplete PSV separation among multiple contigs or variable 

sequence coverage.

In order to assess the accuracy and contiguity of the assembled SDs, we mapped each 

sequence contig back to the human reference genome (GRCh38). Of these assemblies, 

48.5% (286/590) mapped to the human reference with at least 99.8% sequence identity over 

>90% of the contig length and accounted for ~18 Mbp of sequence. Interestingly, a similar 

fraction of assembled contigs (51.5% (304/590) (corresponding to 15.5 Mbp) showed 

greater sequence divergence ranging from 96% to 99.8% sequence identity (Figure 2a). We 

consider the contigs that “match” at high identity to GRCh38 to be correctly assembled and 

classify those with lower sequence identity than expected based on allelic variation 

(<99.8%)36 to be “diverged.” Since >0.2% divergence lies outside the typical range of 

human allelic variation, such diverged sequence may represent different copies of the 

duplication not yet represented in the human genome. We examined, in detail, a few human-

specific gene families (e.g., SRGAP2 and NOTCH2NL) associated with 

neuroadaptation22,37–41 that have been the target of detailed BAC-based sequence 

assemblies (Table S3, Figures 3 and S4). Our analysis shows that we have successfully 
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resolved the collapsed assemblies recreating the sequence and gene models present in the 

reference. This includes the identification and characterization of paralog-specific structural 

variation with most sequence assemblies matching ~99.8%−99.9% to their respective 

paralogs. Among these gene families, we estimate that 91%−93% of all PSVs have been 

correctly assigned.

We repeated this analysis for three additional long-read human genome assemblies, 

including a second haploid genome (CHM13)9, a diploid genome of African descent 

(YRI19240)42, and a diploid genome assembled with ONT (NA12878)27 (Table 1, 

Supplementary Note, Figures S5-S7). The proportion of matched and diverged sequence 

assemblies as well as resolved SD regions was very similar among the PacBio genomes. For 

example, 83% (1,772/2,136) of clusters resolved into single contig assemblies for the 

African diploid genome assembly. In contrast, an analysis of a human genome assembly 

(NA12878) generated with ultra-long ONT reads showed more failed SD assemblies, 

although we note that the coverage of this genome was significantly less than that of the 

PacBio genome assemblies (Figure S7). Combining both the “matched” and “diverged” 

sequences, we estimate that the SDA method adds an additional 72.6 and 78.6 Mbp of 

sequence corresponding to duplicated regions of the CHM13 and NA19240 human 

genomes, respectively.

Characterization of diverged duplications

We focused on the diverged duplications and considered two possibilities: the sequence 

could represent misassembled sequence or, alternatively, may represent additional copies not 

yet present in the human reference genome. The latter may be expected given that SD 

regions are 10-fold more likely to be copy number polymorphic20 than unique regions of the 

genome. If diverged sequences resulted from the sequence and assembly of additional 

copies, we would expect a significant increase in the copy number difference for diverged 

sequences when compared to duplicated sequences that matched the human reference 

genome (>99.8% sequence identity). Indeed, a comparison of the copy number difference 

for these two categories clearly showed that diverged copies were more likely (p = 2.0 × 10–

5) to have a higher copy number in CHM1 (Figure 2c) than duplicated sequences that 

matched the reference genome assembly.

As a more direct test, we sequenced and assembled 1,253 large-insert BAC clones (Table 

S4) corresponding to regions of SD from a genomic library (CHORI-17) derived from 

CHM143,44 (Methods). Restricting our analysis to the 304 diverged sequences assembled by 

SDA from CHM1, we identify 105 diverged duplications that match the CHORI-17 clones. 

