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Adverse Effects of Aromatase Inhibition on the Brain and
Behavior in a Nonhuman Primate
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Breast cancer patients using aromatase inhibitors (Als) as an adjuvant therapy often report side effects, including hot flashes, mood
changes, and cognitive impairment. Despite long-term use in humans, little is known about the effects of continuous Al administration
on thebrainand cognition. We used a primate model of human cognitive aging, the common marmoset, to examine the effects of a 4-week
daily administration of the Al letrozole (20 g, p.o.) on cognition, anxiety, thermoregulation, brain estrogen content, and hippocampal
pyramidal cell physiology. Letrozole treatment was administered to both male and female marmosets and reduced peripheral levels of
estradiol (E2), but unexpectedly increased E2 levels in the hippocampus. Spatial working memory and intrinsic excitability of hippocam-
pal neurons were negatively affected by the treatment possibly due to increased hippocampal E2. While no changes in hypothalamic E2
were observed, thermoregulation was disrupted by letrozole in females only, indicating some impact on hypothalamic activity. These
findings suggest adverse effects of Als on the primate brain and call for new therapies that effectively prevent breast cancer recurrence
while minimizing side effects that further compromise quality of life.
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ignificance Statement

Aromatase inhibitors (Als) are used as an adjuvant therapy for estrogen-receptor-positive breast cancer and are associated with
side effects, including hot flashes, depression/anxiety, and memory deficits severe enough for many women to discontinue this
life-saving treatment. Als are also used by men, yet sex differences in the reported side effects have not been systematically studied.
We show that Al-treated male and female marmosets exhibit behavioral changes consistent with these CNS symptoms, as well as
elevated hippocampal estradiol and compromised hippocampal physiology. These findings illustrate the need for (1) a greater
understanding of the precise mechanisms by which Als impact brain function and (2) the development of new treatment ap-
proaches for breast cancer patients that minimize adverse effects on the brain.
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Introduction
Estrogens are synthesized by the conversion of testosterone (T)
through the enzyme aromatase. To prevent this conversion,
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women with estrogen receptor (ER)-dependent breast cancers
are often given aromatase inhibitors (Als) as an adjuvant therapy
for many years (Burstein et al., 2014; Chumsri et al., 2016). Als
are associated with side effects that impair quality of life, includ-
ing insomnia (Desai et al., 2013), hot flashes (Rand et al., 2011),
depression (Chumsri et al., 2016), and memory deficits (Bender
et al., 2007; Blaustein, 2017; but see Ganz et al., 2016). For exam-
ple, reduced hippocampal (HPC) activity and increased PFC ac-
tivity, along with slightly diminished memory, were reported in
women taking letrozole (Bayer et al., 2015). Memory deficits in
women have also been reported in other studies (e.g., Collins et
al., 2009), but not all (for review, see Lee et al., 2016), and one
study in older men showed improved spatial memory following
Altreatment (Cherrier etal., 2005). However, the mechanisms by
which Als give rise to these CNS symptoms remain unclear as
studies in humans often lack proper controls and are hampered
by confounds, such as concurrent chemotherapy/radiotherapy
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treatment, stress, and disease stage. Al use is also relevant in men
with prostate (Dias et al., 2016) and breast cancer (Fentiman,
2018), yet no systematic analysis of sex differences has been con-
ducted on the above-mentioned side effects.

Experimental studies in appropriate animal models are needed to
complement those in humans as they offer the advantage of includ-
ing appropriate control groups in the absence of the confounds
listed above. Aromatase is expressed in several brain regions
(Naftolin et al., 1972; Cornil, 2017), including those involved in
processes regulating thermoregulation (i.e., hypothalamus; Ro-
selli, 2013), emotion (i.e., amygdala; Roselli, 2013), and cognition
(HPC, cortex; Hojo et al., 2004; Vahaba and Remage-Healey,
2015). Evidence from rodent and bird studies suggests that aro-
matase inhibition results in HPC-dependent memory deficits.
For example, aromatase KO (ArKO) male and female mice show
impaired spatial reference memory compared with WT (Martin
et al., 2003); inhibiting aromatase in the HPC reduces novelty
preference in ovariectomized (OVX) female mice (Tuscher etal.,
2016) and decreases spatial learning and memory in male zebra
finches (e.g., Bailey et al., 2017). These effects may be due to
synaptic changes in the HPC, as estradiol (E2)-synthesis inhibi-
tion reduces the number of spine synapses in the HPC in vitro
(Kretz et al., 2004) and in vivo in OVX mice (Zhou et al., 2010),
potentially by destabilizing the spine cytoskeleton (Vierk et al.,
2014). Aromatase inhibition in HPC slices also results in a failure
to induce LTP in female, but not male, mice (Vierk et al., 2012).
These studies have focused on HPC-dependent memory and
physiology, without addressing potential changes in thermoreg-
ulation and mood. Further, these studies were conducted in an-
imal models phylogenetically distant from humans.

The aim of the present study was to determine whether con-
tinuous neuroestradiol synthesis inhibition in a nonhuman pri-
mate, the common marmoset, produces adverse effects similar to
those reported in humans. The structural and functional organi-
zation of the marmoset brain is comparable with the rhesus or
human brain (Chaplin et al., 2013). Marmosets also share many
similarities with humans in sleep and thermoregulation patterns
(Hoffmann et al., 2012; Gervais et al., 2016), cognitive ability
(Spinelli et al., 2004; Yamazaki et al., 2016), and anxiety profiles
(Barros et al., 2008; Galvao-Coelho et al., 2008), implicating this
species as a strong translational model for studying Al effects on
the CNS. Aromatase is expressed in the HPC of marmosets
(Wehrenberg et al., 2001), suggesting that local estrogen synthe-
sis occurs in this primate, as in humans (for review, see Azcoitia et
al., 2011). We hypothesized adverse effects of daily Al treatment
on the brain, behavior, and memory, including reduced excitabil-
ity of CA1 neurons, increased anxiety, thermodysregulation, and
memory impairment. When possible, attempts were made to
identify sex differences.

