
AdaptAhead Optimization Algorithm for Learning Deep CNN Applied
to MRI Segmentation

Farnaz Hoseini1 & Asadollah Shahbahrami2 & Peyman Bayat1

Published online: 23 July 2018
Society for Imaging Informatics in Medicine 2018

Abstract
Deep learning is one of the subsets of machine learning that is widely used in artificial intelligence (AI) field such as natural language
processing and machine vision. The deep convolution neural network (DCNN) extracts high-level concepts from low-level features
and it is appropriate for large volumes of data. In fact, in deep learning, the high-level concepts are defined by low-level features.
Previously, in optimization algorithms, the accuracy achieved for network training was less and high-cost function. In this regard, in
this study, AdaptAhead optimization algorithm was developed for learning DCNN with robust architecture in relation to the high
volume data. The proposed optimization algorithm was validated in multi-modality MR images of BRATS 2015 and BRATS 2016
data sets. Comparison of the proposed optimization algorithmwith other commonly used methods represents the improvement of the
performance of the proposed optimization algorithm on the relatively large dataset. Using the Dice similarity metric, we report
accuracy results on the BRATS 2015 and BRATS 2016 brain tumor segmentation challenge dataset. Results showed that our
proposed algorithm is significantly more accurate than other methods as a result of its deep and hierarchical extraction.

Keywords Deep learning . Convolutional neural networks . MRI segmentation . Deep convolutional neural networks .

Optimization algorithm

Introduction

Today, machine learning is used as an influential tool for solv-
ing artificial intelligence (AI) problems. However, this success
depends on involving an optimal representation of raw data,
and various learning algorithms do not provide satisfactory per-
formancewhen facedwith poorly represented data. Extracting a
feature representation is often done manually and requires spe-
cial field knowledge [1]. In addition, this process is complicat-
ed, tiring, time-consuming, and it is often not generalizable to

other areas. Recently, to solve these problems, much attention
has been paid to deep learning algorithms that perform feature
extraction automatically and optimally. These algorithms learn
the proper features that are hidden in raw data. For example,
models of deep belief networks (DBN), sparse auto-encoders,
convolution neural networks (CNN), and deep boltzmann ma-
chines (DBM) were successfully used in machine vision, audio
processing, natural language processing, and information re-
trieval and to automatically extract the features [2]. The CNN
is one of themore successful techniques in deep learning, which
is inspired by the results of scientific studies of the visual field
of the animal brain [3]. These networks typically consist of
three different types of layers, which are arranged in succession
and repeated frequently [4]. These three layers are the convo-
lution layer, the nonlinear function layer, and the pooling layer.
There are several different types of cores on the input in the
convolution layer, and the important thing is that these cores are
applied dispersedly and the parameters are shared; therefore,
the computational burden is significantly reduced compared
to normal neural networks. Using a nonlinear layer leads to
nonlinear decisions, and consequently, the ability of the learner
machine increases. In the pooling layer, in a certain range of
features, the characteristics are summarized in different ways.

* Asadollah Shahbahrami
shahbahrami@guilan.ac.ir

Farnaz Hoseini
farnazhoseini@iaurasht.ac.ir

Peyman Bayat
bayat@iaurasht.ac.ir

1 Department of Computer Engineering, Rasht Branch, Islamic Azad
University, Rasht, Iran

2 Department of Computer Engineering, Faculty of Engineering,
University of Guilan, Rasht, Iran

Journal of Digital Imaging (2019) 32:105–115
https://doi.org/10.1007/s10278-018-0107-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-018-0107-6&domain=pdf
mailto:shahbahrami@guilan.ac.ir

Hence, the tolerance of machine to noise and low variation is
increased in addition to reducing the volume of calculations [5].

