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Abstract
The aim of this study is to develop a fully automated convolutional neural network (CNN) method for quantification of breast
MRI fibroglandular tissue (FGT) and background parenchymal enhancement (BPE). An institutional review board-approved
retrospective study evaluated 1114 breast volumes in 137 patients using T1 precontrast, T1 postcontrast, and T1 subtraction
images. First, using our previously published method of quantification, we manually segmented and calculated the amount of
FGT and BPE to establish ground truth parameters. Then, a novel 3D CNN modified from the standard 2D U-Net architecture
was developed and implemented for voxel-wise predictionwhole breast and FGTmargins. In the collapsing arm of the network, a
series of 3D convolutional filters of size 3 × 3 × 3 are applied for standard CNN hierarchical feature extraction. To reduce feature
map dimensionality, a 3 × 3 × 3 convolutional filter with stride 2 in all directions is applied; a total of 4 such operations are used.
In the expanding arm of the network, a series of convolutional transpose filters of size 3 × 3 × 3 are used to up-sample each
intermediate layer. To synthesize features at multiple resolutions, connections are introduced between the collapsing and
expanding arms of the network. L2 regularization was implemented to prevent over-fitting. Cases were separated into training
(80%) and test sets (20%). Fivefold cross-validation was performed. Software code was written in Python using the TensorFlow
module on a Linux workstation with NVIDIA GTX Titan X GPU. In the test set, the fully automated CNN method for
quantifying the amount of FGT yielded accuracy of 0.813 (cross-validation Dice score coefficient) and Pearson correlation of
0.975. For quantifying the amount of BPE, the CNN method yielded accuracy of 0.829 and Pearson correlation of 0.955. Our
CNN network was able to quantify FGTand BPE within an average of 0.42 s per MRI case. A fully automated CNNmethod can
be utilized to quantify MRI FGT and BPE. Larger dataset will likely improve our model.
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Introduction

According to the American Cancer Society, breast cancer is
the second leading cause of death in women, with 40,610
breast cancer deaths expected to occur among US women in
2017 [1]. As such, prevention and early detection are

important in minimizing breast cancer mortality. Family his-
tory, genetic mutations such as BRCA 1 and 2, and hormonal
risk factors are some of the established risk factors that increase
breast cancer risk [2–4]. It is established that high mammo-
graphic breast density correlates with breast cancer risk [5–7].

The breast is composed of fat and fibroglandular tissue
(FGT), which includes epithelial and stromal elements.
Mammographic breast density correlates to the amount of
FGT on breast MRI. Depending on the amount of FGT, the
breast is classified into four different categories determined by
the Breast Imaging Reporting and Data System (BI-RADS)
lexicon, which include almost entirely fatty, scattered
fibroglandular tissue, heterogeneous fibroglandular tissue,
and extreme fibroglandular tissue on breast MRI [8], which
correspond to almost entirely fatty, scattered areas of
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fibroglandular density, heterogeneously dense, and extremely
dense categorizations on mammography. Patients with hetero-
geneously dense or extremely dense breasts have a fourfold
increased risk of developing breast cancer compared to pa-
tients with fatty breasts [5–7].

Breast MRI BPE refers to the volume and intensity of nor-
mal FGT enhancement after intravenous contrast administra-
tion on breastMRI. Similar to FGTcategorization, the amount
of BPE can be qualitatively assessed by the interpreting radi-
ologist based on the BI-RADS lexicon as minimal, mild, mod-
erate, or marked [8]. It has been recently shown that the
amount of breast MRI parenchymal enhancement (BPE) is a
significant risk factor for breast cancer, independent of the
amount of FGT [9, 10]. Similar to mammographic density,
there is an association between a high degree of BPE and
breast cancer [10, 11].

Currently, both FGT and BPE are qualitatively assessed by
the interpreting radiologist. Such assessment can be prone to
inter- and intra-observer variability due to the inherent subjec-
tivity of the interpretation [11]. Quantitative three-
dimensional assessments of FGT and BPE using semi-
automated computerized methods have been published
[12–16]. While quantitative methods provide a more accurate
measurement of FGT and BPE [12–16], they are time-
consuming and require initial selection of the region of interest
by the operator, which introduces potential subjectivity bias.