Each of these 105 sequences aligned to a clone over at least 90% of its length and at >99.8% 

sequence identity (mean sequence identity of 99.97%) (Figure 4, Table S5). If we assume 

that our method targeted all SDs evenly across the whole genome, then we would expect 

approximately 37.4% of the bases across our diverged sequences to validate. We observe 

that 105 of our diverged sequences, or 36.3% of the bases, validate and show significantly 

better alignment to the CHM1 clone inserts when compared to GRCh38. We estimated the 

sequence accuracy for our assembled duplications as 99.989 (quality value (QV) = 38.4) 

considering only single-base-pair mismatches and 99.857% (QV = 28.4) if indels and 
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mismatches are counted. We note that many of the 105 validated assemblies contain 

sequences associated with gene families and, thus, have the potential to recover missing 

genic sequence not yet annotated. For example, we assembled a paralog of NBPF1 that is 

1.2% diverged from the human reference but maps with >99.99% sequence identity to a 

CHM1 clone (Figure 4, Table S6). Similarly, Sudmant and colleagues45 identified an 

additional duplication in 16p12.1 that exists in most individuals but was absent from the 

reference. Using SDA, we recovered the proposed duplication46 (Figure S8) with only one 

mismatched base pair across a 95 kbp alignment to the BAC-generated contig.

We analyzed more systematically the utility of these orphan SDA contigs to generate more 

accurate gene models for 37 human-specific segmental duplication (HSD) gene families. We 

selected 213,450 bulk single-molecule sequencing RNA reads (Iso-Seq) from fetal and adult 

human brain enriched for HSDs47. We aligned Iso-Seq data and compared their mapping 

between SDA contigs versus previous collapsed contigs in the CHM13 assembly. 

Transcripts showed improved mapping to the SDA contigs for 11 gene families to varying 

degrees (Figure S9). We identified six gene families (Figure 5a) where transcripts mapped 

better to the SDA assemblies than the human reference genome. A subset of transcripts from 

the GPRIN2 (G-coupled protein inducer of neurite outgrowth) gene family are most striking 

with a 1.5% improvement. We aligned the second SDA GPRIN2 contig that appears to be 

missing from the reference and found that it spans a gap in GRCh38 flanked by SDs (Figure 

5b). Moreover, a previous analysis of Illumina whole-genome shotgun (WGS) sequence 

shows that GPRIN2 is polymorphic with copy number ranges from 3–7 copies with most 

humans carrying four in contrast to other apes which carry only one (diploid copy number = 

2). Our analysis shows that both copies, GPRIN2A and GPRIN2B, are transcribed and 

encode similar open reading frames, although GPRIN2B has a 3-amino-acid insertion as 

well as several amino acid differences when compared to the ancestral GPRIN2A (Figure 

S10). Interestingly, these PSVs have been erroneously classified as single-nucleotide 

variants (SNVs; with near 50% “allele” frequency in dbSNP) because the reference is 

missing this second copy (Table S7). Thus, the SDA contig not only improves gene 

annotation but also improves interpretation of human genetic variation.

DISCUSSION

In this study, we develop a method to accurately assemble high-identity SDs from long-read 

WGS sequence. There are three strengths to SDA. First, our approach does not require PSVs 

to be predefined and, as such, can be applied to any genome assembly where long-read data 

of sufficient depth has been generated. A similar concept was recently applied to partition 

viral quasispecies48. Second, our validation results suggest that the paralog-specific 

assemblies are highly accurate (99.86%−99.99%). Importantly, the approach allows missing 

paralogs to be sequenced especially within regions of extensive copy number variation. This 

is particularly exciting because it allows previously uncharacterized forms of human genetic 

variation to be sequence-resolved for the first time. Finally, our analysis of the human 

genome suggests that the majority of collapsed duplications are at least partially resolved 

(Figure 2). Since unassembled SDs typically represent ~70–90 Mbp of sequence per 

genome, recovery of 33–79 Mbp is the equivalent of recovering an entire chromosome’s 

worth of DNA for which accurate gene models can be constructed (Tables 1 and S8). The 
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method we have developed can be effectively applied to any genome for which long-read 

WGSA data exist providing access to the duplicated regions and the genes therein.

