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Abstract

Akt isoforms play key roles in multiple cellular processes, however the roles of Akt-1 and Akt-2 

isoforms in the development of T cell-mediated autoimmunity are poorly defined. In this study, we 

showed that Akt1–/– mice develop ameliorated experimental autoimmune encephalomyelitis 

(EAE), a mouse model of multiple sclerosis (MS), whereas Akt2–/– mice develop exacerbated 

EAE compared to WT mice. At the cellular level, Akt-1 appears to inhibit proliferation of thymus-

derived regulatory T cells (tTregs), which facilitates antigen-specific Th1/Th17 responses. In a 

sharp contrast to Akt-1, Akt-2 potentiates tTreg proliferation in vitro and in vivo, and suppresses 

antigen-specific Th1/Th17 responses. Furthermore, treating mice with established EAE with a 

specific Akt-1 inhibitor suppressed disease progression. Our data demonstrate that Akt-1 and 
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Akt-2 differentially regulate the susceptibility of mice to EAE by controlling tTreg proliferation. 

Our data also indicate that targeting Akt-1 is a potential therapeutic approach for MS in humans.

INTRODUCTION

Akt, also known as protein kinase B (PKB), is serine/threonine-specific protein kinase that 

plays an important role in multiple cellular processes (1, 2). Akt consists of Akt-1, Akt-2, 

and Akt-3 isoforms, which all possess a catalytic domain, a pleckstrin homology (PH) 

domain, and a regulatory domain (1, 3). Akt-1 has a wide tissue distribution and is 

implicated in cell growth and survival, whereas Akt-2 is highly expressed in muscle and 

adipocytes and contributes to insulin-mediated regulation of glucose homeostasis (3). Akt-3 

is most highly expressed in the brain and testis, and plays an important role in brain 

development (3).

Akt has been shown to regulate T cell activation, proliferation, glucose uptake, cytokine 

expression, and cell survival in response to CD28 costimulation and cytokines (4). Akt is 

also essential for tolerance induction (5). Akt activity in effector T cells (Teffs) and 

CD4+CD25+Foxp3+ regulatory T cells (Tregs) determines the fate of the response of Teffs to 

Tregs, and the suppressive activity of Tregs (6) as well as inducible Treg (iTreg) 

development (7–9). Strikingly, we have previously shown that Akt-2, but not Akt-1, is 

crucial for the inhibition of iTreg development via a Foxo1/Foxo3a-dependent manner (9), 

suggesting that different isoforms of Akt in T cells have distinct effects on T cell functions. 

However, the precise role of Akt isoforms in T cell responses remains to be further 

established.

Multiple sclerosis (MS) is an immune-mediated inflammatory disease that attacks 

myelinated axons in the central nervous system (CNS), destroying the myelin and the axon 

in variable degrees and producing significant physical disability within 20–25 years in more 

than 30% of patients (10, 11). Experimental autoimmune encephalomyelitis (EAE) is a 

mouse model of MS in humans. EAE, and possibly MS, are believed to be mediated at least 

in part by Th1 and Th17 responses (10). Dysregulated CD4+CD25+Foxp3+ Tregs have also 

been shown to contribute to the pathogenesis of EAE and possibly MS (10, 12–16). 

Although Akt-3 signaling may contribute to the protection of mice from EAE (17) the 

relative contributions of Akt-1 and Akt-2 to autoimmune T cell responses and EAE are 

completely unknown. In this study, we showed that Akt1–/– mice develop ameliorated EAE, 

while Akt2–/– mice display exacerbated EAE. These distinct effects of Akt-1 and Akt-2 on 

the EAE development are achieved by their differential control of proliferation of thymus-

derived Tregs (tTregs), which tightly regulate Th1 and Th17 responses during EAE 

induction. Our data also indicate that targeting Akt-1 may be a therapeutic approach for 

EAE, and possibly MS in humans.
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MATERIALS AND METHODS

Mice

C57BL/6 (B6), Akt1–/–, Akt2–/–, and Tcrb–/– mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME). All experimental protocols followed NIH guidelines and were 

approved by the institutional animal care and use committees of the Ohio State University 

and the University of Iowa. All mice were used for experiments at ages of 8 to 12 weeks.

Reagents

Recombinant mouse IL-2 (rmIL-2), purified anti-CD3 (Clone 145–2C11), anti-mouse CD28 

(37.51), and hamster IgG isotypic controls were obtained from BD Biosciences (San Jose, 

CA). The following fluorescence-conjugated Abs and ELISA kits were purchased from 

BioLegend (San Diego, CA): PerCP-anti-mouse CD4 (Cat no:100432), FITC-anti-mouse 

CD4 (Cat no:100406), APC/Cy7-anti-mouse CD4 (Cat No:100414), PE/Cy7-anti-mouse 

CD25 (Cat No:101916), PE-anti-mouse Foxp3 (Cat no:320008), PB-anti-mouse Foxp3 (Cat 

no:126409), PB-anti-mouse Helios (Cat no:137220), PE-cy7-anti-neurophilin (Cat no:

145212), PE-anti-mouse IL-17A (Cat no:506904), APC-anti-mouse IFN-γ (Cat no:505810), 

and ELISA kits for mouse IL-17A (Cat no:432505), IFN-γ (Cat no:430805), IL-12p40 (Cat 

no:433605), GM-CSF (Cat no:432205), IL-6 (Cat no:431105), and IL-10 (Cat no:431414). 

