Skip to main content
. 2018 Jul 23;32(1):105–115. doi: 10.1007/s10278-018-0107-6

Table 1.

The meaning of parameters and variables which are used in discussion of optimization algorithms

Variable name Variable function
ϵ Learning rate
θ Performance criterion
θ~ Updating performance criterion (θ)
α Momentum parameter
υ Speed of movement in parameters space
g Calculation of gradient
g^ Estimation of gradient vector
g ⨀ g Calculation of partial derivatives squares
r Integrating partial derivatives vector
r^ Bias correlation of first order (r)
s Integrating vector of square partial derivatives
s^ Bias correlation of second order (s)
w Weighted of neurons
t Time slot
ρ The damping rate in the weighted sum
δ The numerical stability constant
△θ Calculation of learning rate
m Number of sample in dataset
O Maximum value
x(1), …, x(m) The samples of data set
y(1), …, y(m) Labels of samples in dataset