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Perceptual Decision-Making: Biases in Post-Error Reaction
Times Explained by Attractor Network Dynamics
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Perceptual decision-making is the subject of many experimental and theoretical studies. Most modeling analyses are based on statistical
processes of accumulation of evidence. In contrast, very few works confront attractor network models’ predictions with empirical data
from continuous sequences of trials. Recently however, numerical simulations of a biophysical competitive attractor network model have
shown that such a network can describe sequences of decision trials and reproduce repetition biases observed in perceptual decision
experiments. Here we get more insights into such effects by considering an extension of the reduced attractor network model of Wong and
Wang (2006), taking into account an inhibitory current delivered to the network once a decision has been made. We make explicit the
conditions on this inhibitory input for which the network can perform a succession of trials, without being either trapped in the first
reached attractor, or losing all memory of the past dynamics. We study in detail how, during a sequence of decision trials, reaction times
and performance depend on nonlinear dynamics of the network, and we confront the model behavior with empirical findings on
sequential effects. Here we show that, quite remarkably, the network exhibits, qualitatively and with the correct order of magnitude,
post-error slowing and post-error improvement in accuracy, two subtle effects reported in behavioral experiments in the absence of any
feedback about the correctness of the decision. Our work thus provides evidence that such effects result from intrinsic properties of the
nonlinear neural dynamics.
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Much experimental and theoretical work is being devoted to the understanding of the neural correlates of perceptual decision-
making. In a typical behavioral experiment, animals or humans perform a continuous series of binary discrimination tasks. To
model such experiments, we consider a biophysical decision-making attractor neural network, taking into account an inhibitory
current delivered to the network once a decision is made. Here we provide evidence that the same intrinsic properties of the
nonlinear network dynamics underpins various sequential effects reported in experiments. Quite remarkably, in the absence of
feedback on the correctness of the decisions, the network exhibits post-error slowing (longer reaction times after error trials) and
post-error improvement in accuracy (smaller error rates after error trials). j

ignificance Statement

Introduction

Typical experiments on perceptual decision-making consist of
series of successive trials separated by a short time interval, in
which performance in identification and reaction times are mea-
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sured. The most studied protocol is the one of two-alternative
forced-choice (TAFC) task (Ratcliff, 1978; Laming, 1979a;
Vickers, 1979; Townsend and Ashby, 1983; Busemeyer and
Townsend, 1993; Shadlen and Newsome, 1996); Usher and Mc-
Clelland, 2001; Ratcliff and Smith, 2004). Several studies have
demonstrated strong serial dependence in perceptual decisions
between temporally close stimuli (Fecteau and Munoz, 2003; Jen-
tzsch and Dudschig, 2009; Danielmeier and Ullsperger, 2011).
Such effects have been studied in the framework of statistical
models of accumulation of evidence (Dutilh et al., 2012), the
most common theoretical approach to perceptual decision-
making (Ratcliff, 1978; Ashby, 1983; Bogacz et al., 2006; Shadlen
et al., 2006; Ratcliff and McKoon, 2008) or with a more complex
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attractor network with additional memory units specifically im-
plementing a biasing mechanism (Gao et al., 2009).

Wang (2002) proposed an alternative approach to the model-
ing of perceptual decision-making based on a biophysical cortical
network model of leaky integrate-and-fire neurons. The model is
shown to account for random-dot experimental results from
Shadlen and Newsome (2001) and Roitman and Shadlen (2002).
This decision-making attractor network was first studied in the
context of a task requiring to keep in memory the last decision.
This working memory effect is precisely achieved by having the
network activity trapped into an attractor state. However, in the
context of consecutive trials, the neural activities have to be reset
in a low activity state before the onset of the next stimulus. Bo-
naiuto et al. (2016) have considered a parameter range of weaker
excitation where the working memory phase cannot be main-
tained. The main result is that the performance of the network is
biased toward the previous decision, an effect which decreases
with the intertrial time. Because of the slow relaxation dynamics
in the model, we only study intertrial times >1.5 s. However,
sequential effects have been reported for shorter intertrial times,
such as 500 ms by Laming (1979a) and Danielmeier and Ull-
sperger (2011). Instead of decreasing the recurrent excitation, an
alternative is to introduce an additional inhibitory input follow-
ing a decision (Lo and Wang, 2006; Engel et al., 2015; Bliss and
D’Esposito, 2017). Lo and Wang (2006) have proposed such a
mechanism to account for the control of the decision threshold.