FITC-conjugated goat-anti-rabbit IgG and Alexa Flour 488 donkey anti-rabbit IgG (Cat no: 

A21206) purchased from ThermoFisher Scientific (Waltham, MA). The BrdU kit, 

carboxyfluorescein succinimidyl ester (CFSE) and APC-anti-mouse CD25, PE-anti-mouse 

TNF-α (Cat no:12-7321-82), and FITC-anti-mouse IL-6 (Cat no: 11-7061-41) were 

purchased from eBioscience (San Diego, CA). The Mouse Tregs isolation kit was purchased 

from Miltenyi Biotec (Auburn, CA). A-674563 (Akt-1 inhibitor), and IFA were purchased 

from Sigma-Alderich (St. Louis, MO). Mycobacterium tuberculosis (Mtb) strain H37Ra was 

obtained from Difco (Detroit, MI). Myelin oligodendrocyte glycoprotein peptide (35–55) 

(MOG35–55) was purchased from GL Biochem (Shanghai, China). Pertussis toxin was 

purchased from List Biological Laboratories; Campbell, CA). Abs against phospho-GSK-3β 
(S9) (Cat no: 9336), phospho-Foxo-1 (T24)/3a (T32) (Cat no: 9464), phospho-Akt-1 (S473) 

(D7F10; Cat no: 9018), phospho-Akt-2 (S474) (D3H2; Cat no:8599), Akt-1 (C73H10; Cat 

no: 2938S) and Akt-2 (D6G4) (cat no: 3063) were purchased from Cell Signaling, Inc. 

(Danvers, MA).

EAE induction, histopathology of spinal cords, and ex vivo recall response

WT, Akt1–/–, and Akt2–/– mice (8–12 wk of age) were immunized by s.c. injection over four 

sites in the flank with 100 μl of emulsified IFA supplemented with 100 μg MOG33–55 and 

500 μg heat-inactivated Mtb as described (18, 19). 300 ng pertussis toxin per mouse in PBS 

was injected intraperitoneally at the time of immunization and 48 h later. Mice were scored 

on scale of 0 to 5 (18): 0, no clinical disease; 1, limp/flaccid tail; 2, moderate hind limb 

weakness; 3, severe hind limb weakness; 4, complete hind limb paralysis; 5 quadriplegia or 

premoribund state. For spinal cord pathology, mice were anethesized, and perfused with 4% 

paraformaldehyde (Fisher Scientific) to remove the blood from internal organs on day 18 

after immunization. The spinal cords were removed and dissected as described (17). The 

tissues were fixed in 10% formalin, embedded in paraffin, sectioned, and stained with 
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hematoxylin and eosin (H&E), and luxol fast blue (LFB). The CNS histological score was 

assessed on an average of 6 CNS tissue sections/mouse at 100 x magnification and 

expressed as mean ± SD as previously descibed (20): 0, no inflammatory cells; 1, a few 

scattered inflammatory cells; 2, organization of inflammatory infiltrates around blood 

vessels; 3, extensive perivascular cuffing with extension into adjacent parenchyma, or 

parenchymal infiltration without obvious cuffing. Spinal cord demyelination was scored as 

previously described (21): 1, traces of subpial demyelination; 2, marked subpial and 

perivascular demyelianation; 3, confluent perivascular or subpial demyelination; 4, massive 

perivascular and subpial demyelination involving one half of the spinal cord with presence 

of cellular infiltrates into CNS parenchyma; 5, extensive perivascular and subpial 

demyelination involving the whole cord with presence of cellular infiltrates into CNS 

parenchyma.

For the ex vivo response, draining lymph node cells from WT, Akt1–/–, or Akt2–/– mice were 

collected on day 8 after immunization with MOG35–55 in CFA. The cells were labeled with 

CFSE, and cultured in the presence of MOG35–55 peptide (20 μg/ml) for 72 h. MOG35–55-

specific T cell proliferation was determined by CFSE dilution.

CNS leukocyte isolation

Mice were perfused as above with PBS, and the spinal cords were dissected, separated, and 

cut into small pieces and placed in 2 ml of digestion solution containing 10 mg/ml 

Collagenase D (Roche Diagnostics) in HBSS. Digestion was performed for 45 min at 37°C 

with brief vortexing every 15 min. At the end of the digestion, the solution was mixed 

thoroughly and passed through a 40 μm cell strainer. The cells were washed once in PBS, 

placed in 6 ml of 38% Percoll solution, and pelleted for 20 min at 2,000 rpm. Pellets were 

resuspended in buffer for subsequent analysis.

Detection of Th1 and Th17 responses during EAE induction

For detection of Th1 and Th17 responses, the draining lymph node cells from WT, Akt1–/–, 

and Akt2–/– mice or Tcrb–/– mice receiving CD4+ T cells from WT, Akt1–/–, and Akt2–/– 

mice immunized with MOG35–55 in CFA for 8 or 10 days were stimulated with 20 μg/ml 

MOG35–55 in the culture medium for 3 days. The supernatants collected from these cultures 

were subjected for ELISA for IL-17A, IFN-γ, IL-12p40, GM-CSF, IL-6, and IL-10 using 

the sandwich ELISA kits (BioLegend). All the procedures were performed according to the 

manufacturer’s instructions. The cells were restimulated with 50 ng/ml PMA and 750 ng/ml 

ionomycin for 4 h. The cells were surface-stained with anti-CD4, and intracellularly stained 

with anti-IFN-γ or anti-IL-17, respectively. The CD4+IFN-γ+ and CD4+IL-17+ cells were 

determined by flow cytometry as previously described (19, 22, 23).