Deep learning algorithms need to be optimized from a differ-
ent perspective. For example, generally, model-based inference
requires solving an optimization problem. In deep learning, the
most important and most comprehensive problem solved
through optimization is network training. Learning a network
may assign hundreds of computers for some months. In the
process of training the CNN to avoid the over-fitting, many
educational data are required. For this purpose, using the
datasets of a related domain, the initial training is performed
and then, using the data of the desired domain, a precise fine-
tuning is conducted. Essentially, in the learning process, due to a
large number of parameters and training data, parallel processing
techniques are used to deal with high computational and spatial
complexities [6]. In recent studies in order to train these net-
works, various algorithms were used to solve the optimization
problem. Unfortunately, there is no general agreement regarding
the most appropriate optimization algorithm. In a significant
study [7], a comparison was made between large numbers of
optimization algorithms versus various tasks. The result of this
study shows that algorithms that have an effective learning rate
are generally more robust than others. Themost commonly used
optimization algorithms are as follows: stochastic gradient de-
scent (SGD) [8], Momentum [9], Nesterov [10], AdaGrad [11],
RMSProp [12], and Adam [13]. Selecting these methods de-
pends more on the familiarity with the application of the algo-
rithms and how to arrange their meta-parameters. Improving
optimization algorithms is not always the best way to improve
the optimization process. In deep models, the model is designed
so that the optimization can bemademore easily. In other words,
with selecting an appropriate model family, simple optimization
conditions can be provided using an algorithm from the 80th
decade, such as a SGD and a combination of momentum.

In this study, a new optimization algorithm based on deep
learning is presented in order to optimize learning CNNs.
While creating a CNN and preparing the expected input and
output data, it is necessary to calculate the optimal values of
the numerous parameters in the network. For this purpose, a
special cost function is proposed and it is attempted to close the
output of the network to the expected output, using adaptive
gradient based optimization methods with various switches. In
this method, the gradient direction of the cost function moves in
the space of the parameters and the optimal value is obtained. In
optimization, one of the important methods for obtaining optimal
parameters is the use of gradient-based methods. In this method,
the gradient direction of the cost function moves in the space of
the parameters and the optimal value is obtained. The following
sections of the present study are presented as follows: section
BBasic Optimization Algorithms^ introduces the basic optimiza-
tion algorithms. Section BPreviousDeep LearningApproaches to
Brain Tumor Segmentation^ introduces previous deep learning
approaches to brain tumor segmentation. Section BExperimental

Results^ presents experimental results on the field of employing
the proposed optimization algorithm in brain images segmenta-
tion. Our discussion is shown in section BDiscussion^. Finally,
sections BConclusions^ and BFutureWorks^ provide the conclu-
sion of the research and future works.

Basic Optimization Algorithms

In this subsection, the basic algorithms for optimization used in
deep learning are studied in the context of the considered topic
[14]. In order to synchronize and create a common language,
we have defined different parameters and variables in Table 1.

Stochastic Gradient Descent

Stochastic gradient descent (SGD) and its variants are the most
common optimization algorithm in deep learning. In an SGD,
convergence is much faster than the standard (or batch) gradient
descent. Since the update of weights (W) in this algorithm is
much higher than the standard one, with an average of the gra-
dient on the small groups which are sampled as independent
identical distraction (i.i.d), a non-biased estimation can be obtain-
ed from the gradient of the cost function [8]. An important pa-
rameter of the SGD is the learning rate (ε). In practice, learning
rates over the time and repetitions are reduced. The reason is that
the SGDestimator creates a noise,which does not even disappear
even by reaching the local minimum.

Therefore, to achieve convergence, this noise must be tended
to zero. However, in the normal gradient, due to the absence of a

Table 1 The meaning of parameters and variables which are used in
discussion of optimization algorithms

Variable name Variable function

ϵ Learning rate
θ Performance criterion
~θ Updating performance criterion (θ)
α Momentum parameter
υ Speed of movement in parameters space
g Calculation of gradient
ĝ Estimation of gradient vector
g⨀ g Calculation of partial derivatives squares
r Integrating partial derivatives vector
r̂ Bias correlation of first order (r)
s Integrating vector of square partial derivatives
ŝ Bias correlation of second order (s)
w Weighted of neurons
t Time slot
ρ The damping rate in the weighted sum
δ The numerical stability constant
△θ Calculation of learning rate
m Number of sample in dataset
O Maximum value
x(1), …, x(m) The samples of data set
y(1), …, y(m) Labels of samples in dataset

106 J Digit Imaging (2019) 32:105–115

random element, the real gradient becomes zero by reaching the
optimal point and convergence is achieved with a constant learn-
ing rate. The most important feature of the SGD optimization
algorithm is the independence of the calculation time on the
number of educational samples. In this way, convergence is
possible even with a large set of data. Under these conditions,
it is possible that the model error is placed within a defined range
of final test errors before the whole processing data is processed.
To study the convergence rate of an optimization algorithm, the
measurement of the actual overrun error is common. Excess
bound shows the distance between the current value and the
minimum value of the cost function. When the SGD algorithm
is applied to a strong convex problem, the excess bound after k
repetition is in the range [O (1√k), O (1k)]. Theoretically, the
descending gradient algorithm has better convergence rates com-