Materials and Methods

Subjects. Sixteen (males: n = 9; females: n = 7) middle- to older-aged
common marmosets (Callithrix jacchus; age: 5.5-9.5 years old) weighing
332-511 g participated in the study. Marmosets have an average lifespan
of ~12 years and show signs of aging by the age of 8 (Tardif et al., 2011).
They were gonadectomized (GDX) ~3 years before the start of the ex-
periment. The marmosets were housed in opposite-sex pairs (n = 14),
except 2 males that were housed together. The cages were made of
stainless-steel mesh (101 X 76.2 X 78.74 cm) and contained perches,
platforms, one nest box, and hammocks to promote species-typical be-
havior, including foraging, scent-marking, and climbing. Animals were
maintained under a 12 h light cycle (lights on at 8:30 A.M.), and the
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ambient temperature set at ~27°C, and humidity at ~50%. Marmosets
were fed Mazuri Callitrichid High Fiber Diet 5M16 (Purina Mills) sup-
plemented with a variety of fresh fruit, nuts, and mealworms. Fruit and
nuts were provided twice daily (8:00 A.M. to 9:00 A.M. and 1:00 P.M. to
3:00 P.M.), and water was available ad libitum. The monkeys were pro-
vided with daily enrichment, including foraging tubes and a variety of
toys. The animals were cared for in accordance with the guidelines pub-
lished in the Guide for the care and use of laboratory animals, eighth
edition. The studies were approved by the University of Massachusetts
Institutional Animal Care and Use Committee.

Experimental design. Behavioral, spatial memory performance and fa-
cial temperature measures were collected to address whether continuous
administration of oral letrozole to middle-aged GDX marmosets mimics
the CNS symptoms reported by women taking Als. Brain tissues were
analyzed for E2 content and HPC pyramidal cell physiology to investigate
effects of letrozole on the brain. Urine analysis was conducted to deter-
mine effects of letrozole on peripheral levels of E2, T, and cortisol. Half
the marmosets (females: n = 4; males: n = 4) were fed 20 ug of letrozole
mixed in ~0.3 g pudding (Jell-O) daily for 4 weeks. The letrozole dose
was determined based on the recommended dose for women (2.5 mg/d)
(Bayer et al., 2015). The remaining marmosets (females: # = 3; males:
n = 5) received pudding without the drug. Group assignment was pseu-
dorandom, with one member of each pair assigned to letrozole and the
other to vehicle. Both treatment groups were matched based on age and
sex. Marmosets were administered the spatial working memory test (i.e.,
delayed matching-to-position task [DMP]) daily for 5 d before the start
of the drug treatment, and again during the fourth week of treatment.
During the final treatment week, experimenters also collected urine for
later hormone analysis, video-recorded spontaneous behaviors of each
marmoset in their home cage, and administered the thermal challenge.
The thermal challenge was designed after procedures used in postmeno-
pausal women to induce hot flashes via application of a heating pad to the
abdomen (Freedman, 1989; Sievert et al., 2002). After euthanasia, elec-
trophysiological recordings were conducted on pyramidal cells in the
CA1, and E2 levels were analyzed in several brain regions. All experi-
menters were blind to group membership.

Treatment administration. Previous animal studies used a route of
administration and Al dose that differed from those used by breast can-
cer patients. In the present study, attempts were made to match route
(i.e., oral) and dose to that of humans. The letrozole dose was determined
based on the recommended dose for women (2.5 mg/d) (Bayer et al.,
2015). After a 1 week baseline period, half the marmosets (females: n = 4;
males: n = 4) were fed 20 pg of letrozole mixed in ~0.3 g pudding
(Jell-O) daily for 4 weeks. The remaining marmosets (females: n = 3;
males: n = 5) received pudding without the drug. Group assignment was
pseudorandom, with one member of each pair assigned to letrozole and
the other to vehicle. Both treatment groups were matched based on age
and sex.

Urine collections and assay. While ovaries are the major source of pe-
ripheral E2, previous studies have shown that ovariectomy does not com-
pletely abolish E2 levels in the marmoset (Barnett et al., 2006; Lacreuse et
al., 2014), suggesting alternate tissues continue producing this hormone.
Because Al use should further deplete any E2 synthesis in OVX females
and GDX males, peripheral E2 levels were analyzed at the end of the
treatment phase. Some studies have also reported increased T following
Al use (Taylor et al., 2017), and so T levels were also assessed. Cortisol
was also measured as a negative control, as there is little evidence that Als
should influence cortisol synthesis (Bajetta et al., 1999; Rossi et al., 2009).
A few minutes before lights on (i.e., 8:30 A.M.), marmosets entered a
stainless-steel transport box (34.1 X 20.65 X 30.8 cm) attached to their
home cage. They were released once they had urinated, or 15 min had
elapsed. Urine was collected using a disposable transfer pipette and
placed in a microcentrifuge tube, then spun for 5 min at 14,000 rpm. The
supernatant was then transferred to a separate tube before being stored at
—20°C. Samples collected were analyzed for these three hormones using
enzyme immunoassay (EIA) by the Endocrine BioServices Laboratory at
the University of Nebraska at Omaha.
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Table 1. Marmoset behavioral ethogram

Behavior Definition

Agitated locomotion Rapidly moving between locations with an exaggerated qgait;

tail extended or arched

Inactive alert Stationary behavior involving continuous head movements
while scanning environment

Scentmark Rubbing sternal (tummy) or anogenital area
(more commonly) over surface/substrate