To determine the pro-inflammatory cytokines contributed by Tregs and non-Tregs of WT, 

Akt1–/–, and Akt2–/– mice, we immunized WT, Akt1–/–, and Akt2–/– mice with MOG35-55/

CFA. On day 8, mice were euthanized, and draining lymph node cells were stimulated with 

PMA/ionomycin, and surface-stained with Abs against CD4 and CD25, together with 

intracellular stained with Abs against Foxp3, IL-17, IFN-γ, IL-6, and TNF-α.
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Detection of Tregs, and tTreg proliferation in vivo

For detection of Tregs, the draining lymph node cells and spleen cells from above mice were 

surface-stained with anti-CD4 and CD25, and intracellularly stained with anti-Foxp3 and 

Helios. To measure in vivo tTreg proliferation, mice were injected with BrdU by i.p. at 1 mg 

every 12 h for three consecutive days at day 5 after immunization with MOG35–55 in CFA. 

The BrdU incorporation within CD4+CD25+Foxp3+Helios+ or 

CD4+CD25+Foxp3+neurophilin+ cells in the draining lymph nodes or infiltrating immune 

cells in the spinal cords was determined by flow cytometry according to the BrdU staining 

kit’s instruction.

Treg isolation and in vitro Treg proliferation

Tregs from WT, Akt1–/–, and Akt2–/– mice were isolated by The CD4+CD25+ Regulatory T 

Cell Isolation Kit (Miltenyi Biotec). The Tregs were labeled with CFSE, and cultured in the 

presence of plate-bound anti-CD3 and anti-CD28 for 72 h. The proliferation rates of Tregs 

was determined by CFSE dilution.

In vitro Treg suppression assay

WT CD4+CD25− T cells (Teffs) were labeled with CFSE, and incubated with CD4+CD25+ 

T cells (Tregs) isolated from WT, Akt1–/–, and Akt2–/– mice at different ratios in the 

presence of anti-CD3 and anti-CD28 for 96 h. T cell proliferation was determined by CFSE 

dilution.

In vivo Treg suppression assay

Tcrb–/– mice were adoptively transferred by i.v. injection with naïve WT 

CD4+CD44lowCD62LhiCD25− T cells (4.5 × 106) together with CD4+CD25+ T cells (0.5 × 

106) from WT, Akt1–/–, or Akt2–/– mice. As controls, Tcrb–/– mice were adoptively 

transferred by i.v. injection with naïve WT CD4+CD44lowCD62LhiCD25− T cells (4.5 × 

106) together with CD4+CD25− T cells (0.5 × 106) from WT, Akt1–/–, or Akt2–/– mice. 30 

days later, the recipients were immunized with MOG33–55 in CFA. Pertussis toxin per mouse 

in PBS was injected intraperitoneally at the time of immunization and 48 h later. The 

severity of EAE was monitored for 25 days. Th1/Th17 and Tregs were detected by flow 

cytometry as previous described (9, 23, 24)

Expression of phospho- and non-phospho-Akt-1 and -Akt-2 in Tregs at the steady and 
immunization states

WT mice were immunized with MOG35–55 in CFA. Mice were sacrificed on day 3 and 7 

after immunization. The draining lymph node cells were surface-stained with anti-CD4, and 

anti-CD25, and intracellularly stained with anti-Foxp3 and anti-Helios, and either anti-

phospho-Akt-1, anti-phospho-Akt-2, anti-Akt-1 or anti-Akt-2 followed by FITC-conjugated 

goat-anti-rabbit IgG or Alexa Flour 488 donkey anti-rabbit IgG. The expression of phospho-

Akt-1 and phospho-Akt-2, as well as Akt-1 and Akt-2 was determined in the 

CD4+CD25+Foxp3+Helios+ and CD4+CD25+Foxp3+Helios− Tregs, or CD4+CD25+Foxp3+ 

Tregs. WT mice without immunization were used as controls.
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Treatment of WT mice with established EAE with A-674563

WT B6 mice were immunized with MOG35–55 in CFA as described above. When the mice 

reached an average EAE score of 2 they were treated with A-674563, a selective Akt-1 

inhibitor, at a dose of 20 mg/kg, by i.p injection or oral gavage. The EAE severity was 

monitored for 25 days.

Western Blot analysis

CD4+CD25+ Tregs were isolated from WT B6 mice, pretreated with A-674563 (0.5 μM) for 

30 min, incubated with anti-CD3 (1 μg/ml) and anti-CD28 (1 μg/ml) mAbs for 30 min on 

ice, washed with pre-warmed RPMI1640 twice, and crosslinked with rabbit anti-hamster 

IgG (5 μg/ml), and lysed in 1% NP-40 lysis buffer [10 mM Tris (pH 7.5), 150 mM NaCl, 2 

mM EGTA, 50 mM β-glycerophosphate, 2 mM Na3VO4, 10 mM NaF, 1 mM dithiothreitol 

(DTT), 1 mM PMSF, 10 μg/ml leupeptin, and 10 μg/ml aprotinin] as described (25). The cell 

lysates were blotted with anti-phospho-GSK-3β and anti-phospho-Foxo-1/3a. The 

membranes were stripped, and then blotted with anti-phospho-Akt-1 and anti-phospho-

Akt-2, and reprobed with anti-Akt-1 and anti-Akt-2, respectively.

Statistical Analysis

A two-tailed Student’s t-test was applied for statistical comparison of two groups or, where 

appropriate and a Mann-Whitney U test for nonparametric data (EAE scoring). A P value of 

0.05 or less was considered significant.