pared to its stochastic version. In learning a machine, pursuing
algorithms with a convergence rate faster than O (1k) is inade-
quate, and faster convergence will correspond to the higher over-
fitting [15]. With a large dataset, the SGD algorithm is
capable of generating rapid progress at the beginning of
the work by calculating the gradient for only a few
samples, so that its slow convergence will somehow be
compensated. Most of the algorithms described in the
following will actually deliver better results; however,
they change the constant coefficients in the asymptotic
analysis and will not affect the degree of convergence.
Practically, by gradually increasing the categories, it is
possible to compromise between the benefits of descend-
ing gradient algorithms and a SGD [16]. The pseudo code
of SGD algorithm is depicted in algorithm 1.

Momentum Algorithm

Although the SGD is a comprehensive optimization strategy, it
works slowly in many cases. The momentum method [9] is
designed to accelerate the learning process, especially in facing
with small but consistent gradients or high curvature surfaces,
and noise gradients. Totally, the algorithm finds better scrolling
speeds when facing with gentle slope directions. In this meth-
od, the running average is done with a damping, and the mo-
tion continues in this direction. The cost function is interpreted
as the height of a ground with many ups and downs, which the
vector of parameters are attempted to be directed to the lowest
height. The momentum name is taken from a physical similar-
ity, where the gradient is a force moving a particle in the pa-
rameter space in accordance with Newton’s law of motion. In
the momentum physics, it is equal to mass multiplied by the
velocity. In the normal gradient, the magnitude of each step is
equal to the soft multiplication gradient by the learning rate.
While the magnitude of the steps here depends on the size and
alignment of the previous gradient sequence, the biggest steps
are created when the successive gradients are in the same

direction. If we assume that all successive gradients are equal
and show it with g, then the velocity in the opposite direction
of the gradient is incremental and reaches the limit of Eq. (1).

ϵ gk k
1−α

ð1Þ

Therefore, the meta-parameter effect of the momentum
method is better to be considered as the 1

1−α factor. In other
words, α = 0.9 means that the maximum speed in this method
will be 10 times that in the normal gradientmethod. In practice,
0.5, 0.9, and 0.99 are common values for α meta-parameter.
Like the learning rate, α can be variably changed with time. In
most cases, work starts with a small amount of α and its value
gradually increases. Another point is that gradual decrease of ε
value is more important than applying gradual changes inα. In
the descending gradient algorithm, we take only one step to-
ward the highest descent, while usingmomentum, the speed of
the particle movement is also controlled. Algorithm 2 presents
the pseudo code of momentum algorithm.

J Digit Imaging (2019) 32:105–115 107

Nesterov Algorithm

The accelerated gradient method of Nesterov [17] is a new
method inspired by the momentum algorithm [10]. The update
rule for this new method is presented in Eq. (2).

υ←α υ−ϵ ∇ θ
1

m
∑m

i¼1L f x ið Þ; θþ αυ
� �

; y ið Þ
� �� �

θ←θþ υ
ð2Þ

where the parameters α and ε have a role similar to the mo-
mentum method. The difference between the Nesterov and
momentum methods is where the gradient is calculated. The

difference between the Nesterov and the momentum methods
is where the gradient is calculated. The gradient is calculated
after applying the current speed. In other words, the Nesterov
method can be described as an attempt to correct the gradient
calculation location. Accordingly, there is a look-ahead view.
It is worth noting that in performing complex analysis, it
was found that the Nesterov algorithm in ordinary de-
scending gradient mode yielded the convergence rate in
terms of the number of repetitions from O (1/ (k)) to O(1/
k2); however, in a SGD, there is no improvement in con-
vergence rates. Algorithm 3 presents the pseudo code of
Nestrove algorithm.

AdaGrad Algorithm

In this algorithm, each parameter has its own learning rate,
and its scale is proportionally changed to the total squared
history of the previous partial derivatives [11]. Therefore,
the learning rate for parameters with a large partial

derivative history is rapidly reduced, and the minimal re-
ductions are experienced for parameters with a small minor
derivative history. In this way, the learning rate for param-
eters with a large partial derivative history is rapidly re-
duced and the minimal updates are experiences for param-
eters of the model.