Notwithstanding these advances, limitations remain. The majority of the sequence contigs 

we generated with SDA are small (~54 kbp) and are not yet commensurate with the average 

contig lengths generated by long-read sequence and assembly of unique regions of the 

genome. Only a small fraction (22%) of SDA contigs transition into unique sequence such 

that overlaps can be unambiguously assigned into the main genome assembly (Figure S11). 

Our new duplicated sequence contigs are not yet fully integrated into the genome and many 

of the resolved duplications remain “orphan” contigs in the absence of additional long-range 

mapping data. Directly integrating our SDA tool into popular long-read assemblers, to create 

long-range linkage information, may not be advisable even if it were possible. Optimizing 

parameters for SD assembly would likely come with costs for the remaining 95% of the 

genome. There are distinct advantages to performing bulk WGSA followed by a second-tier 

analysis to focus on the collapsed regions of the assembly. This is because overlap 

stringency should differ for high-identity duplications, and because PSVs provide important 

information for determining overlaps in these more difficult-to-assemble regions.

While we have shifted the accessible portions of SDs to larger (>50 kbp) and more identical 

regions (~99%), not all regions can be resolved using this approach. Duplications that are 

virtually identical cannot be distinguished and will require even longer read data, such as the 

ultra-long reads (>100 kbp) possible using ONT27. While we have developed and 

benchmarked SDA primarily with PacBio sequence data, we have also applied it to long-

read sequence data from other platforms such as ONT (Supplementary Note). Our initial 

analysis of the ultra-long-read genome assembly of NA1287827, for example, showed a 

slight improvement of 8% in SD assembly (Figure S1). However, most of the high-identity 

SDs remained unresolved with a similar number of collapsed duplications (n = 365) when 

compared to PacBio genome assemblies. Application of SDA to the ONT dataset resulted in 

far fewer resolved assemblies (Figure S7) with an overall lower accuracy of the assembled 

sequence contigs. An important difference, however, is sequence coverage. The NA19240 

PacBio assembly was sequenced at 73-fold sequence coverage versus the 35-fold ONT 

genome assembly. We note that while ultra-long ONT sequence reads were less successful in 

resolving SDs, they were useful as orthogonal data to validate PacBio SDA contigs 

(Supplementary Note). If long reads in excess of 200 kbp can be routinely generated with 

sufficient coverage to correct sequence error, it is possible that most SDs could be resolved 

by WGSA. The rapid advance of long-read sequencing technology may make the routine 

generation of ultra-long reads from low quantities of DNA a reality in the near future. Such 

advances would open up the possibility that other highly repetitive regions, such as 

centromeres and acrocentric DNA, could be routinely sequenced and assembled for the first 

time.

ONLINE METHODS

Human genome assemblies.

We analyzed three human genome assemblies derived from haploid (CHM1 and CHM13)9 

and diploid source material (NA1924042) of African descent. FALCON genome assemblies 
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were previously generated from at least 61-fold SMRT sequence using P6C4 chemistry 

generated on the PacBio RS II sequencing platform. We also analyzed one recent human 

genome assembly (NA12878) generated with ultra-long ONT sequence reads27.

SD characterization.

We mapped each human de novo assembly to the human reference genome GRCh38 using 

MashMap 2.0 (default settings)50 and defined SD regions based on intersection with 

annotated SDs in GRCh38. Sequence contigs overlapping SDs were defined as resolved if 

the contig completely contained the SD sequence and extended at least 50 kbp on either side 

into unique sequence. We compared the number of resolved and unresolved contigs (Figure 

1a) for each assembly as a function of SD block length and maximum percent identity. 

Scripts are available at https://github.com/mvollger/segDupPlots, as well as a more detailed 

description of the analysis in the README.

Assembly collapse and PSV definition.