Piloerection Puffing of the body hair

(Calm locomotion Movement between locations with relaxed gait

Inactive rest Stationary behavior with relaxed facial expression and

minimal scanning; tail can be curled
under body, and eyes may be closed

Behavioral assessments. Elevated levels of E2 are associated with re-
duced anxiety in women (Maeng and Milad, 2015); and while breast
cancer survivors report increased depression and anxiety relative to
women with no cancer history (Hansen et al., 2008), the impact of Al use
on these symptoms is poorly understood. To investigate whether daily
letrozole administration impacts anxiety-like behavior in GDX marmo-
sets, spontaneous behaviors of each marmoset pair were recorded
daily for 5 d for 10 min alternating between 9:00 A.M. to 10:00 A.M.
and 4:00 P.M. to 5:00 P.M. This ensured that behavioral data were
collected at least twice during each time period (A.M./P.M.) for each
subject. Treatment groups were represented in each pair, which limits
time of day as a potential confound for differences in treatment
groups on the observed behaviors. Vigilant and anxiety-like behaviors
(agitated locomotion, inactive alert, scentmark, piloerection), relaxed
locomotion (i.e., calm locomotion), and rest (i.e., inactive rest) of
each marmoset were later scored by an observer blind to group mem-
bership using ODLog (2.7.2, Macropod software 2012). A behavioral
ethogram of these six behaviors is presented in Table 1. The duration
(in seconds) of each behavior was averaged for A.M. and P.M. obser-
vations of each subject.

Thermal challenge. Both estrogen deprivation following menopause
(Sievert, 2013; De Zambotti et al., 2014) and AI use (Kligman and You-
nus, 2010) are associated with hot flashes. Hot flashes result from ther-
modysregulation as indicated by rapid fluctuations in heat dissipation
responses, including skin conductance, skin blood flow, and temperature
(Freedman, 2014). A common method to induce hot flashes in post-
menopausal women is to apply heating pads on their abdomen (Freed-
man, 1989; Sievert et al., 2002). In the present study, a similar procedure
was used. A sitting experimenter held the marmoset on her lap with two
hands for 20 min. One hand covering the abdomen held a hand warmer
that provided the heating source. To prevent overheating, the hand
warmer was inserted between two cotton gloves, and had no direct con-
tact with the experimenter’s or monkey’s skin. For additional protection
of the monkey, the hand was covered with a nitrile glove. The hand was
kept on the abdomen for a total of 20 min. A second experimenter, sitting
~20 cm from the animal’s face, recorded the facial temperature of the
marmoset using a thermal imaging camera (FLIR One for iOS) con-
nected to an iPhone 5s (see Fig. 4A). Thermal imaging has been shown
to be an effective method to measure hot flashes in women (Jayasena
etal., 2015). The experimenter focused the camera on the marmoset’s
face using the crosshair of the camera as a guide. The camera provided
a video of the face along with a measurement of temperature (in °F)
on the crosshair location. The sensitivity of the camera was 0.18° F.
One of every 25 frames was extracted from each video using VLC
media player, resulting in ~670 frames for each animal (33/min). An
experimenter blind to group assignment visually inspected each
frame and removed those for which the spot meter was incorrectly
placed (located off the face, or on the eye or mouth). The temperature
values obtained from each remaining frame (122 * 60) were averaged
in 1 min bins for each animal. One marmoset was removed from
subsequent analyses, as too many frames were removed, leaving 4 min
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unaccounted for during the 20 min challenge. For every minute of the
thermal challenge, each marmoset obtained a change score, which was
calculated as the percentage change in temperature (°F) from the first
min of the challenge (i.e., baseline).

Delayed matching-to-position. Estrogens play an important role in reg-
ulating HPC structure and function in both sexes (Frick et al., 2018).
Aromatase is expressed in the HPC (Hojo et al., 2004), and Als have been
shown to impact HPC-dependent memory in animals (Tuscher et al.,
2016; Bailey et al., 2017) and humans (Collins et al., 2009; Bayer et al.,
2015). As a first demonstration of the impact of continuous oral Al use in
nonhuman primates, we chose a task that is known to involve this struc-
ture. The DMP task requires monkeys to discriminate between two loca-
tions and displace a token that previously concealed a food reward (see
Fig. 3A). At the beginning of each session, monkeys entered a transport
box affixed to their home cage. The front of the box was made of wire
mesh, allowing the monkeys to pass their hands and arms to manipulate
objects presented in a modified version of the Wisconsin General Testing
Apparatus (43.2 X 42.3 X 44.5 cm). The test tray for the DMP task
contained 4 food wells (2.5 cm in diameter). All four positions were used,
and the location of the sample token during each trial was pseudoran-
domized. Subjects were trained until reliable performance was achieved
(8 of 12 trials over two consecutive days). Only 9 marmosets (vehicle:
males: n = 3; females: n = 1; letrozole: males: n = 3; females: n = 2)
achieved reliable performance following a brief retention delay (1 's) and
so were tested (12 trials/d for 5 d) during the baseline and treatment
phases. The mean accuracy for each phase (baseline/treatment) was the
dependent variable.

Euthanasia and tissue retrieval. Each animal was sedated with ketamine
(10 mg/kg, i.m.), then given an intracardial overdose of pentobarbital (50
mg/kg). The brain was removed, and the hemispheres were separated.
The right hemisphere was immediately placed on dry ice, then trans-
ferred to a —80°C freezer for later analyses. The frontal cortex, hypothal-
amus, and HPC were dissected from the left hemisphere. The HPC was
divided in two along the septotemporal axis. The lateral aspect of the
HPC was immediately transferred to ice-cold slicing solution (see be-
low). The remaining samples were placed in centrifuge tubes and stored
in a —80°C freezer.

Electrophysiological recordings. Several lines of research demonstrate
the importance of estrogens in regulating the physiology of CA1 neurons.
E2 has been shown to decrease the threshold needed to induce LTP
(Wong and Moss, 1992). Estrogen deprivation via ovariectomy has been
shown to reduce the intrinsic excitability (IE) of these neurons (Wu et al.,
2011), yet it is currently unclear whether Als will have similar effects on
CA1 physiology. To determine whether E2 synthesis inhibition via letro-
zole administration induces comparable changes, similar measures of IE
were collected in the present study.