108 J Digit Imaging (2019) 32:105–115

Totally, the algorithm finds better scrolling speeds when
facing gentle slope directions. This algorithm possesses theo-
retical properties in the domain of convex cost functions. In
practice, however, using this method in deep networks and

dividing the learning rate on the aggregation of the entire
partial derivative history, in some cases, the learning rate is
reduced reaching the optimal point. Algorithm 4 presents the
pseudo code of AdaGrad algorithm.

RMSProp Algorithm

In this algorithm, the gradient aggregation in the AdaGrad
algorithm is performed as moving averaging with expo-
nential weighting. Thus, this algorithm, when used in
non-convex cost functions, can forget the history of long-
range gradients and, in the middle, easily move downside

[12]. In the RMSProp algorithm, compared to AdaGrad, a
new meta-parameter is added determining the average
length of motion averaging. In practice, the RMSProp al-
gorithm provides good results in training deep models,
which is nowadays used as one of the most commonly used
methods [18]. Algorithm 5 presents the pseudo code of
RMSProp algorithm.

J Digit Imaging (2019) 32:105–115 109

Adam Algorithm

The Adam algorithm [13] is another algorithm with an adaptive
learning rate. The word BAdam^ is derived from the term
Badaptive moments^. This algorithm can be considered as the
combination of two momentum and RMSProp algorithms. This
algorithm directly uses the gradient first-order moments with
exponential weights. The most straightforward way to add the
momentum to RMSProp is to apply themomentum to the scaled
gradient. In this algorithm, bias correction is applied to first-and
second-order estimates. In RMSProp, a second-order moment
estimate is used without a correction factor imposing a bias at

the early stages of the learning process. The Adam algorithm is
known as an algorithmworking persistently against the selection
of meta-parameters. The Adam algorithm is known as an algo-
rithm that hyper parameter selection is less important. There are
certain differences between our proposed algorithm and Dozat
[19] previous work. We will use multiple switches to test the
combination of different tricks and the hyper-parameter p is
added to test other moments in normalization of gradient, instead
of just secondmoment. In this paper, the algorithm is implement-
ed so that the each update is done in much less time that Adam’s
method at the cost of a little losing of mathematical precision.
Algorithm 6 presents the pseudo code of Adam algorithm.

Previous Deep Learning Approaches to Brain
Tumor Segmentation

In this subsection, the articles of recent years are discussed using
the basic optimization algorithms regarding the segmentation of
medical images. Zikic et al. [20] proposed an architecture for the
segmentation of the magnetic resonance images (MRI) of the
brain consist of two nested windows with dimensions d × d and
d′’ × d′, where d < d′, and labeled with the help of the external
window of the inner pixels of the internal window. In this work,

the size of the windows is set to the extent that optimal results
are obtained. In this architecture, instead of determining the label
of each pixel, for each region, the probability distribution is
provided, segmentation is obtained by combining them. In other
architecture, using the first stage CNN, Long et al. [21] obtained
the preliminary estimation of fragmentation. Then, it is given to
the second stage CNN as the input, and the segmentation of the
first stage is improved. In an architectural model for segmenta-
tion of the MR image of the brain, Dvořák et al. [22] used the
idea of local structural estimation and correlation of close-up

110 J Digit Imaging (2019) 32:105–115

pixel labels. This model was created using k-means clustering of
visual words. Pereira et al. [23] proposed a multi-path architec-
tural model for fragmenting the brain MR image produces win-
dows of different dimensions that have a different degree of the
locality, which connect before the output layer. In this model,
leaky-ReLUs and 3 × 3 convolutional kernels are used to pre-
vent over-fitting, and data normalization is carried out as a con-
tinuous pre-processing phase. On the other hand, the architec-
ture of the model is fixed and no attempt was made to optimize
the architecture. In another architectural model for segmentation
of the MR image of the brain, Havaei et al. [24, 25] used two
ways to learn local features and total features. This model uses
two-stage learning to deal with the imbalance problem in the
data set. While these precautions had an extensive improvement
over the previous traditional methods since further improve-
ments in the performance accuracy and optimization of the train-
ing process are important. We already used the DCNNmodel to
improve segmentation ofMR images. The model was evaluated
on the public BRATS 2016 dataset with patch-based approach
for segmentation, resulting in dice similarity metric 0.90 for
complete, 0.85 for core, and 0.84 for enhancing regions [26].