Within each assembly, we identified collapsed SDs by mapping SMRT or ONT sequencing 

reads back to each genome using BLASR51 (version rc46) or minimap252 (version 2.11) for 

ONT. Using unique regions, we computed the read coverage and standard deviation across 

100 bp windows using the following BLASR settings (blasr $READS $ASM -sa $ASMSA \ 

-sdpTupleSize 13 -sdpMaxAnchorsPerPosition 10 -maxMatch 25 \ -minMapQV 30 -bestn 2 

-advanceExactMatches 15 \ -clipping subread –sam). We excluded regions with >75% 

common repeat elements (RepeatMasker version 2004/03/06 –e wublast) and regions in the 

bottom or top two percentiles. We defined collapsed regions as those with a mean sequence 

coverage >3 standard deviations beyond the mean coverage and that were at least 9,000 bp 

in length (as smaller regions were routinely sequence and assembled). We examined all 

regions of collapse for the presence of SNVs and cataloged the second most common base at 

each position within the collapsed region using a more sensitive BLASR settings (blasr 

{input.basreads} {input.ref} \ -sam -preserveReadTitle -clipping subread \ -bestn 1 \ -

mismatch 3 -insertion 9 -deletion 9 -minAlignLength 500). We defined these SNVs as 

potential PSVs if the sequence coverage was consistent with the read depth of unique 

regions. Three thresholds were applied to determine if an SNV was also a PSV. First, the 

total depth at the given position had to be at least the mean coverage plus three standard 

deviations. Second, the frequency of the second most frequent base had to be less than the 

mean coverage. Finally, the frequency of the second most frequent base had to be greater 

than the mean coverage minus three standard deviations or half the mean coverage, 

whichever was greater. This process favors the selection of PSVs over allelic variants 

(Figure S4). We developed a Snakemake pipeline for this analysis 

ProcessCollapsedAssembly.py, which can be found at https://github.com/mvollger/SDA.

PSV graph construction.

We constructed graphs for collapsed regions where each PSV corresponds to a node and 

sequence reads represent edges. Attraction edges are created when two PSV nodes have a 

substantial number of sequencing reads that contain both PSVs. Among reads containing 

both PSVs, we test whether each PSV is more likely to be real or a sequencing error using 

the ratio of two binomial tests. If at each PSV the log base 10 ratio of the two binomial tests 
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was at least 1.5 (i.e., ~31 times more likely to be real than error), then an attraction edge was 

formed. Repulsion edges were created between any PSVs where less than 10% of the mean 

coverage of sequencing reads carried both PSVs.

Correlation clustering.

We initially added all nodes to an unclustered set from which a node was randomly selected 

and then expanded upon by iteratively searching neighbors of this node that reduce the 

overall score of the PSV graph (i.e., minimize the objective function). As nodes that meet 

this criterion are added to the cluster, they are removed from the unclustered set. This 

process was repeated until there were no unclustered nodes as previously described28. Next, 

all pairwise clusters are examined to see if they would improve the score of the graph if 

combined into a single cluster. Clusters are combined starting with the pairwise cluster that 

most improves the score of the correlation clustering objective. Clusters of three or fewer 

nodes are removed. The correlation clustering heuristic is run independently 15 times each 

with different random initializations and the clustering that best minimizes the correlation 

clustering objective is used to construct the final PSV clusters. It can be the case that in the 

construction of the PSV graph the PSVs are already clustered appropriately as unconnected 

components in the graph. In this case the application of correlation clustering is unnecessary 

to phase PSVs.

PSV read partition and assembly.

In order to partition SMRT or ONT sequencing reads according to the PSV clusters defined 

by correlation clustering, we apply WhatsHap53 (version 0.16) using the following 

parameters (whatshap haplotag $INPUT_VCF $INPUT_BAM -o $OUTPUT_BAM). 

Phasing was run on the entire set of reads for each PSV cluster, i.e., if there were five PSV 

clusters, WhatsHap was run five times to create five partitions of reads. After partitioning the 

reads into different paralogs, we independently assemble each correlation cluster with Canu 

version 1.5, followed by error correction (Quiver v 1.1.0) using the same set of reads. 