RESULTS

T cell-intrinsic Akt-1 or Akt-2 regulates the susceptibility to EAE

Previously, we and others have shown that Akt-1 and Akt-2, but not Akt-3, are expressed in 

primary naive T cells in mice (9, 26), and that Akt-2 but not Akt-1 is crucial for the 

inhibition of iTreg development (9). It was reported that Akt-3 suppresses central nervous 

system (CNS) inflammatory responses in MOG35–55-induced EAE via both CNS cell- and 

hematopoietic cell-dependent manners (17), but the roles of Akt-1 and Akt-2 to autoimmune 

T cell responses and autoimmunity remains to be defined. To determine this, we chose EAE 

as a model, which is mediated by both Th1 and Th17 cells (10, 27), and utilized mice 

lacking Akt-1 or Akt-2. We immunized WT, Akt1–/–, and Akt2–/– mice with MOG35–55 in 

CFA by s.c. injection. Surprisingly, the disease was ameliorated in Akt1–/– mice, whereas 

Akt2–/– mice developed severe disease activity compared to WT mice as revealed by EAE 

clinical scores and inflammation of spinal cords (Fig. 1A and B). To confirm whether T cells 

lacking Akt-1 or Akt-2 are responsible for the phenotype observed, we adoptively 

transferred CD4+ T cells from WT, Akt1–/–, and Akt2–/– mice into Tcrb–/– mice which lack 

α/β T cells. After 30 days of equilibration, the Tcrb–/– mice receiving CD4+ T cells from 

WT, Akt1–/–, and Akt2–/– mice were immunized with MOG35–55 in CFA as described (19). 

Consistent with the data shown in Figure 1A, Tcrb–/– mice receiving Akt1–/– CD4+ T cells 

were relatively resistant to EAE induction, whereas Tcrb–/– mice receiving Akt2–/– CD4+ T 

cells developed severe disease (Fig. 1C). Taken together, our data indicate that T cell-

intrinsic Akt-1 and Akt-2 differentially regulate the susceptibility to EAE in mice.
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Akt-1 and Akt-2 differentially regulate Th1/Th17 responses during EAE induction

The development of EAE is mediated by both Th1 and Th17 cells (10). To determine the 

cellular basis of differential disease susceptibility in Akt1–/– and Akt2–/– mice, we 

immunized WT, Akt1–/–, and Akt2–/– mice with MOG35–55 in CFA and 8 days later the mice 

were sacrificed. The draining lymph node cells were stained for Th1 (CD4+IFN-γ+) and 

Th17 (CD4+IL-17+). These cells were also cultured in the presence of MOG35–55 (20 μg/ml) 

for 72 h to determine MOG35–55-specific T cell proliferation and cytokine production. 

Consistent with the differential disease susceptibility observed in Akt1–/– and Akt2–/– mice, 

both Th1/Th17 cell populations and Th1 and Th17 inflammatory cytokines such as IL-17, 

IFN-γ, IL-6, and GM-CSF were significantly reduced in Akt1–/– mice immunized with 

MOG35–55 in CFA (Fig. 2A and Supplemental Fig. 1A). In contrast, Akt2–/– mice 

immunized with MOG35–55 in CFA showed heightened Th1/Th17 cell populations and 

production of IL-17, IFN-γ, IL-6, and GM-CSF (Fig. 2A and Supplemental Fig. 1A). These 

data correlated with differential MOG35–55-specific T cell proliferation observed in Akt1–/– 

and Akt2–/– mice (Fig. 2B). To confirm whether T cell-intrinsic Akt-1 or Akt-2 regulates 

MOG35–55-specific Th1/Th17 responses, we analyzed the Tcrb–/– mice receiving Akt1–/– or 

Akt2–/– CD4+ T cells immunized with MOG35–55 in CFA at day 10. In keeping with the data 

described above, Tcrb–/– mice receiving Akt1–/– CD4+ T cells displayed reduced Th1/Th17 

responses, while Tcrb–/– mice receiving Akt2–/– CD4+ T cells developed aberrant Th1/Th17 

responses (Fig. 2C and Supplemental Fig. 1B). Note that there was no difference in IL-6 

production by WT, Akt1–/–, and Akt2–/– T cells upon ex vivo MOG35–55 stimulation, 

suggesting that the effect of Akt-1 and Akt-2 on IL-6 production in these lymph node cell 

cultures may derive from Akt-1 or Akt-2 deficiency in other cell types. Therefore, the 

differential susceptibility of Akt1–/– and Akt2–/– mice to EAE induction appears to be 

mediated by their differential capacity to develop pathogenic Th1/Th17 responses in a T 

cell-intrinsic manner.

To determine whether the relative contributions of Th17 cytokines by CD4+Foxp3− effector 

T cells (Teff) vs. CD4+CD25+Foxp3+ Tregs, we immunized WT, Akt1–/–, and Akt2–/– mice 

with MOG35–55 in CFA. At day 8, draining lymph node cells were surface-stained with anti-

CD4 and CD25 Abs, intracellularly stained with Abs against Foxp3 and INF-γ, IL-17, TNF-

α, and IL-6. Although we detected very small populations of Tregs from WT, Akt1–/–, and 

Akt2–/– mice that produced INF-γ, IL-17, TNF-α, and IL-6, there was no difference 

observed among the three groups of mice (Supplemental Fig. 2). Consistent with the data 

presented in Figure 2A, we observed a significant increase in CD4+Foxp3− T cells lacking 

Akt-2 that were positive for INF-γ and IL-17, but few CD4+Foxp3− T cells lacking Akt-1 

were positive for INF-γ and IL-17 (Supplemental Fig. 2). We did not observe any 

differences in TNF-α+ or IL-6+CD4+Foxp3− T cells among WT, Akt1–/–, and Akt2–/– mice, 

consistent with the data shown in Supplemental Figure 1. Therefore, the major T cells that 

contribute to pro-inflammatory cytokines are Teffs, and not Tregs.