The purpose of the present paper is to revisit this issue of
dealing with sequences of successive trials within the framework
of attractor networks with a focus on intertrial times as short as
500 ms. We do so by taking advantage of the reduced model of
Wong and Wang (2006) which is amenable to mathematical
analysis. This model consists of a network of two units, represent-
ing the pool activities of two populations of cells, each one being
specific to one of the two stimulus categories. Wong and Wang
(2006) derive the equations of the reduced model and choose the
parameter values to preserve as much as possible the dynamical
and behavioral properties of the original model. In line with Lo
and Wang (2006), we take into account an inhibitory current
originating from the basal ganglia, occurring once a decision has
been made. We explore how the network nonlinear dynamics
leads to serial dependence effects in TAFC tasks, and compare
with empirical findings such as sequential bias in decisions (Cho
et al., 2002) or post-error adjustments (Danielmeier and Ull-
sperger, 2011; Danielmeier et al., 2011). Our main finding is that
the model reproduces two main post-error adjustments observed
in the absence of feedback on the correctness of the decision:
post-error slowing (PES) and post-error improvement in accu-
racy (PIA), with PES consisting of longer reaction times, and PIA
of smaller error rates, for trials following a trial with an incorrect
decision. We thus provide evidence that such effects result from
nonlinearities in the neural dynamics.

Materials and Methods

We are interested in modeling experiments where a subject has to decide
whether a stimulus belongs to one or the other of two categories, hereaf-
ter denoted L and R. A particular example is the one of random-dot
experiments (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002),
where a monkey performs a motion discrimination task in which it has to
decide whether a motion direction, embedded into a random-dot mo-
tion, is toward left (L) or right (R). The general case is the one of cate-
gorical perception experiments, in which one can control the degree of
ambiguity of the stimuli; e.g., psycholinguistic experiments with stimuli
interpolating between two phonemes (Liberman et al., 1957), visual cat-
egorization experiments with continuous morphs from cats to dogs
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(Freedman et al., 2003), etc. We focus on TAFC protocols in which no
feedback is given on the correctness of the decisions.

We consider a decision-making recurrent network of spiking neurons
governed by local excitation and feedback inhibition, as introduced and
studied by Compte et al. (2000) and Wang (2002 ). Because mathematical
analysis is harder to be performed for such complex networks, without a
high level of abstraction (Miller and Katz, 2013), one must rely on sim-
ulations which, themselves, can be computationally heavy. For our anal-
ysis, we make use of the reduced firing-rate model of Wong and Wang
(2006) obtained by a systematic reduction of the detailed biophysical
attractor network model. The reduction aimed at faithfully reproducing
not only the behavioral behavior of the full model, but also neural firing
rate dynamics and the output synaptic gating variables. This is done
within a mean-field approach, with calibrated simplified F/I curves for
the neural units, and in the limit of slow NMDA gating variables moti-
vated by neurophysiological data. The full details were given by Wong
and Wang (2006; their main text and supplemental Information).

Because this model has been built to reproduce as faithfully as possible
the neural activity of the full spiking neural network, it can be used as a
proxy for simulating the full spiking network (Engel and Wang, 2011;
Deco et al., 2013; Engel et al., 2015). Here, we mainly make use of this
model to gain better insights into the understanding of the model behav-
ior. In particular, one can conveniently represent the network dynamics
in a2 d phase plane and rigorously analyze the network dynamics (Wong
and Wang, 2006).

A reduced recurrent network model for decision-making

We first present the architecture without the corollary discharge (Wong
and Wang (2006); Fig. 1A), which consists of two competing units, each
one representing an excitatory neuronal pool, selective to one of the two
categories, L or R. The two units inhibit one another, while they are
subject to self-excitation. The dynamics is described by a set of coupled
equations for the synaptic activities S; and Sy of the two units L and R:

ds; S;
i€ {L> R}> E = - ?S + (1 - Sz) ’yf(Ii,tot)' (1)

The synaptic drive S; for pool i € {L,R} corresponds to the fraction of
activated NMDA conductance, and I, is the total synaptic input cur-
rent to unit i. The function f is the effective single-cell input/output
relation (Abbott and Chance, 2005), giving the firing rate as a function of
the input current:

ali,lot —-b
1 — exp[— d(al;;,, — b)]

f(li,mt) = (2)

where a, b, d are parameters whose values are obtained through numer-
ical fit.
The total synaptic input currents, taking into account the inhibition

between populations, the self-excitation, the background current and the
stimulus-selective current can be written as follows:

I = ]L,LSL - ]L,RSR + Liime T Lnoise.L> (3)

IR,tot = IR,RSR - ]R,I_SL + Istim,R + Inm'se,R) (4)

with J; ; the synaptic couplings (i and j being L or R). The minus signs in
the equations make explicit the fact that the inter-unit connections are
inhibitory (the synaptic parameters J;; being thus positive or null). The
term Iy ; is the stimulus-selective external input. If w, denotes the
strength of the signal, the form of this stimulus-selective current is as
follows:

Lsime = ]A,extI'LO(l *0)