Specialized parameters are applied such that Canu can execute on such short contigs (https://

github.com/mvollger/SDA/blob/master/SDA.2.snakemake.py).

BAC clone insert sequencing.

BAC clones from CHORI-17 (CH17) clone libraries (http://bacpac.chori.org) were 

hybridized with probes targeting complex or highly duplicated regions of the human genome 

reference (GRCh38) (n = 727) or based on previously sequenced clones (n = 526)43,44. DNA 

from positive clones was isolated by a modified alkaline lysis miniprep procedure as 

follows: cell pellet was resuspended in 200 μL Qiagen buffer P1 with RNase and lysed with 

200 μL of 0.2M NaOH/1%SDS solution for five minutes. Lysis was neutralized with 280 μL 

3M NaOAc, pH 4.8. Neutralized lysate was incubated on ice for up to 20 minutes, collected 

by centrifugation for 30 min at 4000 rpm, concentrated by standard isopropanol and then 

ethanol precipitation, and resuspended in 25 μL 10 mM Tris-Cl pH 8.5. We prepared 

barcoded libraries from clone DNA using Illumina-compatible Nextera DNA sample prep 

kits (Epicentre, Cat. No. GA09115) as described previously54 and paired-end sequenced 

(125 bp reads) on an Illumina HiSeq 2500. Reads were then mapped to the reference 

genome (GRCh38) to identify singly unique nucleotide k-mers (SUNKs), defined as 30-
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mers that identify a region of the genome and can be used in conjunction with short-read 

sequencing data to genotype highly identical paralogs55. This SUNK mapping was used to 

select a subset of positive clones for PacBio sequencing. BAC DNA from selected clones 

was isolated using a High Pure Plasmid Isolation Kit from Roche Applied Science per 

manufacturer instructions using 6 mL LB media with Chloramphenicol selective marker. We 

pooled non-overlapping BACs at equal molar amounts before library preparation. 

Approximately 1 µg of DNA per BAC was pooled and sheared using a Covaris® g-TUBE®. 

Libraries were processed using the PacBio SMRTbell Template Prep kit following the 

protocol ‘Procedure and Checklist −20 kb Template Preparation Using BluePippin™ Size-

Selection System’. Libraries were size-selected on the Sage PippinHT with a start value of 

10,000–12,000 and an end value of 50000. DNA/Polymerase Binding Kit (P6-C4 chemistry) 

was used to bind DNA template to DNA polymerase and the MagBead kit was used to 

capture DNA polymerase/template complexes for loading. Libraries were sequenced on the 

PacBio RS II platform. We performed de novo assembly of pooled BAC inserts using Canu 

v1.57. Reads were masked for vector sequence (pBACGK1.1) and assembled with Canu 

followed by consensus sequence calling with Quiver. Canu is specifically designed for 

assembly with long error-prone reads, while Quiver is a multi-read consensus algorithm that 

uses the raw pulse and base call information generated during SMRT sequencing for error 

correction. PacBio assemblies were reviewed for misassembly by visualizing read depth of 

PacBio reads in Parasight (http://eichlerlab.gs.washington.edu/jeff/parasight/index.html) 

using coverage summaries generated during the resequencing protocol.

Statistical information.

Statistical information for analysis of copy number differences is provided in Figure 2. The 

statistical analysis used to link PSVs with long-read data is described above in the section 

“PSV graph construction.”

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

DATA AVAILABILITY

SMRT WGS for CHM1, CHM13, and NA12940 from this study are available at the NCBI 

Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under accession numbers 

SRP044331 for CHM1; SRX818607, SRX825542, and SRX825575-SRX825579 for 

CHM13; and SRX1093000, SRX1093555, SRX1093654, SRX1094289, SRX1094374, 

SRX1094388, and SRX1096798 for NA19240. ONT WGS data are available at https://

github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md. De novo 
assemblies of CHM1, CHM13, NA12940, and NA12878 from this study are available at the 

NCBI Assembly database (Assembly; https://www.ncbi.nlm.nih.gov/assembly/) under 

accession numbers GCA_001297185.1, GCA_000983455.2, GCA_001524155.4, and 

GCA_900232925.1, respectively. Assembled CHORI-17 BACs are available at the NCBI 

Clone DB (Clone; https://www.ncbi.nlm.nih.gov/clone/) under the accession numbers listed 

in Table S4. Information about length, PSVs, and mapping location in GRCh38 can be found 
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for all the SDA contigs generated in Table S8. Additional data that support the findings of 

this study are available from the corresponding author upon request.