The Proposed Optimization Algorithm

This proposed optimization algorithm for learning DCNN is
based on a combination of Nesterov and RMSProp techniques
that we name it AdaptAhead. Initially, the algorithm constants
are set before entering the main loop. In this algorithm, ϵ is
added for numerical stability and avoids the denominator in line

12 to be zero. λm is the first-norm decaying rate, which is set to
0.9 to create a relatively small sliding window for calculating the
average norm. λv is a second-norm decaying rate which is set to
0.999 to create a relatively long sliding window for calculating
the average norm. Then, the initial values are given to the pa-
rameters or the main variables of the model. The learning rate in
the proposed algorithm is initially set to 0.01 and then changed
using annealing. In other words, in repeating the algorithm,
when the validation error rate flattens, the rate of learning is
multiplied by 0.1. p is the norm number of the algorithm and
is set at line 4. The values for this hyper-parameter are consid-
ered as 1, 2, and∞, which corresponds to norm-1, Euclidean
norm, and max-norm are set by switch 1(sw1). In empirical
observations, for each of these values, the behavior of the algo-
rithm is evaluated. In line 5, the network weights are set to
Gaussian random values with amean of zero and a 2/N variance.
In this relation, N is the number of corresponding neuron inputs.
The algorithm continues as long as the error rate in the validation
data is decreasing. In line 9, switch 2 (sw2) determines calculat-
ing gradients whether in the normal or in the Nesterov method.
In line 10, the first moment is calculated which actually calcu-
lates the gradient in the sliding window mode. In the 11th line,
the p-norm or p-th moment is calculated by the sliding window
method. In line12, switch 3 (sw3) determines that the learning
rate works whether by applying the calculated norm in line 11 in
an adaptive manner, or in the normal manner based on Nesterov
method. In this way, by adjusting the three hybrid switches, a
total of eight different methods are examined. It is noticeable that
in Algorithm 7, it is observed that by disabling adaptive learning
rate (switch 3), the norm type (switch 1) will be affectless.

J Digit Imaging (2019) 32:105–115 111

Experimental Results

In this section, evaluation of the proposed optimization algo-
rithm is presented.

Datasets and Evaluation Criteria

The data used in the study were extracted from the
BRATS20151 and BRATS20162 Challenge, including four
MRI modalities named spin-lattice relaxation (T1), spin-spin
relaxation (T2), spin-lattice relaxation contrasted (T1c), and
attenuation inversion recovery (FLAIR). The dataset includes
230 brain images. In order to prevent over-fitting in the learn-
ing of multi-million parameters of this network, the data aug-
mentation technique was used in the dataset. In general
DCNNs, there are usually three input channels, while the input
images in this model are four-channel. In the existing training
DCNNs, there are usually three input channels requiring the
adjustment of meta-parameters such as learning rate, small
size of batches, and weight decay rate. To train the proposed
model, we extracted around 880,000 patches from BraTS
2015 and BraTS 2016 images. Then, we separated 20% of
the data for testing and 10% for validation sets, when training
batch size of 128 is used for each iteration. By the way, the
BraTS competition organizers hide these data to prevent com-
petitor over fitting, so we have extracted the dataset based on
BraTS Original images. However, the input images in this
model are four-channel. Finally, the DCNN classifies each
voxel according to a dangerous level in five different classes.
For each class, there are two binary maps, one obtained by the
model (P) and the other by the consensus of experts (T) avail-
able in the dataset. Therefore, the dice similarity coefficient
metric is calculated according to Eq. (3) using the model out-
put. The criterion of correctness for segmentation of MR im-
ages usually is presented as dice similarity. But to calculate the
accuracy, Eq. (4) can be used. In the dice similarity metric, P

represents the model predictions, T represents the ground truth
labels, and (A) is all the binary map.