Recently, a subset of machine learning through artificial
neural network such as convolutional neural network (CNN)
has shown significant promise in visual tasks and is currently
being applied in the medical field for clinical applications
[17]. The U-Net is convolutional network architecture shown
to be fast and precise in segmenting biomedical images [18,
19]. In this study, we propose utilization of a U-Net architec-
ture for fully automated segmentation and quantification of
breast FGT and BPE.

Materials and Methods

Subjects

After institutional review board approval, an institutional
PACS database was queried for breastMRIs obtained between
2013 and 2015 and randomly selected 137 patients for analy-
sis. In patients with a breast tumor, only the contralateral nor-
mal breast was included for evaluation.

MRI Acquisition

MRI was performed on a 1.5 or 3.0-T commercially available
system (Signa Excite, GE Healthcare) using an eight-channel
breast array coil. The imaging sequence included a triplane
localizing sequence followed by a sagittal fat-suppressed T2-

weighted sequence (TR/TE, 4000–7000/85; section thickness,
3 mm;matrix, 256 × 192; FOV, 18–22 cm; no gap). A bilateral
sagittal T1-weighted fat-suppressed fast spoiled gradient-echo
sequence (17/2.4, flip angle, 35°, bandwidth, 31–25 Hz) was
then performed before and three times after a rapid bolus
injection (gadobenate dimeglumine/Multihance; Bracco
Imaging; 0.1 mmol/kg) delivered through an IV catheter.
Image acquisition started after contrast material injection and
was obtained consecutively up to four times with each acqui-
sition time of 120 s. Section thickness was 2–3 mm using a
matrix of 256 × 192 and a field of view of 18–22 cm.
Frequency was in the antero-posterior direction. After the ex-
amination, postprocessing was performed including subtrac-
tion of the unenhanced images from the first contrast-
enhanced images on a pixel-by-pixel basis and reformation
of sagittal images to axial images.

Ground Truth Segmentation and Quantification

Ground truth segmentation and quantification was performed
based on our previously published work [12–14]. Briefly for
each breast, the outer margins of the entire breast as well as
margins for fibroglandular tissue were manually segmented
using custom semi-automated software developed in
MATLAB (R2015a, The MathWorks, Inc., Natick, MA,
USA). The software is based on an active contour algorithm
that is iteratively refined after manually initiated segmenta-
tions. All segmentation masks were visually inspected by a
board-certified subspecialized breast radiologist with 8 years
of experience. FGT calculation was based on [FGT volume /
whole breast volume]. BPE calculation was based on [BPE
volume / FGT volume] as described in our previously pub-
lished studies [12–14].

Convolutional Neural Network

Image Preprocessing

Each breast MRI was split into two separate volumes, one
containing each breast. These volumes were then resized to
an input matrix of 64 × 128 × 128 using bicubic interpolation,
yielding an approximately isotropic volume. Subsequently,
each volume was independently normalized using z score
values, such that the mean and standard deviation voxel value
for each volume are 0 and 1, respectively. For whole breast
segmentation, all available sequences were used for training.
For subsequent FGT segmentation, only T1 precontrast vol-
umes were used.

Convolutional Neural Network Algorithm

Two serial fully convolutional 3D CNNs were implemented
for voxel-wise prediction whole breast and FGT margins
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(Fig. 1). The serial architecture is designed such that the pre-
dicted whole breast margins are used tomask the originalMRI
volume so that FGT can only be predicted in areas identified
as breast parenchyma. The foundation for each serial 3D CNN
arises from the standard 2D U-Net architecture originally de-
scribed in [18] for segmentation of pathology slides.