CODE AVAILABILITY

Code for analyzing the resolved and unresolved SDs in a de novo assembly can be found at 

https://github.com/mvollger/segDupPlots. Code for processing de novo assemblies to find 

collapses and running SDA can be found at https://github.com/mvollger/SDA.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flowchart of Segmental Duplication Assembler (SDA) method.
Regions of collapsed SDs are defined by assessing whole-genome shotgun (WGS) sequence 

read-depth profiles using BLASR across sequence contigs generated from a de novo WGSA. 

Regions (>9 kbp in length) with elevated sequence coverage (three standard deviations plus 

the mean) and not entirely composed of common repeats are considered collapsed SDs. 

Sequence reads corresponding to the collapsed SDs are recovered and examined for variants 

at each position along the collapse. Single-base-pair substitutions that appear at the same 

threshold as unique sequencing depth are identified and flagged as paralog-specific variants 

(PSVs) effectively partitioning reads into PSV clusters (WhatsHap). Sequence reads 

assigned to each PSV cluster are independently assembled using Canu and error-corrected 

using Quiver.
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Figure 2. SDA results of the CHM1 human genome assembly.
a) A cumulative distribution of the SDA assemblies and their percent identity to their best 

match in the reference. There is 16.4 Mbp of diverged assembly (<99.8% identity, gray) and 

18.8 Mbp that map to the reference at high identity (>99.8% identity, black). The number of 

assembly Mbp is calculated independently of a mapping to the reference, unlike in Table 1. 

b) Density plot of SDs plotted by length and percent identity. Black represents duplications 

resolved in the CHM1 assembly, red shows unresolved duplications in the CHM1 assembly, 

and blue represents paralogs assembled using SDA. Resolved SDA sequences are “content” 

resolved and not ordered within the genome, whereas SDs in the assembly must extend into 

unique sequence on both sides to be considered resolved. c) Copy number difference (CND) 

between CHM1 and the reference genome (CHM1 copy number – reference genome copy 

number) comparing n=139 SD regions that match (>99.8%) versus n=158 diverged SD 

regions (<99.8% identity). The mean CND of the matched sequence is 1.75, and the mean 

CND of the diverged sequence is 13.82 (black dot) indicating that the diverged sequences 

are much more likely to represent additional duplicate copies that are unrepresented 

reference genome (GRCh38) (two-sided Mann-Whitney test; p=2.03*10–5). The boxes 

indicate the range between the first and third quartiles, with the bold line specifying the 

median. The whiskers show the minimum and maximum within 1.5 times the interquartile 

range extending from the first and third quartiles. Copy number was estimated in CHM1 

examining k-mer frequency found in Illumina WGS reads; methods are described in 

Sudmant et al. 2015. A similar approach was used for estimating copy number in the 

reference except we generated simulated reads using the reference and then estimated copy 

number in the same fashion using the simulated reads.
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Figure 3. Sequence and assembly of SRGAP2 loci in the CHM13 human genome.
SDA sequence contigs from CHM13 aligned to the GRCh38 loci for SRGAP2(A/B/C/D) 

using Miropeats49. The length and percent identity of each alignment is shown. Similarly, in 

CHM1 we found that, on average, our sequence is 99.91% identical over all four loci and 

>99.999% identical if only mismatched bases are counted as errors as opposed to including 

indels. Adjacent to each alignment is the PSV graph with the relevant PSVs highlighted. 