Dice P;Tð Þ ¼ P⋀Tj j
Pj j þ Tj jð Þ=2 ð3Þ

Accuracy P;Tð Þ ¼ P⋀Tj j þ A−Pð Þ⋀ A−Tð Þj j
Aj j ð4Þ

Platform and Results

The experimental process was carried out using a NVIDIA
GeForce series GeForce GTX 1080 Ti. To evaluate the algo-
rithm and the proposed model, using the BRATS dataset, the
segmentation of the four-dimensional MR images was per-
formed and the dice similarity metric was used to compare
the performance. The DCNN model used in this experiment
is according to Table 2. Using this architecture instead of U-
Net is for performance purposes. The simplicity and the rep-
resentational bottleneck in the proposed network in compari-
son with U-Net cause the computational and memory costs
decrease significantly. As it is observed, in this model, the
dimensional reduction was not used in the pooling and the
convolution with step 2 was used instead. As it is observed,
in this model, the dimensional reduction was not done using
pooling and the convolution with stride 2 was used instead.
Hence, in addition to reducing the number of dimensions, the
risk of discarding critical information is partly avoided.
Moreover, in all layers, 3 × 3 convolutions were used, which
leads to a reduction in the number of model parameters.
Additionally, a batch normalization technique was used in
the convolution layer between the output of convolution and
the nonlinear function of the ReLU. This helps to improve the
optimization process and improves the speed and accuracy of
the operation. In two fully connected layers of F6 and F7,
dropout and a maintenance ratio of 50% were used to enhance
the generalizability of the model. Output neurons in the last
convolutional layer are connected to a fully connected layer
with 150 neurons. A second fully connected layer with five

1 https://www.smir.ch/BRATS/Start2015
2 https://www.smir.ch/BRATS/Start2016

Table 2 Architecture of the
proposed DCNN model Layer Type Maps Map size Kernel size Stride Padding Activation

out Fully connected – 5 – – – Softmax

F7 Fully connected – 100 – – – ReLU

F6 Fully connected – 5670 – – – ReLU

C5 Convolution 70 9 × 9 3 × 3 1 1 ReLU

C4 Convolution 60 9 × 9 3 × 3 2 1 ReLU

C3 Convolution 50 17 × 17 3 × 3 1 1 ReLU

C2 Convolution 70 17 × 17 3 × 3 2 1 ReLU

C1 Convolution 50 33 × 33 3 × 3 1 1 ReLU

In Input 4 33 × 33 – – – –

112 J Digit Imaging (2019) 32:105–115

https://www.smir.ch/BRATS/Start2015
https://www.smir.ch/BRATS/Start2016

neurons and a softmax layer is finally added to the model in
order to create five output classes and define the target func-
tion. This layer divides each voxel (volume pixel) into five
output classes. It should be noted that while this process
stretches out the convergence process of the model, however
implicitly, creates the regularizing effect of aggregation of
multiple models. The end of training session is detected using
early stopping. In other words using a validation set that is
separated from training set, the accuracy of the model is tested
during training. If the validation accuracy has no improve-
ments for two epochs, the training session is terminated.

In the Table 3 corresponding to the selection of each switch
in the proposed optimization algorithm of the present paper,
the results obtained from the training of the DCNN model are
presented.

We have compared our algorithm with the algorithms used
in similar problems that have worked on the same dataset. The
three switches have eight combinations that some of them is
the same as known algorithms. As is mentioned in Table 3,

using 2-norm in calculating the moment and applying the
Nesterov technique in calculating the gradient resulted in the
best outcomes, indeed accuracy of 91.1 percentage. On the
other hand, it is observed that the failure to use the rate of
learning and the technique of Nesterov in calculating the gra-
dient leads to failure to reach the optimal point. Another note-
worthy point is that the use other norms in calculating the
moment led to a slight decrease in the final accuracy.

Figures 1 and 2 show the presence of noise fluctuations in
the loss function graph and the accuracy chart of the training
set due to the small randomized behaviors of the classes. The
accuracy chart of the test set model in Fig. 2 shows that the
optimization process was convergent.

Table 4 depicts the accuracy and loss function on the
BRATS dataset of using the proposed optimization algorithm
in comparison to some related works. Comparisons in this table
are mostly based on the architecture of referenced networks.
The optimization methods that are listed in this table are given
according to the associated network for completeness.

Table 3 The results of the accuracy obtained from the proposed optimization algorithm for selecting different switches

Exp.
No.

Switches States Accurancy ¼ P⋀Tj jþ A−Pð Þ⋀ A−Tð Þj j
Aj j

SW1(Norm) SW2(Nestrov) SW3(Adaptive)

(1) – Yes No 85.1

(2) – No No 83.5

(3) 1 Yes Yes 87.3

(4) 1 No Yes 86.1

(5) 2 Yes Yes 91.1

(6) 2 No Yes 88.2

(7) ∞ Yes Yes 86.4

(8) ∞ No Yes 85.5

Fig. 1 The loss function changes
in terms of the number of
repetitions × 10

J Digit Imaging (2019) 32:105–115 113

Experiences show that changing optimization method affects
mostly the training time not the final accuracy of the network.
As the table’s last row reveals the proposed optimization algo-
rithm accuracy is more than other previous techniques.