Akt-1 inhibits thymus-derived Treg (tTregs), but Akt-2 potentiates tTregs during EAE 
induction

Tregs have emerged as the crucial players in peripheral T cell tolerance, and that 

dysregulated Tregs are involved in EAE development, and possibly MS (10, 28). Indeed, a 
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Th1-Treg phenotype which displays defective suppressive capacity was observed in 

untreated relapsing-remitting MS patients, possibly due to heightened activation of the PI3-

K/Akt-1/Foxo1/3 pathway (29). To determine the role of Akt-1 and Akt-2 in Tregs during 

EAE induction, we first assessed the expression of Akt-1 and Akt-2 isoforms in WT mice at 

the steady and immunization states. We also assessed the expression of Akt-1 and Akt-2 in 

Tregs isolated from thymuses from WT mice at the steady state by immunoblotting. As 

shown in Supplemental Figure 3A, both Akt-1 and Akt-2 were expressed in WT 

CD4+CD25+Foxp3+ Tregs at the steady state. Although there is a lack of markers to reliably 

distinguish tTregs from iTregs (30), we did however measure the expression of Helios or 

neurophilin within CD4+CD25+Foxp3+ population since they are still widely used as 

specific determination markers of tTregs. To determine whether Akt isoforms are 

differentially activated in tTregs vs iTregs during EAE induction, we immunized WT mice 

with MOG35–55 in CFA. The mice were sacrificed at days 3 and 7 and the draining lymph 

node cells were surface-stained with anti-CD4 and CD25, and intracellularly stained with 

anti-Foxp3, Helios, and anti-phospho-Akt-1 or phospho-Akt-2. The expression of phospho-

Akt-1 vs phospho-Akt-2 within tTregs (CD4+CD25+Foxp3+Helios+) and iTregs 

(CD4+CD25+Foxp3+Helios−) was determined by flow cytometry. We observed only a slight 

increase in phospho-Akt-1 in tTregs on day 3 after immunization. However, a marked 

increase in phospho-Akt-2 was observed in both tTregs and iTregs on day 3 after 

immunization (Supplemental Fig. 3B). No detectable expression of both phospho-Akt-1 and 

phospho-Akt-2 was observed in both tTregs and iTregs on day 7 after immunization 

(Supplemental Fig. 3B). We also note that while the expression of Akt-1 was relatively 

stable in Tregs from the draining lymph nodes after MOG35–55/CFA immunization at day 3 

and 7, Akt-2 expression was markedly increased upon immunization (Supplemental Fig. 

3C). These data suggest a possible role of these two Akt isoforms in the expression and 

function of Tregs during EAE induction.

We then asked whether the absence of Akt-1 or Akt-2 affects iTreg development or tTreg 

proliferation during EAE induction. To this end, WT, Akt1–/–, and Akt2–/– mice were 

immunized with MOG35–55 in CFA. At day 8, the levels of Tregs and tTregs in draining 

lymph nodes and spleens were determined. Strikingly, although Tregs and tTregs in Akt1–/– 

and Akt2–/– mice displayed similar levels in the steady state (Fig. 3), Akt1–/– mice had 

significantly increased tTregs, whereas tTregs were significantly reduced in Akt2–/– mice 

during EAE induction (Fig. 4A). Consistent with this data, Tcrb–/– mice reconstituted with 

Akt1–/– CD4+ T cells had dramatically increased tTregs, while Tcrb–/– mice reconstituted 

with Akt2–/– CD4+ T cells showed few tTregs at day 10 after immunization with MOG35–55 

(Fig. 4B). Our data suggest that Akt-1 and Akt-2 have opposite roles in promoting their 

proliferation during EAE induction.

To further test this, we immunized WT, Akt1–/–, and Akt2–/– mice with MOG35–55 in CFA. 

At day 8, we collected the draining lymph node cells from each group, labeled with CFSE, 

and cultured them in the presence of MOG35–55 for 72 h. As expected, Akt1–/– tTregs were 

highly proliferative, whereas Akt2–/– tTregs proliferated poorly in response to MOG35–55 

stimulation ex vivo (Fig. 4C). To confirm whether Akt-1 and Akt-2 differentially control 

tTreg proliferation in vivo, we immunized WT, Akt1–/–, and Akt2–/– mice with MOG35–55 in 

CFA, and 5 days later we injected BrdU at 1 mg/day for three consecutive days. In support 
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of our in vitro data, CD4+CD25+Helios+Foxp3+ or CD4+CD25+neurophilin+Foxp3+ tTregs 

from MOG35–55-immunized Akt1–/– mice proliferated more effectively than those of WT 

mice. In sharp contrast, Akt-2 deficiency impaired tTreg proliferation in vivo (Fig. 4D). In 

keeping with this, tTreg proliferation in the CNS was significantly higher in Akt1–/– mice 

compared to WT and Akt2–/– mice, with tTreg proliferation from Akt2–/– mice being the 

lowest upon MOG35–55/CFA immunization (Fig. 4E). These findings suggest that Akt 

isoforms not only control the proliferative capacity of tTregs in the periphery but also in the 

CNS. Our data also suggest that differential tTreg proliferation mediated by Akt-1 and Akt-2 

may underlie the different susceptibility of Akt1–/– and Akt2–/– mice to EAE.

To directly determine whether Akt-1 or Akt-2 deficiency has an opposite effect on Treg 

function, we first performed an in vitro Treg suppression assay. To this end, we isolated 

CD4+CD25+ Tregs from WT, Akt1–/– and Akt2–/– mice, and co-cultured them with 

CD4+CD25− Teff from WT mice in the presence of plate-bound anti-CD3 and anti-CD28. 