Once removed, the HPC was placed in ice-cold slicing solution con-
taining the following (in mm): 248 glycerol, 3 KCI, 1 MgSO, 2 CaCl,, 1
KH,PO,, 26 NaHCO;, 10 glucose, and bubbled with 95% O,/5%CO,.
Sagittal sections (300 um) through the HPC were prepared using a
VT1000 S vibratome (Leica Biosystems). Slices were incubated at 95°F
for 30 min in bubbled recording solution containing the following (in
mm): 124 NaCl, 3 KCI, 1 MgSO, 2 CaCl,, 1 KH,PO,, 26 NaHCO5, 10
glucose, after which they were left at room temperature for 30 min or
up to 8 h before recording. Recording pipettes were pulled from
borosilicate glass (4—7 MOhm) using a PC-10 puller (Narishige) and
filled with internal solution containing the following (in mm): 120
K-gluconate, 20 KCl, 0.1 CaCl,, 5 HEPES, 5 EGTA, 3 MgATP, 0.5
Na-GTP, and 10 phosphocreatine. Slices were placed in a recording
chamber and perfused with bubbled recording solution throughout
the experiments.

A Nikon FN-1 microscope with DIC optics was used to identify pyra-
midal neurons in the CA1 region. Whole-cell recordings were made with
an EPC-10 patch-clamp amplifier and Patchmaster software (HEKA).
Resting membrane potential (RMP) and spontaneous spiking activity
were measured under current-clamp configuration with zero-injected
current. To measure excitability, membrane voltage was recorded in re-
sponse to current injection (—50 to 90 pA, 10 pA increments, 500 ms
duration). Recordings were discarded if holding current rose >100 pA or



Gervais et al. @ Adverse Effects of Letrozole on Brain and Behavior

A . B
08 Estradiol 08
. ]
S 06 06
g0.4 —4 04
202 02
0.0 0.0
Vehicle Letrozole Vehicle
@mMale

Figure 1.

C
Testosterone 60

J. Neurosci., January 30,2019 - 39(5):918-928 « 921

Cortisol

*

Letrozole Vehicle Letrozole

BFemale

Four weeks of letrozole treatment (20 r.g/d, p.o.) lowers circulating levels of E2 but has no effect on T or cortisol. Urinary hormone levels were collected from a mixed-sex sample of

marmosets, who received either letrozole (males: n = 4; females: n = 3) or vehicle (males: n = 4; females: n = 4). A, E2 levels were significantly lower in the letrozole-treated than the control
group. *p << 0.001. Free T (B) and cortisol (C) levels were not different across treatment groups but were higher in females than males. *p << 0.05. Mean values obtained in each group are presented

in ug/mg Cr. Error bars indicate SEM.
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Region-specific increase in E2 levels following 4 weeks of letrozole (20 wg/d, p.o.). Brain regions analyzed were as follows: () hippocampus, (B) hypothalamus, and () frontal cortex.

Letrozole (males: n = 4; females: n = 3) was associated with higher E2 levels in the hippocampus relative to the control group (males: n = 4; females: n = 4). *p << 0.05. Remaining regions were
unaffected by drug treatment. There was no effect of sex on E2 levels of any region. Mean values obtained in each group are presented in pg/g. Error barsindicate SEM. Dashed horizontal linesindicate

the average background E2 levels obtained by EIA for assay blanks.

if series resistance rose >30 MOhm (measured in response to —5mV test
pulses in voltage-clamp mode) over the course of a recording.

Data were analyzed offline using custom scripts written in Igor Pro 6
(Wavemetrics). Visualization of data analyses was performed with cus-
tom scripts in MATLAB, and visualization of recording traces was per-
formed in Igor Pro. RMP was calculated as the average subthreshold
membrane voltage during spontaneous recordings. Current—voltage
characteristics were generated but were not observed to be altered by
drug treatment. RMP was derived separately for firing rate vs input (FI)
curves and afterhyperpolarization (AHP) analyses. RMP was determined
by finding the average of all points spanning the injection of current, and
excluding particular points algorithmically determined to be a part of a
spike (defined as those at which the trace’s smoothed slope crossed a
threshold of 1).

AHP amplitude was derived by finding the minimum value during a
window between the peak of the action potential and the return to RMP.
This minimum was then subtracted from the RMP, and all points
outside of plausible thresholds (—40 mV to —90 mV) were excluded
from the average. Representative recordings from CA1 pyramidal
neurons obtained from one vehicle-treated and one letrozole-treated
marmoset are presented in Figure 6. Spontaneous spiking data were
collected across the entire recording of 6.5 s by counting crossings of
a 0 mV threshold. Similarly, current-evoked firing frequency was
found by finding all crossings of a 0 mV threshold within the 0.5 s
window of current injection.

Brain E2 extraction and assay. Aromatase expression occurs in both the
hypothalamus and HPC across several species (Vahaba and Remage-
Healey, 2015), and so these two regions were selected for analysis of E2
levels. The PFC was chosen as a negative control, as there is currently no
evidence that aromatase is expressed in this region. E2 levels were mea-
sured in homogenized samples (200 ul in 0.1 M PB) of the HPC, frontal
cortex, and hypothalamus using an EIA (Cayman Chemical) follow-
ing a combined solid- and liquid-phase extraction technique de-
scribed previously (Chao et al., 2011; Tuscher et al., 2016). Three

additional homogenized samples were spiked with E2 with known
concentrations (342.4 pg/ml, 856 pg/ml, and 2.14 ng/ml), and an-
other four samples with letrozole (16, 32, 64, and 94 pm). The extrac-
tion process began with three rounds of ether extraction. Once the
organic phase was dried, a methanol (MeOH) and dichloromethane
(Ch,Cl,) solution was carefully released down the sides of the tube
before reevaporating the samples. Dried samples were resuspended in
0.1 M PB, followed by solid-phase extraction, which consisted of elut-
ing the resuspended samples through high performance extraction
disk cartridges lined with C18 (3M) under vacuum pressure (—7
in/Hg). Hydrophilic and hydrophobic (including E2) compounds
were eluted using ddH,O (200 ul) and 100% methanol (2X 200 ul),
respectively, before air drying in a water bath at 50°C. A MeOH/
Ch,Cl, solution was once again released down the sides of the tube
before one final evaporation. Samples were then resuspended in EIA
buffer, and E2 levels in each sample were measured from EIA plates
using an Epoch Microplate Spectrophotometer plate reader (Biotek)
with a 450 nm filter and Gen5 software. An additional three tubes of
unextracted standards of equivalent concentrations to the spiked
samples (342.4 pg/ml, 856 pg/ml, and 2.14 ng/ml) were included to
determine the effectiveness of the extraction protocol in reducing
assay interference. The average recovery rate of the extraction effi-
ciency tubes was 98% (SD = 22.85%), indicating high correlation
between expected and obtained values. In addition, the E2 levels ob-
tained in the samples spiked with letrozole showed no evidence of
cross reactivity with the ELISA antibody.