Discussion

In this paper, we proposed AdaptAhead optimization algorithm
for deep CNNs that presented in Algorithm 7. As is mentioned
in experimental results section, the proposed model is tested in
the context of MRI image segmentation according to accuracy
measure of Eq. 4. According to Table 3, using L2-norm in
calculating the moment and applying the Nesterov technique
in calculating the gradient delivers the best outcomes, i.e., ac-
curacy of 91.1 percentage. On the other hand, it is observed that
the failure to use the adaptive learning rate and the technique of
Nesterov in calculating the gradient leads to failure to reach the
optimal convergence point. This phenomenon is due to

Nesterov gradient and adaptive nature of learning rate.
Another noteworthy point is that using other kinds of norm in
calculating the moment led to a little decrease in the final accu-
racy. This is because of the nature of L2-norm that considers all
dimensions but with more emphasis on larger dimensions.

The accuracy vs. iterations in Fig. 2 visually demonstrate
the good convergence behavior of the proposed optimization
algorithm. During the process of learning, the coefficient αt in
Algorithm 7 is deceased linearly with iterations and conse-
quently convergence is guaranteed.

As is presented in Table 4, the accuracy of the proposed
model is compared with related works on BRATS dataset. It is
clear that our proposed algorithm demonstrates better accura-
cy. This accounts for the ability of the algorithm to escape
from local minima, better estimation of gradient due to look
ahead nature of Nesterov method and learning rate adaptation
according to the slope of loss function.

Generally speaking, we can say our proposed optimization
algorithm is able to attain better convergence points in

Fig. 2 The model accuracy in
terms of the number of
repetitions × 10

Table 4 The results of comparing the measured dice similarity metric and loss function of the proposed optimization algorithm with some related
works for MRI segmentation

Reference Dataset http://www.braintumorsegmentation.org/ Dice similarity
coefficient metric

Loss function Methods

[24, 25] BRATS 2012
BRATS 2013

0.81
0.84

average negative
log-probability over

random subset
of patches

SGD +Momentum

[23] BRATS 2013
BRATS 2015

0.84
0.78

Categorical
Cross-entropy

SGD +Nesterov

[22] BRATS 2014 0.83 Cross-entropy
over patches

SGD

BRATS 2015
BRATS 2016

0.89
0.85

Cross-entropy
over patches

The proposed optimization
Algorithm

114 J Digit Imaging (2019) 32:105–115

solution space due to its better gradient approximation and its
better adaptation according to varying nature of complex loss
surface of deep CNNs.

Conclusions

Deep learning as one of the branches of the machine vision
was of interest to researchers since many years ago. CNNs are
used as one of the techniques used in deep learning to extract
the features automatically. In this study, an analysis of an
optimal learning algorithm for the training of a DCNN model
was considered. The purposed optimization algorithm was to
increase the accuracy and reduce the loss function in the mod-
el training process. For this purpose, in the model training
process, several simulations of based optimization algorithms
were presented to test the loss test compared to the proposed
optimization algorithm. Implementing this algorithm based on
the BRATS dataset and comparing the accuracy obtained with
the algorithms presented in other studies indicate that this
algorithm ismore accurate than other optimization algorithms.

Future Works

To continue the study, we are going to employ the proposed
optimization algorithm on other image processing tasks, such
as object detection and recognition. Also, we intend to analyze
the sensitivity of the attained results to the architecture and
hyper-parameters of the model. For user-friendly processing in-
terfaces, it is desired to develop themwith less effort. Because of
the limited memory space and the number of parallel GPUs, the
use of higher-volume data is difficult to handle. With the ad-
vancement of GPUs and the use of libraries that distribute pro-
cessing across multiple GPUs and multiple machines, this prob-
lem can be addressed. In the near future, we look forward to
seeing improvements in the programmability and generality of
future GPU architectures. The decreased computation time can
be immediately attributed to the parallel environment.

References

1. LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521(7553):
436–444, 2015

2. Schmidhuber J: Deep learning in neural networks: An overview.
Neural networks 61:85–117, 2015

3. Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification
with deep convolutional neural networks. Advances in neural in-
formation processing systems:1097–1105, 2012

4. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei
L: Large-scale video classification with convolutional neural net-
works. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, (pp. 1725–1732).