As shown in Figure 5A, Akt1–/– Tregs effectively suppressed Teff proliferation, whereas 

Akt2–/– Tregs failed to suppress Teff proliferation. To further confirm this finding in an in 

vivo setting, we reconstituted Tcrb–/– mice with naïve CD4+CD25− T cells from WT mice 

together with CD4+CD25+ Tregs from WT, Akt1–/– or Akt2–/– mice. We then immunized 

these Tcrb–/– mice with MOG35–55 in CFA. Tcrb–/– mice receiving Akt1–/– Tregs and naïve 

WT CD4+CD25− T cells developed ameliorated disease, whereas Tcrb–/– mice receiving 

Akt2–/– Tregs and naïve WT CD4+CD25− T cells developed severe disease (Fig. 5B). We 

observed a significant increase in Tregs of Tcrb–/– mice receiving Akt1–/– Tregs, but a 

marked decrease in Tregs of Tcrb–/– mice receiving Akt2–/– Tregs (Fig. 5C). In contrast, 

Tcrb–/– mice receiving naïve WT CD4+CD25−CD44lowCD62hi T cells together with WT, 

Akt1–/–, or Akt2–/– CD4+CD25− T cells developed comparable EAE (Supplemental Fig. 4). 

These data collectively demonstrate that Akt-1 and Akt-2 have opposing roles in the 

suppressive activity of Tregs in vivo, possibly due to their capacity to control the 

proliferation of Tregs under an inflammatory environment. The molecular mechanism by 

which Akt-1 and Akt-2 differentially control the proliferation of Tregs is currently under 

investigation.

Inhibition of Akt-1 may be a potential therapeutic approach for MS

Our data clearly indicate that Akt-1 inhibits tTreg proliferation, but Akt-2 potentiates tTreg 

proliferation during EAE induction. These data suggest that inhibition of Akt-1 may have a 

therapeutic effect on EAE, and possibly MS. To test this idea, we first immunized WT mice 

with MOG35–55 in CFA. Once WT mice reached the disease score of 2, we treated WT mice 

with A-674563, a potent and selective Akt1 inhibitor, by daily i.p. injection or oral gavage 

(Fig. 6A). In support of our observations described above, treating WT mice with the 

A-674563 ameliorated the disease, which correlated with reduced Th1 and Th17 cells and 

increased tTregs (Fig. 6B and C). To determine the specific inhibition of A-674563 on 

Akt-1, we examined the phosphorylation status of GSK-3β, a well-characterized substrate of 

Akt isoforms (25), since A-674563 does not inhibit Akt-1 phosphorylation, but blocks the 

downstream targets in a dose-dependent manner (31). We also examined the phosphorylation 

status of Foxo-1/3a which is phosphorylated by Akt-2 in T cells (9). Pretreating WT Tregs 

with a 0.5 μM dose of A-674563 markedly inhibited phosphorylation of GSK-3β, but had no 
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effect on phosphorylation Foxo-1/3a (Fig. 6D). Therefore, our data indicate that inhibition of 

Akt-1 may represent a novel approach to treat MS in humans. It should be noted that we 

cannot exclude the possible effect of A-674563 on cells other than Tregs, however the 

significant increase in Tregs after in vivo A-674563 treatment suggests that this mechanism 

contributes to the attenuation of EAE in WT mice.

DISCUSSION

Although Akt has been extensively studied in the immune system, the role of Akt isoforms 

in T cell biology is poorly defined. Furthermore, the involvement of Akt isoforms in Th17-

mediated autoimmunity is unknown. In this study we surprisingly found that, although both 

Akt-1 and Akt-2 are expressed in T cells, they have opposite roles in the development of 

EAE. Mice lacking Akt-1 are resistant to EAE induction, which correlates with robust 

proliferation of Tregs that inhibits Th1/Th17 responses. In a sharp contrast, Akt2–/– mice 

develop severe EAE, which correlates with defective tTreg proliferation and heightened Th1/

Th17 responses. To our knowledge, our study is the first to indicate that Akt-1 and Akt-2 

exert opposing roles in tTreg proliferation under an inflammatory environment.

The role of CD4+CD25+ Tregs in the development and in the course of MS has been in the 

focus of intensive basic and clinical research during the last decade. Although there has been 

some controversy as to whether patients with MS have a reduced number of Tregs, the 

majority of studies suggest that the defect is not in their number but in their function (12, 16, 

32, 33). Consistent with the data of human MS patients, several groups have shown that 

Tregs accumulate in the CNS, but these accumulated Tregs fail to effectively suppress 

effector T cells during the peak of EAE (13, 34). Additional concern regarding the 

importance of Tregs in EAE development comes from mice with a frame-shift mutation of 

Foxp3, Scurfy mice. These mice have massive lymphoproliferation and severe inflammatory 

infiltration of the skin and liver, but many organs including the CNS, the joints, and the 

small intestine remained unaffected in Scurfy mice (35, 36). However, crossing Scurfy mice 

onto Faslpr or Il2–/– backgrounds clearly extends the inflammation to joints, lung, stomach, 

small intestines, and colon (37). It is highly possible that the breakdown of peripheral T cell 

tolerance in different organs/tissues may require specific antigen triggers, and the thresholds 

for the breakdown of tolerance vary in different organs/tissues. The importance of Tregs in 

EAE is further supported by the fact that depletion of Tregs by an anti-CD25 mAb has been 

shown to result in a significant enhancement of EAE disease severity (38, 39) in an IL-10-

dependent manner (38). Consistent with these reports, depleting Tregs in DEREG mice by 

treating them with diphtheria toxin (DTx) exacerbates EAE severity which is accompanied 

by increased pro-inflammatory cytokine production and proliferation of effector T cells (40). 