Statistical analysis. To maintain blindness to treatment assignment,
codes were assigned to both groups to run statistical analyses, and
were decoded once all analyses were complete. All statistical analyses
were conducted using the SPSS software (IBM), with Type I error rate
setat a = 0.05, and results are expressed as mean * standard error of
the mean (SEM) in Figures 1-5. Peripheral and central hormone
levels (Figs. 1, 2) were analyzed using two-way ANOVA with treat-
ment and sex as factors. The same analysis was run on spontaneous
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challenge. Representative images obtained 5 min and 20 mininto the challenge are shown, along with the temperature reading. Percentage change in temperature (°F) from the first minutes of the
thermal challenge was plotted over time for females (B; vehicle: n = 2; letrozole: n = 4) and males (C; vehicle: n = 5, letrozole: n = 4). Letrozole treatment resulted in greater elevation in
temperature across time for females only (p << 0.001). Error bars indicate SEM.

behaviors (Table 2), with follow-up ANOVAs within each sex. Given
the advanced age of some of the marmosets, some were unable to
reach criterion performance on the DMP task, and so sex was not
included as a factor. Because performance was expected to decrease

for the letrozole, but not the vehicle group as treatment progressed,
change from baseline to the final treatment was analyzed separately
within each group using a paired-samples ¢ test (Fig. 3B). Percentage
change in temperature from baseline during the thermal challenge
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Figure 5.  IEof CA1 pyramidal neurons is attenuated by 4 weeks of letrozole treatment (20 wg/d, p.0.). *p << 0.05 on all 4 measures. This is observed across 4 measures. A, Firing frequency (Hz)

is attenuated as a function of injected current from letrozole-treated cells (n = 14) relative to vehicle (n = 15). This shiftin excitability was also related to changes in spontaneous activity by letrozole
treatment, as indicated by (B) greater AHP amplitude (AHP; mV), (C) lower RMP (mV), and (D) lower spontaneous spike rate (Hz). Error bars indicate SEM.

Table 2. Average duration (in seconds) of each behavior during 10 min session
recorded during final treatment week”

AM PM
Behavior Vehicle Letrozole Vehicle Letrozole
Agitated locomotion*  0.86 = 041  6.16 =£2.02 257 =043  0.58 = 0.20
Inactive alert* 220.54 *+ 51.89 291.98 + 62.58 261.38 = 59.95 271.02 = 53.87
Gouge 5.28 *+ 3.66 0.21 +0.43 0.58 +0.37 0.79 £0.79
Scentmark 07805 013£013 0 0
Piloerection 0 0.08 =008 040040 0
(Calm locomotion 16.88 =425 11.11+=3.01 11.16 =286 13.88 = 4.19
Inactive rest 65.06 = 45.67 1637 *10.78 13.18 = 6.46  47.06 = 16.04

“Values are mean == SEM. Letrozole-treated marmosets spent more time in agitated locomotion than those treated
with Vehicle in the morning (*p = 0.043). Males treated with letrozole spent more time in inactive alert than
Vehicle-treated males in the evening (*p = 0.044).

was analyzed using a three-way ANOVA, with treatment and sex as
between-subjects factors and time as a within-subjects factor (Fig.
4B, C). Follow-up two-way ANOVAs were conducted within each sex,
with time and treatment as factors. Independent-samples f tests were
used to analyze treatment effects on passive properties of IE of CAl
neurons (Fig. 5B—D). To examine the firing frequency at increasing
current (—50 to 90 pA; Fig. 54), a two-way ANOVA with follow-up
independent-samples ¢ tests were conducted.

In addition to investigating group differences on E2 levels and each
outcome measure, selective relations were also examined. Because E2
synthesis inhibition in the HPC has been shown to impair HPC-
dependent memory, it was expected that HPC-E2 would correlate
positively with DMP task performance and excitability of CA1 neu-
rons. It was also predicted that hypothalamic E2 would correlate
negatively with the degree of facial temperature change during the
thermal challenge, given that thermosensitive neurons responsible for
maintaining body temperature are located in the preoptic area (POA)
(Rance et al., 2013).

Results

Letrozole lowers peripheral E2 levels

To confirm that 4 weeks of letrozole decreases peripheral levels of
E2 in each sex, comparisons were run on urinary levels of the
hormone (Fig. 1A). Additional analyses were run on T (Fig. 1B)
and cortisol (Fig. 1C) to determine whether these hormones are
also influenced by the treatment. A main effect of treatment was
observed for E2 (F, 1,, = 24.69, p = 0.0003, n*> = 0.67; Fig. 14),
with lower levels observed in the letrozole-treated group (0.03 =
0.004 pwg/mg Cr) compared with the vehicle group (0.33 = 0.07
png/mg Cr; Hedge’s g = —2.17). No effect of sex (F(, ,,, = 1.57,
p=0.24,m” = 0.12) or interaction (F, ;5 = 1.43,p = 0.25, 1> =
0.11) was observed. Similar levels of T were observed across treat-
ment group and sex, with no significant main effect or interaction
(sex: F(y 15y = 114, p = 0.307, 1> = 0.09; drug: F, 1, = 0.22,p =
0.645, n° = 0.02; interaction: F(, ;,, = 1.82, p = 0.20, n* = 0.13;
Fig. 1B). A main effect of sex was observed for cortisol (F; ;) =
5.71,p = 0.034, n*> = 0.32), with higher levels observed in females

(35.22 = 12.85 pug/mg Cr) than males (14.33 = 1.90 ug/mg Cr,
Hedge’sg = 1.11). No effect of treatment (F(; ;) = 0.23,p = 0.64,
m* = 0.02, Fig. 1C) or interaction (F(; j,, = 0.13,p = 0.73, 9> =
0.01) was observed for cortisol.