In the collapsing arm of the network, a series of 3D
convolutional filters of size 3 × 3 × 3 are applied for standard
CNN hierarchical feature extraction. To reduce feature map di-
mensionality, a 3 × 3 × 3 convolutional filter with stride 2 in all
directions is applied; a total of 4 such operations are used. In the
expanding arm of the network, a series of convolutional trans-
pose filters of size 3 × 3 × 3 are used to up-sample each interme-
diate layer. To synthesize features at multiple resolutions, con-
nections are introduced between the collapsing and expanding
arms of the network. These are implemented through residual
connections (addition operations) [20] instead of concatenations
originally described by [21] given the overall increased stability
and speed of algorithm convergence of residual architectures.

No pooling is used at any stage in line with observations by
[21] to preserve flow of gradients during back-propagation.
Furthermore, the scheme above allows for efficient and flex-
ible prediction during deployment such that outputs at every
voxel location can be obtained in just a single forward pass
regardless of the number of input slices in the volume.

Implementation Details

The network was trained from randomweights initialized using
the heuristic described by He et al. [22]. The final loss function
included a term for L2 regularization to prevent over-fitting of
data by limiting the squared magnitude of the convolutional
weights. Gradients for back-propagation were estimated using
the Adam optimizer, an algorithm for first-order gradient-based
optimization of stochastic objective functions based on adap-
tive estimates of lower order moments [23]. The default Adam

optimizer parameters were used. This included beta-1 = 0.9,
beta-2 = 0.999, epsilon = 1e−8. An initial learning rate of
0.001 was used and annealed (along with an increase in mini-
batch size) whenever a plateau in training loss was observed.

Software code for this study was written in Python 3.5
using the open-source TensorFlow r1.2 library (Apache 2.0
license). Training was performed on a GPU-optimized work-
station with four NVIDIA GeForce GTX Titan X cards
(12GB, Maxwell architecture). Validation statistics including
time for model prediction were benchmarked on a GPU-
optimized workstation with just a single NVIDIA GeForce
GTX Titan X (12 GB, Maxwell architecture).

Statistical Analysis

Overall algorithm accuracy in mask generation used for FGT
and BPE quantification was determined using two different
metrics. First, predicted whole breast, FGT, and BPE volumes
were compared to gold-standard manual segmentations using
a Dice score coefficient:

Dice ¼ 2 X∩Yj j
Xj j þ Yj j

The Dice score estimates the amount of spatial overlap
(e.g., union) between two binary masks, with a score of 0
indicating no overlap and a score of 1 indicating perfect over-
lap. Second, predicted whole breast, FGT, and BPE volumes
(cm3) were compared to gold-standard annotated volumes
using a Pearson correlation coefficient (r).

Results

A total of 1114 breast volumes of 169 single breasts from 137
patients were included for evaluation. When available, T1

Fig. 1 Convolutional neural
network architecture. [Feature
map sizes: 128-64-32-16-8-8-16-
32-64-128; depth: 8-16-32-64-96-
96-64-32-16-8; orange triangle:
Conv3D-BatchNorm-ReLU; pad-
ding: valid]

J Digit Imaging (2019) 32:141–147 143



precontrast, T1 postcontrast (up to three phases), and T1 sub-
traction (up to three phases) acquisitions were used for each
breast, yielding a total of 1114 single breast volumes. A five-
fold cross-validation scheme was used for analysis. In this ex-
perimental paradigm, 80% of the data was randomly assigned
into the training cohort while the remaining 20% was used for
validation. This process was then repeated five times until each
study in the entire dataset was used for validation once. During
randomization, all breast volumes arising from the same patient
were kept in the same validation fold. Final results below are
reported for the cumulative validation set statistics across the
entire dataset, with ranges indicating minimum and maximum
values observed in any single validation fold.

Whole Breast, FGT, and BPE Segmentation
and Quantification

Automated CNN-generated masks of whole breast volume
demonstrated high accuracy, with cross-validation Dice score
coefficient of 0.947 and Pearson correlation of 0.998 in com-
parison to manual annotations (Fig. 2). Visually, the 3D CNN
network generated smooth mask boundaries (red) in each

dimension, as opposed to the Bstair-step^ artifact (blue) that
is typically encountered when estimating margins on a 2D
slice-by-slice basis. Similarly automated CNN generated
masks of FGT and quantified BPE with high accuracy in
matching the ground truth quantification results (Dice score
coefficient of 0.813 and Pearson correlation of 0.975 for FGT
and Dice score coefficient of 0.829 and Pearson correlation of
0.955 for BPE). Examples of FGT segmentation and BPE
images are show in Figs. 3 and 4.