Each node represents a PSV and loci are colored and numbered to reflect the grouping 

determined by correlation clustering. An edge is added between two nodes (PSVs) when a 

sequencing read contains both PSVs. The opacity of each node scales from 25% to 100% to 

reflect the position of the PSV along the collapse: 25% opacity reflects the first position 

along the collapse and 100% reflects the final position. For a more detailed view of the 

opacity of the nodes, see Figure S12. Clusters 3 and 4 in the PSV graph represent the fourth 

paralog (SRGAP2D), which carries a large deletion in the middle relative to the other 

paralogs.
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Figure 4. Correspondence between SDA sequence-diverged contigs and BACs.
a) The figure depicts the alignment length and percent identity sequence match for n=105 

diverged SDA contigs compared to BAC clones (black) sequenced from the same source 

individual (CHM1) and the human reference genome (GRCh38) (red). The 15 most diverged 

sequences with respect to the reference and those containing duplicons as described by Jiang 

et al., 2007 and a more recent analysis of the human genome (n = 26) are shown. (See Tables 

S5 and S6 for more details.) b) Two examples of genes corresponding to diverged 

duplications are shown where the SDA sequence is aligned to both the reference genome 

(blue) and the CHM1 BACs (orange). BLASR alignments are computed in 1000 bp 

windows sliding 500 bp (steps).
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Figure 5. Gene discovery.
a) The percent identity differential of the mapping of full-length Iso-Seq transcripts 

(n=4,718) from human-specific duplications (HSDs) to both GRCh38 and SDA results on 

CHM13. The red dotted line represents equal mapping between the two; whereas points to 

the right represent an improved mapping with the SDA contigs. Six HSD gene families 

showed significantly (p < 0.05, two-sided Wilcoxon signed-rank test) improved mapping to 

the SDA-resolved contigs with the biggest difference occurring for GPRIN2. The boxes 

indicate the range between the first and third quartiles, with the bold line specifying the 

median. The whiskers show the minimum and maximum within 1.5 times the interquartile 

range extending from the first and third quartiles. b) GPRIN2 SDA contigs compared 

(Miropeats) to the human reference assembly (GRCh38) with gene and SD annotation. The 

SDA contigs close a gap (red) in GRCh38, which contains a duplicate copy of GPRIN2A 
denoted here as GPRIN2B. Mapping of individual Iso-Seq transcripts (inset) from the brain 

show that both loci are transcribed but that GPRIN2B has several coding differences, 

including a 3-amino-acid insertion at position 239 in GPRIN2B compared to GPRIN2A, the 

ancestral copy (Figure S10, Table S7).
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Table 1.
SDA assembly statistics.

De novo Assembly
 Segmental Duplication Assembler 
(SDA)

Sample Assembly Accession Contig N50 (Mbp) Sequence Coverage Read N50 (kbp)
Unresolved
SDs (Mbp)

Collapses 
(count / 
Mbp)

Matched 
(count / 
Mbp)

Diverged 
(count / 
Mbp)

Multiple 
Assemblies 
(count / 
Mbp) Failed

CHM19 GCA_001297185.1 26.9 61 20.5 124.1 283 / 52.3 286 / 17.98 304 / 15.51 19 / 1 59

CHM139 GCA_002884485.1 29.3 67 18.2 126.5 527 / 86.6 685 / 39.1 755 / 35.0 69 / 3.1 339

NA1924042 GCA_001524155.4 29.1 61 17.5 124.1 489 / 82.4 789 / 38.8 983 / 40.9 107 / 5.8 257

NA1287827 GCA_900232925.1 7.7 35 12.5 117.7 365 / 52.5 38 / 0.066 792 / 22.1 8 / 0.21 1062

Genome summary statistics for four human genomes sequenced (SMRT/ONT) and assembled (FALCON/Canu) with long-read data.

Collapses from the assemblies were subjected to SDA and the number and Mbp of “matched” and “diverged” contig assemblies to the human 
reference genome (GRCh38) are shown.
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