Letrozole increases HPC-E2 levels

E2 levels in the HPC, hypothalamus, and frontal cortex were
analyzed next. Results revealed a main effect of treatment on E2
levels in the HPC (F( ;o) = 6.33, p = 0.031, n° = 0.39; Fig. 24),
with higher levels in the letrozole-treated (1471.32 * 311.97
pg/g) than in the control animals (522.67 * 300.76 pg/g; Hedge’s
g = 1.12). No effect of sex (F(; 1) = 0.93,p = 0.36, n° = 0.09) or
interaction (F( ;o) = 2.86, p = 0.12, 7* = 0.22) was observed. No
main effects or interactions were observed for the hypothalamus
(sex: F(;9) = 0.84, p = 0.38, n? = 0.09; treatment: F9) = 1.00,
p =036, n° = 0.17; interaction: F, o) = 1.78, p = 0.22, n*> =
0.17; Fig. 2B) or frontal cortex (treatment: F, ;,) = 1.13, p =
0.307, n* = 0.09; sex: F; 1,y = 0.10, p = 0.76, n° = 0.01; inter-
action: F; ;;, = 0.21, p = 0.66, n° = 0.02; Fig. 2C).

Letrozole decreases some anxiety-like behaviors

To determine whether oral letrozole given to marmosets mimics
mood changes reported by women taking Als, spontaneous be-
haviors were compared across treatment and sex. A significant
main effect of treatment was observed for time spent in agitated
locomotion in the morning (F(, ;,, = 5.12, p = 0.043, partial
1> = 0.30), with longer duration observed in the letrozole group
(6.16 = 2.02 s) than the vehicle group (0.86 = 0.41 s; Hedge’s g =
1.28). An interaction was observed for time spent in inactive alert
in the afternoon (F; ;,, = 10.90, p = 0.006, partial n* = 0.48).
Follow-up comparisons revealed more time spent in inactive
alert for males treated with letrozole than controls (F, ;) = 6.03,
p = 0.044, partial n*> = 0.46; letrozole = 375.22 = 56.51 s; vehi-
cle = 180.92 * 54.36, Hedge’s g = 1.65), whereas a marginally
significant effect was found in females (F, 5) = 4.81, p = 0.08,
partial n? = 0.49; letrozole = 166.82 * 55.79 s; vehicle =
395.48 = 96.46, Hedge’s g = —1.68). No other comparisons were
significant. Table 2 presents the mean duration of each behavior
for the vehicle and letrozole-treated group in the morning and
afternoon.

Letrozole impairs HPC-dependent cognition

A statistically significant decrease in performance was observed
in theletrozole-treated group (¢, = 3.66, p = 0.022, Hedge’s g =
1.16; Performance change: males = 4.42 * 2.18%; females =
10 = 0%), whereas no change was observed in the vehicle-treated
group (t) = 0.40, p = 0.71, Hedge’s g = 0.34, Fig. 3B; males =
—0.26 & 15.68%; females = 12.27 * 0%, Fig. 2B).
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Figure 6.  Representative recordings from CA1 pyramidal cells from animals following vehicle treatment (A) and letrozole treatment (B). Left, Voltage traces during 500 ms current steps. Gray

represents — 50 pA. Red represents rheobase. Black represents twice rheobase. Right, Single spontaneous action potentials showing differences in AHP amplitude.

Letrozole increases facial temperature during thermal
challenge in females

Letrozole-induced change in facial temperature during a thermal
challenge was investigated to determine whether marmosets in
the letrozole group experience thermodysregulation, mimicking
hot flashes reported by women taking Als. A main effect of sex
(F14) = 881, p = 0.041, n* = 0.69) and time (F;, = 21.69,
p = 0.000, partial n*> = 0.84), a two-way interaction between
treatment and sex (F, 4, = 15.26, p = 0.017, n*> = 0.79), treat-
mentand time (Fo ;) = 2.62, p = 0.002, partial n* = 0.39), and
sex and time (F;q 75, = 2.64, p = 0.001, partial n* = 0.40), and a
three-way interaction between sex, treatment, and time (F,¢ ;) =
2.72,p = 0.001, partial n* = 0.40). A follow-up two-way ANOVA
conducted within each sex revealed a main effect of treatment
(F3) = 17.10, p = 0.026, > = 0.85), time (F 5.5, = 15.09, p =
0.000, partial n> = 0.83), and an interaction between treatment
and time (F ;o 5, = 3.37, p = 0.000, partial n> = 0.53) among
females (Fig. 4B), with greater change in facial temperature in the
letrozole group (vehicle = 0.54% change in °F = 0.05 letrozole =
4.45% change in °F * 1.46; Hedge’s g = 1.55). A main effect of
time was observed in males (F,4,9) = 6.96, p = 0.000, partial
m? = 0.87), but all other effects were not significant (treatment:
Fi) = 2.80, p = 0.343, n° = 0.74; interaction: F(;g ;o) = 1.51,
p = 0.188, partial n*> = 0.60; Fig. 4C). Temperature change was
similar across the two treatment groups in the males (vehicle =
2.20% change in °F = 1.75 letrozole = 1.94% change in °F = 0.48;
Hedge’s g = —0.09).