Network Statistics

Each network for a corresponding validation fold trained for
approximately 80,000 iterations before convergence.
Subsequently, a trained network was able to determine whole
breast and FGTmargins, as well as estimates of BPE on a new
test case within an average of 0.42 s.

Discussion

The purpose of this study was to apply a U-Net architecture
for fully automated segmentation and quantification of breast
FGT and BPE, which are important imaging biomarkers of
breast cancer risk. Our results show high degree of accuracy
in quantifying FGT and BPE and indicate feasibility of utiliz-
ing CNN algorithm to accurately and objectively predict these
important measures.

Up to date, many published FGT and BPE qualitative and
quantitative assessment studies have been performed [12–16].
Qualitative FGT and BPE assessment can be prone to inter-
and intra-observer variability due to the inherent subjectivity
of the interpretation [11]. In addition, categorizing the amount
of FGT and BPE into only four qualitative groups limits sta-
tistical analysis assessing for small but potentially significant
differences. Quantitative 3D assessment studies have also
been published, showing a more accurate assessment of
FGT and BPE volume. One such study uses custom semi-
automated software, which is based on an active contour al-
gorithm that is iteratively refined after manually initiated seg-
mentations [12–14]. Others have used techniques such as
fuzzy c-means (FCM) data clustering technique [15] and

Fig. 2 Whole breast segmentation. Selected T1 sagittal image showing
the outlines of CNN-based segmentation which is color coded in red with
almost complete overlap with manual ground truth segmentation which is
color coded in blue

Fig. 3 FGT and BPE
segmentation. a Selected T1
sagittal precontrast image. b
Corresponding T1 sagittal post
contrast image. c Segmented FGT
and BPE. Example of mild BPE
with 16.6% enhancement
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principal component analysis (PCA) [16]. While there are
significant advantages in 3D assessment of FGT and BPE
including robust segmentation with easy initialization and ef-
ficient modification, such segmentation softwares are time-
consuming. Furthermore, they often rely on segmentation
masks being visually inspected by a subspecialized breast ra-
diologist for accuracy, which introduces inter- and intra-
observer variability. More fully automated whole breast and
FGT segmentation by Gubern-Mérida et al. [24] has been
described. They used a multistep process including the iden-
tification of landmarks such as a sternum and used the expec-
tation–maximization algorithm to estimate the image intensity
distributions of breast tissue and automatically discriminate
between fatty and fibroglandular tissue. A dataset of 50 cases
with manual segmentations was used for evaluation yielding
reasonable results. However, the multistep process was time-
consuming taking approximately 8 min. In contrast, our algo-
rithm is much faster even accounting for the differences in the
hardware capacity with result output in a fraction of a second.
In addition, the performance of their study was based on over-
lap of the manual segmentation. It was not clear if the manual
segmentation has clinical validation with a known standard-
ized value such as qualitative BI-RADS assessment. Our
ground truth segmentation was based on our previously pub-
lished validation with BI-RADS assessments [12–14].

In our study, we applied a 3D U-Net, which is a
convolutional network architecture for fast and precise

segmentation of images. More recently published studies
[18, 19] show a network and training strategy that relies on
the strong use of data augmentation to use the available anno-
tated samples more efficiently. The architecture consists of a
contracting path to capture context and a symmetric
expanding path that enables precise localization allowing for
segmentation with less number of training cases. We showed
high degree of accuracy in quantifying FGTand BPE utilizing
a 3D U-Net architecture to predict these important measures.