5. Sainath TN, Mohamed AR, Kingsbury B, Ramabhadran B: Deep
convolutional neural networks for LVCSR. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International
Conference on IEEE. 2013, pp. 8614–8618

6. Vincent P, Larochelle H, Bengio Y, Manzagol PA: Extracting and
composing robust features with denoising autoencoders. In
Proceedings of the 25th international conference onMachine learn-
ing. ACM. 2008pp. 1096–1103

7. Schaul T, Antonoglou I, Silver D: Unit tests for stochastic optimi-
zation. arXiv preprint arXiv:1312.6055, 2013

8. Zhang T: Solving large scale linear prediction problems using sto-
chastic gradient descent algorithms. In Proceedings of the twenty-first
international conference on Machine learning. ACM. 2004, p. 116

9. Sutskever I, Martens J, Dahl G, Hinton G: On the importance of
initialization and momentum in deep learning. In International con-
ference on machine learning, 2013, (pp. 1139–114)

10. Nesterov Y: A method of solving a convex programming problem
with convergence rate O (1/k2). In Soviet Mathematics Doklady
(Vol. 27, No. 2, pp. 372–376), 1983

11. Polyak BT: Some methods of speeding up the convergence of iter-
ation methods. USSR Comput Math Math Phys 4(5):1–17, 1964

12. Duchi J, Hazan E, Singer Y: Adaptive subgradient methods for
online learning and stochastic optimization. J Mach Learn Res 12:
2121–2159, 2011

13. Kingma D, Ba J: Adam: A method for stochastic optimization. In
3rd International Conference for Learning Representations, 2014,
(pp. 1–13)

14. Hoseini F, Shahbahrami, Bayat P: A hybrid optimization algorithm
for learning deep models. Journal of Advances in Computer
Research 9(4):1–13, 2018

15. Bottou L, Bousquet O: The tradeoffs of large scale learning. In
International Conference of Advances in neural information pro-
cessing systems, 2008, (pp. 161–168)

16. Saad D,Solla, SA: Exact solution for on-line learning in multilayer
neural networks. Phys Rev Lett 74(21):4337, 1995

17. Nesterov Y: Efficiency of coordinate descent methods on huge-
scale optimization problems. SIAM J Optim 22(2):341–362, 2012

18. Huang FJ, Boureau YL, LeCun Y: Unsupervised learning of invari-
ant feature hierarchies with applications to object recognition. In
International Conference of Computer Vision and Pattern
Recognition, 2007, (pp. 1–8)

19. Dozat T: Incorporating Nesterov momentum into Adam, 2016
20. Zikic D, Ioannou Y, Brown M, Criminisi A: Segmentation of brain

tumor tissues with convolutional neural networks. In International
Conference of Proceedings MICCAI-BRATS, 2014, (pp. 36–39)

21. Long J, Shelhamer E, Darrell T: Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 3431–3440), 2015

22. Dvořák P, Menze B: Local Structure Prediction with Convolutional
Neural Networks for Multimodal Brain Tumor Segmentation. In
International MICCAI Workshop on Medical Computer Vision
(pp. 59–71). Springer International Publishin, 2015

23. Pereira S, Pinto A, Alves V, Silva CA: Brain tumor segmentation
using convolutional neural networks in MRI images. IEEE Trans
Med Imaging 35(5):1240–1251, 2016

24. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio
Y, Pal C, Jodoin PM, Larochelle H: Brain tumor segmentation with
deep neural networks. Medical image analysis 35:18–31, 2017

25. Havaei M., Guizard N., Larochelle H., Jodoin PM. (2016) Deep
learning trends for focal brain pathology segmentation in MRI. In:
Holzinger A Ed. Machine Learning for Health Informatics. Lecture
Notes in Computer Science (Vol. 9605). Cham, Springer
International Publishing, 2016

26. Hoseini F, Shahbahrami A, Bayat P: An efficient implementation of
deep convolutional neural networks for MRI segmentation. J Digit
Imaging 1–10, 2018. https://doi.org/10.1007/s10278-018-0062-2

J Digit Imaging (2019) 32:105–115 115

https://doi.org/10.1007/s10278-018-0062-2

	AdaptAhead Optimization Algorithm for Learning Deep CNN Applied to MRI Segmentation
	Abstract
	Introduction
	Basic Optimization Algorithms
	Stochastic Gradient Descent
	Momentum Algorithm
	Nesterov Algorithm
	AdaGrad Algorithm
	RMSProp Algorithm
	Adam Algorithm

	Previous Deep Learning Approaches to Brain Tumor Segmentation
	The Proposed Optimization Algorithm
	Experimental Results
	Datasets and Evaluation Criteria
	Platform and Results

	Discussion
	Conclusions
	Future Works
	References