Letrozole reduces IE of CA1 neurons

To observe whether oral letrozole mimics changes in HPC activ-
ity known to occur following ovarian hormone deprivation, in-
trinsic activity of CA1 neurons was compared across treatment
groups. FI curves were compared and revealed a significant inter-
action between treatment and injected current (F4 o, = 2.95,
p =0.024, > = 0.11), with reduced firing frequency in letrozole-
treated cells following currents of 20 pA (t,,) = —2.69,p = 0.012,
letrozole = 1.47 = 0.54 Hz, vehicle = 4.46 = 1.00 Hz, Hedge’s
g = —1.00) and 30 pA (t,; = —2.25, p = 0.013, letrozole =
2.43 * 0.62 Hz, vehicle = 5.57 * 1.03 Hz, Hedge’s g = —0.98;

Fig. 6A). Significant treatment effects were observed on passive
measures, with CAl neurons from the letrozole-treated group
demonstrating higher AHP amplitude (f,,) = 2.25, p = 0.035,
Hedge’s g = 0.92, Fig. 6B; letrozole = 0.02 % 0.002 Hz, vehicle =
0.01 * 0.001 Hz), lower resting membrane potential (., =
—2.18,p = 0.041, Hedge’s g = 0.89, Fig. 6C; letrozole = —0.06 =
0.002 mV, vehicle = —0.05 = 0.001 mV), and lower spontaneous
spiking (t.,,) = —2.10, p = 0.048, Hedge’s g = 0.86, Fig. 6D;
letrozole = 1.43 * 0.71 mV, vehicle = 1.67 = 0.65 mV) relative
to neurons from the vehicle group.

Correlations between study measures
The relation between E2 levels (peripheral and central) was ana-
lyzed for all primary outcome measures. Among the letrozole-
treated marmosets, hypothalamic E2 was related to facial
temperature change at 4 of the 20 time points (r,, = 0.94-0.98,
p < 0.006, Bonferroni-corrected), whereas no associations were
observed for control animals. Peripheral levels of E2 did not cor-
relate with facial temperature change in either treatment group.
Peripheral E2 levels were not associated with performance on
the DMP (r(,, = 0.35, p = 0.360) or measures of extrinsic activity
of CAl neurons (r = 0.44-0.59, p = 0.213-0.381). A large,
nonsignificant negative correlation was found between HPC-E2
levels and the drop in DMP performance in the letrozole group
(r;3y = —0.87, p = 0.058; Fig. 3B). No such correlation was ob-
served in the vehicle-treated group (r(,) = 0.38, p = 0.623). The
relation between CA1l activity (AHP, RMP, and spontaneous
spiking) and neuroestradiol was also not significant (r, = 0.08—
0.86, p = 0.27-.89).

Discussion

Four weeks of an oral Al (letrozole; 20 wg/d) has adverse
effects on multiple behavioral, neuronal, and physiological
outcomes in GDX marmosets >5 years old. Reduced perfor-
mance on the DMP task from baseline to the final treatment
week was observed in the letrozole-treated marmosets,
whereas no change was observed in controls (Fig. 2B), suggest-
ing that letrozole reduces spatial working memory ability. This
is consistent with previous studies demonstrating impaired
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memory following aromatase inhibition in the HPC in rodents
(Tuscher et al., 2016; but see Taylor et al., 2017), songbirds
(Bailey et al., 2017), and humans (Collins et al., 2009; Bayer et
al., 2015; but see Lee et al., 2016).

Letrozole also reduced the IE of pyramidal neurons in the CA1
on multiple measures in both sexes. Relative to controls, neurons
from the letrozole-treated animals demonstrated reduced re-
sponsiveness to injected current, and lower spontaneous activity.
These properties together reflect a compromised state of IE be-
cause they govern how effective synaptic inputs translate to ac-
tion potentials. The reduced IE of CA1 neurons is consistent with
results reported in rats following short- (2 months) or long-term
(5 months) ovarian hormone deprivation (via OVX) (Wu et al.,
2011). In that study, long-term OVX resulted in reduced neuro-
nal responsiveness to injected current, and steeper AHP slope.
Together, these results suggest that 4 weeks of letrozole treatment
mimics the detrimental effects of long-term ovarian hormone
deprivation on IE and spontaneous activity. While E2 is known to
enhance excitatory synaptic transmission in the HPC (Wong and
Moss, 1992; Smejkalova and Woolley, 2010; Wu et al., 2011),
peripheral and HPC-E2 levels were not correlated with IE, sug-
gesting that letrozole impacts HPC physiology via other mecha-
nisms. One advantage of the present study over previous research
is that neurons from both males and females were included. Be-
cause the data are consistent across both sexes, these results indi-
cate that letrozole has detrimental effects on the IE of CAl
neurons regardless of sex.

The increase in facial temperature in response to a thermal
challenge was higher in letrozole-treated monkeys than controls,
but in female marmosets only. This indicates that letrozole-
treated females were less able to regulate their body temperature
than vehicle-treated females. E2 is known to decrease core body
temperature in women (Tankersley et al., 1992; Brooks et al.,
1997), female rodents (e.g., Dacks and Rance, 2010), and female
marmosets (Gervais et al., 2016), and Al treatment triggers hot
flashes in breast cancer patients (Kligman and Younus, 2010).
Both endogenous E2 levels (Baker et al., 2015) and estrogen ther-
apy (Freedman and Blacker, 2002) are associated with fewer hot
flashes. Circulating E2 levels were not associated with change in
facial temperature in either group in the present study, but hypo-
thalamic E2 levels correlated positively with facial temperature
change within the letrozole-treated marmosets. As the hypothal-
amus, and in particular the POA, contains thermosensitive neu-
rons that play a role in thermoregulation (for review, see Rance et
al., 2013), it is possible that aromatase inhibition impairs ther-
moregulation via mechanisms that involve E2 in this structure.
No group differences in hypothalamic E2 levels were observed,
but the analyzed tissue included all subregions of the hypothala-
mus, and so any effect on the POA might have been masked.
While the results of the present study suggest that aromatase
inhibition compromises thermoregulation in a sex-specific man-
ner, other known sex differences can also explain the observed
findings, including differences in the POA (Ayoub et al., 1983),
body physiology, anthropometric characteristics, and body com-
position (for review, see Kaciuba-Uscilko and Gruza, 2001). In
addition, we cannot rule out that the observed sex difference
resulted from an interaction between the potential stress associ-
ated with the thermal challenge and sex. Future studies are
needed to better understand sex differences in thermoregulation
and the contribution of neuroestradiol in regulating thermosen-
sitive neurons.
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Some vigilant behaviors were increased by letrozole treat-
ment, although time of day appears to have influenced the pat-
tern of results. In the morning, letrozole-treated marmosets
spent more time in agitated locomotion, a sensitive marker for
anxiety (Bowell, 2010). Consistent with this, males taking letro-
zole spent more time in inactive alert in the afternoon relative to
control males, indicative of heightened vigilance, a behavioral
marker similar to trait anxiety in humans (Shiba et al., 2014).
Letrozole had no effect on this behavior in females. Thus, greater
inactive alert and agitated locomotion likely reflect greater anxi-
ety. There are inconsistencies with regards to the effects of aro-
matase inhibition on anxiety in rodents, with one study showing
impaired fear extinction (i.e., greater fear maintenance) in male
rats following acute inhibition (Graham and Milad, 2014) and
others reporting no effect of sustained inhibition on open field
activity in OVX/castrated rats (Kokras et al., 2018), and no dif-
ference between ArKO and WT mice on the open field and ele-
vated plus maze (Dalla et al., 2005). While the results of the
current study suggest that daily oral AI can have anxiogenic prop-
erties, more research in this area is needed before firm conclu-
sions can be drawn.