There is strong evidence that breast density is an indepen-
dent risk factor for breast cancer, reportedly associated with
fourfold increase in the risk for breast cancer [5, 6]. Breast
density correlates with the amount of FGT on breast MRI.
More recent studies have showed that BPE is also associated
with breast cancer risk. King et al. was the first study to pro-
pose the relationship between BPE and breast cancer risk
showing that similar to mammographic density, there is an
association between a high degree of BPE and breast cancer
[9]. A paper byDonichos et al. again demonstrated that BPE is
associated with a higher probability of developing breast can-
cer in women with high risk for cancer [10]. However, the
exact increase in risk remains unclear partly due to variable
classification systems used for assessing FGTand BPE includ-
ing the BI-RADS classification, the percentage classification,
and the Wolfe classification [16]. The studies mentioned
above utilize qualitative assessment of FGT and BPE with
the aforementioned limitations. Additional studies using

Fig. 4 FGT and BPE
segmentation. a Selected T1
sagittal precontrast image. b
Corresponding T1 sagittal post
contrast image. c Segmented FGT
and BPE. Example of marked
BPE with 62.7% enhancement

Fig. 5 FGT and BPE
segmentation. a Selected T1
sagittal postcontrast image. b
Segmented FGT and BPE. MR
acquisitions with relatively poor
fat saturation along the
subcutaneous skin margins.
Incomplete fat saturation was
combined with volume averaging
in the out-of-plane direction
resulting in apparent high signal
intensity centrally within the
breast tissue
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CNN quantitative method such as ours will be important in
order to validate these types of studies as well as to better
define the true risk of breast cancer.

To our knowledge, this is the first study of a FGT and BPE
quantitative technique utilizing a U-Net architecture for fully
automated segmentation and quantification of breast FGT and
BPE. Our algorithm predicted FGT and BPE volume with high
accuracy using a gold-standard semi-automated segmentation
MRI dataset. However, minor errors in segmentation were most
commonly seen on MR acquisitions with relatively poor fat
saturation along the subcutaneous skin margins. These segmen-
tation discrepancies were most evident when incomplete fat sat-
urationwas combinedwith volume averaging in the out-of-plane
direction resulting in apparent high signal intensity centrally
within the breast tissue (Fig. 5). These errors may in part be
related to the down-sampling needed to accommodate GPU
memory limitations for otherwise high-resolution 3D volumes,
which could result in increased slice gap and thus inability of the
algorithm to smoothly trace the central signal abnormality to the
periphery of the skin. In future studies, larger datasets, improved
hardware, and newer algorithmic designs including hybrid 3D/
2D techniques that maximize the in-plane and adjacent slice
resolution may be able to help overcome this limitation.

Major limitation of our study is that it is a small, feasibility
study in a single institution. The performance of CNN has been
shown to increase logarithmically with larger datasets [17], and
larger MRI datasets are likely to significantly improve FGT/
BPE quantification method. In addition, CNN algorithms are
susceptible to over-fitting. To address this, the final loss func-
tion included a term for L2 regularization to prevent over-fitting
of data by limiting the squared magnitude of the convolutional
weights. We ran our algorithm using a fivefold cross-validation
scheme. This could provide an unbiased predictor, but running
our model on a separate and independent testing dataset may
produce a more objective evaluation. In the future, we plan to
test on additional datasets from multiple sites. For our data
before normalization, no bias field correction was applied.
Bias field correction is the correction of the image contrast
variations due to magnetic field inhomogeneity. The most com-
monly adopted approach is N4 bias field correction [25]. Future
work would incorporate bias field correction preprocessing
followed by denoising algorithm before data normalization
for feeding into our algorithm. In addition, there are several
parameters that need to be carefully tuned in our network such
as L2 regularizer, optimizer, and learning rate. Currently, all the
parameters were determined empirically. In the future, random
search or Bayesian search method would be incorporated to
choose the best hyperparameters.

In conclusion, a CNN-based fully automatedMRI FGTand
BPE quantification method was developed yielding a high
degree of accuracy. Larger dataset will likely further improve
our model and may ultimately lead to clinical use for prog-
nosticating patients’ likelihood of breast cancer.
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