Furthermore, transfer of Tregs is able to suppress clinical signs of either EAE or colitis (41). 

It is important to note that Tregs are not only limited to CD4+CD25+Foxp3+ T cells, but also 

include IL-10+LAP+ type 1 regulatory T cells (Tr1). It has been shown that nasal 

administration of anti-CD3 induces the generation of IL-10+LAP+ Tr1-like T cells that also 

suppress the progressive model of MS in an IL-10-dependent manner by attenuating CNS 

innate immunity (42). These studies indicate that under certain circumstances, IL-10+LAP+ 

Tr1-like T cells can be induced, and can suppress EAE. However, CD4+CD25+Foxp3+ Tregs 

are the major Tregs involved in controlling disease development during the natural process 
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of EAE induction. Our data indicate that WT CD4+CD25+ Tregs are able to suppress EAE 

development in an adaptive transfer model (Fig. 5), supporting a crucial role of CD4+CD25+ 

Tregs in controlling EAE development.

It has been shown that Akt inhibits Foxp3 expression by phosphorylating Foxo-1/Foxo-3a, 

which results in the translocation of Foxo-1/Foxo-3a in the nucleus to the cytoplasm (43, 

44). Therefore, Akt is crucial for inhibition of iTreg development. However, the exact 

isoform of Akt that is responsible for this inhibition was not defined. Several years ago, we 

showed that Akt-2, but not Akt-1, is involved in the inhibition of iTreg generation via a 

Foxo1/Foxo3a-dependent manner (9). Furthermore, patients with MS were reported to 

display an increased frequency of Tregs secreting IFN-γ (Th1-Tregs), which fail to exert 

their immune regulation (16, 45). The generation of these Th1-Tregs is mediated by 

heightened PI3-K/Akt/Foxo1/3 signaling cascade activity (29). Similarly, the PI3K/Akt/

mTORC1/S6K1/2 axis has been shown to control Th17 differentiation, although the 

involvement of specific Akt isoforms in this process is not known (46). Our data showed that 

although Akt-2 inhibits Foxp3 expression by iTregs (9), Akt-1 seems to potentiate the 

proliferation of tTregs under an inflammatory environment using Helios as the tTreg 

markers, whereas Akt-2 suppresses this process (Fig. 4). The expression of Akt-1 and Akt-2 

is also differentially required for their suppressive activity. tTregs lacking Akt-1 effectively 

suppress Teff response in vitro and in vivo, while tTregs lacking Akt-2 fail to suppress Teff 

response (Fig. 5). However, the molecular mechanism by which the structurally similar Akt 

isoforms behave differently in tTreg proliferation and suppressive activity remains to be 

determined.

In summary, our data demonstrate that Akt-1 inhibits, but Akt-2 potentiates, tTreg 

proliferation during EAE induction, which differentially regulate Th1 and Th17 responses 

and the susceptibility of mice to EAE. The molecular mechanisms by which Akt-1 and 

Akt-2 differentially control the proliferation of Tregs are currently under investigation.
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FIGURE 1. 
Akt-1 and Akt-2 differentially regulate the susceptibility to EAE in a T cell-intrinsic manner. 

(A) WT, Akt1–/–, and Akt2–/– mice (n = 8) were immunized by s.c. injection with MOG35–55 

in CFA. The EAE severity was monitored for 25 days. *p < 0.05, **p < 0.01; Mann-Whitney 

U test. (B) WT, Akt1–/–, and Akt2–/– mice (n = 7) were immunized by s.c. injection with 

MOG35–55 in CFA. Mice were euthanized on day 18 after immunization, and spinal cords 

were removed, sections of fixed spinal cords were stained with H&E or Luxol fast blue 

(LFB) to assess inflammation and demyelination. *p < 0.05, **p < 0.01; Mann-Whitney U 
test. (C) 5 × 106 CD4+ T cells from WT, Akt1–/–, and Akt2–/– mice were transferred by i.v. 
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injection into Tcrb–/– mice (n = 5), which were permitted to equilibrate 30 days after transfer 

to avoid effects of homeostatic proliferation. The mice were immunized with MOG35–55 in 

CFA. The disease development was monitored. *p < 0.05, **p < 0.01; Mann-Whitney U 
test. The data shown are one representative of three independent experiments.
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FIGURE 2. 
Akt-1 potentiates, while Akt-2 inhibits, Th1/Th17 responses during EAE induction. (A) WT, 

Akt1–/–, and Akt2–/– mice (n = 5) were immunized by s.c. injection with MOG35–55 in CFA. 

At 8 days after immunization, mice were sacrificed. The draining lymph node cells were 

stimulated with MOG35–55 (20 μg/ml) for 72 h. After collecting the culture medium, these 

cells were restimulated with PMA/ionomycin, and surface-stained with anti-CD4, and 

intracellularly stained with anti-IFN-γ and anti-IL-17, respectively. *p < 0.05, **p < 0.01; 

Student t test. (B) The draining lymph node cells obtained from the above mice described in 

A were labeled with CFSE, and cultured with MOG35–55 (20 μg/ml) for 72 h. T cell 

proliferation was determined by CFSE dilution. *p < 0.05, **p < 0.01; ***p < 0.001; 

Student t test. (C) Tcrb–/– mice (n = 5) receiving Akt1–/– CD4+ T cells and Akt2–/–CD4+ T 

were immunized by s.c injection with MOG35–55 in CFA. At 10 days after immunization, 

mice were sacrificed. The draining lymph node cells were stimulated with MOG35–55 (20 