As predicted, peripheral levels of E2 were reduced by letro-
zole treatment, but a region-specific effect was observed in the
brain, with higher E2 levels detected in the HPC of letrozole-
treated tissue, and no effect in the PFC and hypothalamus.
Letrozole clearly crosses the blood—brain barrier as demon-
strated in rats (Dave et al., 2013), with exposure to the brain
being dose-dependent. It is possible that the letrozole dose was
too low to effectively suppress aromatase activity in the brain,
whereas it did so at the periphery. Indeed, our data are con-
sistent with a “compensation” hypothesis, suggesting that
elevated HPC-E2 levels result from increased aromatase ex-
pression and/or activity in response to lower peripheral level
of E2. In support of this interpretation, increased aromatase
expression is observed following OVX in rhesus monkeys (Hi-
gaki et al., 2012). Further, data in zebra finches show that
continuous administration of oral Al leads to increased ex-
pression of aromatase protein, whereas elevated peripheral
levels of E2 downregulate aromatase in the HPC, but not other
brain areas, including the POA (Saldanha et al., 2000). Such
region-specific patterns of aromatase expression are consis-
tent with our data, which show differential responses of the
HPC versus hypothalamus and frontal cortex. Studies using
direct administration of Als within the HPC show reduced E2
synthesis in the HPC, both in female mice (Tuscher et al,
2016) and male songbirds (Bailey et al., 2017). Similarly, in
vitro studies of HPC neurons demonstrate reduced E2 synthe-
sis following letrozole administration through a mechanism of
phosphorylation that inactivates aromatase without decreas-
ing aromatase expression (Fester et al., 2016). Similarly, E2
levels may be altered centrally due to alterations in catabolism
or inactivation of estrogens by enzymes, such as suppression
of 2-hydroxylase (Osawa et al., 1993; Zhu and Conney, 1998).
The mechanisms underlying differential effects of letrozole
according to the mode (oral or central) of administration re-
main to be determined.

As mentioned above, the dose of administration is impor-
tant for the extent of brain exposure. There is also evidence
that the duration of administration may be crucial to under-
standing letrozole mechanisms. ER-responsive tumors can of-
ten escape inhibition with prolonged letrozole treatment (Ma
et al., 2015). There is also evidence for differential effects of
letrozole on depressive-like behavior in female rats depending
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on whether it is administered acutely (3 injections in 24 h) or
continuously (7 d) (Kokras et al., 2018). Because Als are ad-
ministered both orally, at low dose and continuously in
women, one prediction from our study is that they induce
elevated HPC E2 levels, an intriguing possibility that will re-
quire empirical validation.

The present results suggest that higher HPC-E2 levels are re-
lated to greater performance deficits on the DMP task in the
letrozole group, which is in contradiction with studies using in-
tracerebral administration of Als, finding impaired spatial learn-
ing and memory (Tuscher et al, 2016; Bailey et al.,, 2017)
following reduced E2 levels in the HPC. Although no correlation
was observed, elevated HPC-E2 levels might also lead to reduced
IE of CAl neurons. As predicted by the compensation hypothesis,
prolonged use of Als may reduce the functionality of the HPC by
increasing aromatase expression/activity, resulting in elevated
HPC-E2 levels, impaired spatial memory, and compromised IE
of CA1 neurons. Prolonged use of letrozole might also lead to the
observed findings through escaped inhibition. Future studies are
needed to address these important questions.

This was the first study using a nonhuman primate to ex-
amine the effects of letrozole on brain and behavior. We used
a regimen that mimics Al use in humans, examined a large
number of behavioral measures, spanning cognition to anxi-
ety to thermoregulation and analyzed sex differences. At the
brain level, we measured both E2 content in several brain
regions and HPC neuron physiology. Such a comprehensive
approach in an animal model phylogenetically close to hu-
mans is unique and a great strength of the study. There were
also limitations associated with the use of nonhuman pri-
mates. The relatively small sample, the broad age range, and
the use of a single cognitive task limit the conclusions that can
be drawn from our results.

Nevertheless, we demonstrated that 4 weeks of oral adminis-
tration of the Al letrozole at a dose comparable with what is used
by women effectively reduces peripheral levels of E2 but leads to
a compensatory increase in E2 levels in the HPC. Thermoregula-
tion, HPC neural activity, and spatial working memory were all
compromised by treatment. These results in a nonhuman pri-
mate corroborate many of the symptoms reported by women
taking Als (Bender et al., 2007; Rand et al., 2011) and reveal
detrimental effects of these treatments on the brain, in part
through elevated HPC-E2 levels. Future studies are needed to
elucidate the precise mechanisms by which Als compromise the
CNS.
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