μg/ml) for 72 h, after collecting the culture medium, these cells were restimulated with 
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PMA/ionomycin, and surface-stained with anti-CD4, and intracellularly stained with anti-

IFN-γ and anti-IL-17, respectively. *p < 0.05, **p < 0.01; Student t test. The data shown are 

one representative of three independent experiments.
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FIGURE 3. 
Akt1–/– and Akt2–/– mice have similar amounts of Tregs at the steady state. Spleens and 

lymph nodes of WT, Akt1–/– and Akt2–/– mice (n = 3) were surface-stained with anti-CD4 

and anti-CD25, and intracellularly stained with anti-Foxp3 and anti-Helios or anti-

neurophilin. Student t test. The data shown are one representative of three independent 

experiments.
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FIGURE 4. 
Akt-1 inhibits, but Akt-2 facilitates, the proliferation of tTregs during EAE induction. (A) 

The spleen cells and lymph node cells from the mice (n = 5) described in Figure 2 were 

surface-stained with anti-CD4 and anti-CD25, and intracellularly stained with anti-Foxp3 

and anti-Helios. *p < 0.05, **p < 0.01; Student t test. (B) 5 × 106 CD4+ T cells from WT, 

Akt1–/–, and Akt2–/– mice were transferred by i.v. injection into Tcrb–/– mice (n = 5). After 

30 days equilibration, the recipient mice were immunized with MOG35–55 in CFA. 10 days 

after immunization, the mice were sacrificed. The draining lymph node cells were surface-

stained with anti-CD4 and anti-CD25, and intracellularly stained with anti-Foxp3 and 
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Helios. **p < 0.01; Student t test. (C) WT, Akt1–/–, and Akt2–/– mice (n = 5) were 

immunized with MOG35–55 in CFA. At day 8, we collected the draining lymph node cells 

from each group, labeled with CFSE, and cultured them in the presence of 20 μg/ml 

MOG35–55 for three days. The cells were then surface-stained with anti-CD4 and anti-CD25, 

and intracellularly stained with anti-Helios and anti-Foxp3. The expression of Helios within 

CD4+CD25+Foxp3+ T cells was determined. *p < 0.05, ***p < 0.001; Student t test. (D and 
E) WT, Akt1–/–, and Akt2–/– mice (n = 5) were immunized with MOG35–55 in CFA. On day 

5, the mice were injected with BrdU at 1 mg/mouse every 12 h for three consecutive days. 

The mice were sacrificed on day 8. The BrdU incorporation in CD4+CD25+Foxp3+Helios+ 

or CD4+CD25+Foxp3+neurophilin+ T cells in the draining lymph nodes (D) and CNS (E) of 

WT, Akt1–/–, and Akt2–/– mice was determined. **p < 0.01, ***p < 0.001; Student t test. 

The data shown are one representative of three independent experiments.
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FIGURE 5. 
Akt1–/– and Akt1–/– Tregs display differential suppressive activity in vitro and in vivo. (A) 

CD4+CD25+ Tregs of WT, Akt1–/– and Akt1–/– mice were cultured with CFSE-labeled naïve 

CD4+CD25− Teffs in the presence of plate-bound anti-CD3 and anti-CD28 for 96 h. The 

proliferation of Teffs was determined by flow cytometry. (B) Naïve CD4+CD25− T cells 

from WT mice together with CD4+CD25+ T cells from WT, Akt1–/–, or Akt1–/– mice were 

adoptively transferred into Tcrb–/– mice (n = 5 per group) which were then immunized with 

MOG35–55 in CFA. The development of EAE was monitored. * p < 0.05; Mann-Whitney U 

test. (C) The CD4+IFN-γ+, CD4+IL-17+ T cells, and CD4+CD25+Foxp3+ T cells within the 
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draining lymph node cells of the recipients were determined. * p< 0.05; Student t test. The 

data shown are one representative of three independent experiments.
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FIGURE 6. 
Akt-1 is a potential therapeutic target for EAE. (A) WT mice (n = 8) were immunized with 

MOG35–55 in CFA and when the mice reached an average EAE score of 2 they were treated 

with A-674563, a selective Akt-1 inhibitor, at dose of 20 mg/kg, by i.p injection (left panel) 

or oral gavage (right panel). The EAE severity was monitored for 25 days. *p < 0.05; Mann-

Whitney U test. (B and C) WT mice (n = 5) were immunized with MOG35–55 in CFA and 

treated with A-674563 by oral gavage. The mice were sacrificed on day 18. The draining 

lymph node cells were with MOG35–55 (20 μg/ml) for 72 h, and restimulated with PMA and 

ionomycin for 4 h. The cells were surface-stained with anti-CD4, and intracellularly stained 
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with anti-IFN-γ and anti-IL-17. *p< 0.05, **p< 0.01; Student t test. (B) The CD4+IFN-γ+ 

and CD4+IL-17+ T cells within the draining lymph node cells were determined. (C) Some 

draining lymph node cells were directly surface-stained with anti-CD4 and anti-CD25, and 

intracellularly stained with anti-Foxp3 and anti-Helios. (D) CD4+CD25+ Tregs were isolated 

from WT spleens, pretreated with A-674563 (0.5 μM) for 30 min, stimulated with anti-CD3 

and anti-CD28 for 5 min, and lysed in RIPA lysis buffer. The cell lysates were blotted with 

anti-phospho-GSK-3β and anti-phospho-Foxo-1/3a, respectively. The membranes were 

stripped, then blotted with anti-phospho-Akt-1 and anti-phospho-Akt-2, and reprobed with 

anti-Akt-1 and anti-Akt-2, respectively. *p < 0.05; Student t test. The data shown are one 

representative of three independent experiments.
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