Istim,R = ]A,exrl‘l'o(l + C) ’ (5)

The sign, =, is positive when the stimulus favors population L, negative
in the other case. The quantity ¢, between 0 and 1, gives the strength of the
signal bias. It quantifies the coherence level of the stimulus. For example,
in the random-dot motion framework, it corresponds to the fraction of
dots contributing to the coherent motion. In the following, we will give
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Figure 1.
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Two-variable model of Wong and Wang (2006). A, Reduced two-variable model Wong and Wang (2006) constituted of two neural units, endowed with self-excitation and effective

mutual inhibition. B, Time course of the two neural activities during a decision-making task. At the beginning the two firing rates are indistinguishable. The firing rate that ramps upward (blue)
represents the winning population, the orange one the losing population. A decision is made when one of the firing rate crosses the threshold of 20 Hz. The black line represents the duration of the
selective input corresponding to the duration of accumulation of evidence until the decision threshold is reached. This model shows working memory through the persistent activity in the network

after the decision is made.

Table 1. Numerical values of the model parameters

Parameter Value Parameter Value

a 270 Hz/nA O noise 0.02nA

b 108 Hz Troise 2mS

d 0.154s ly 0.3255nA

0% 0.641 Mo 30Hz

s 100 ms Jpent 52X 10 *nA/Hz
S =Jrr 0.2609 nA Jr=u 0.0497 nA

6 20Hz

Iep max 0.035nA To 200 ms

Top, Values as taken from Wong and Wang (2006). Bottom, Values of the additional parameters specific to the
present model (see text).

this coherence level in percentage. Following Wang (2002), this input
forms the pooling of the activities of middle temporal neurons firing
according to their preferred directions. This input current is only present
during the presentation of the stimulus and is shut down once the deci-
sion is made.

In the present model, in line with a large literature modeling decision-
making, the input, Equation 5, is thus reduced to a signal parametrized by
ascalar quantifying the coherence or degree of ambiguity of the stimulus.
More global approaches consider the explicit coupling between the en-
coding and the decision neural populations, with a population of
stimulus-specific cells for the coding layer (Beck et al., 2008; Bonnasse-
Gahot and Nadal, 2012; Engel et al., 2015). We believe that the main
results presented here would not be affected by extending the model to
take into account the coding stage, but we leave such study for further
work.

In addition to the stimulus-selective part, each unit receives individu-
ally an extra noisy input, fluctuating around the mean effective external
input I;:

dvaoise,i
Thoise dt

= _(Inoisf,i(t) - IO) + nl(t) VTrmisea-noise) (6)

with 7. @ synaptic time constant that filters the (uncorrelated) white
noises, M;(t), i = L,R. For the simulations, unless otherwise stated, pa-
rameter values will be those shown in Table 1.

Initially the system is in a symmetric (or neutral) attractor state, with
low firing rates and synaptic activities (Fig. 1B). On the presentation of
the stimulus, the system evolves toward one of the two attractor states,
corresponding to the decision state. In these attractors, the “winning”
unit fires at a higher rate than the other. We are interested in reaction
time experiments. In our simulations, we consider that the system has
made a decision when for the first time the firing rate of one of the two
units crosses a threshold 6, fixed here at 20 Hz. We have chosen this

parameter value, slightly different from the one by Wong and Wang
(2006), from the calibration of the extended model discussed below on
sequential decision trials with short response—stimulus intervals (RSIs).
We have checked that this does not affect the psychometric function of
the network, the accuracy is unchanged and the reaction time is shifted by
a constant.

Extended reduced model: inhibitory corollary discharge

Studies (Roitman and Shadlen, 2002; Ganguli et al., 2008) show that,
during decision tasks, neurons’ activity experiences a rapid decay follow-
ing the responses (Roitman and Shadlen, 2002, their Figs. 7 and 9).
Simulations of the above model show that even when the stimulus is
withdrawn at the time of decision, the decrease in activity is not suffi-
ciently strong to account for these empirical findings. Decreasing the
recurrent excitatory weights does allow for a stronger decrease in activity,
as shown by Bonaiuto et al. (2016). However, both the increase and the
decay of activities are too slow, and the network cannot perform sequen-
tial decisions with RSIs <1 s. Hence the decrease in activity requires an
inhibitory input at the time of the decision.

Such inhibitory mechanism has been proposed to originate from the
superior colliculus (SC), controlling saccadic eye movements, and the
basal ganglia-thalamic circuit, which plays a fundamental role in many
cognitive functions including perceptual decision-making. Indeed, the
burst neurons of the SC receive inputs from the parietal cortex and
project to midbrain neurons responsible for the generation of saccadic
eye movements (Scudder et al., 2002; Hall and Moschovakis, 2003). Thus
the threshold crossing of the cortical neural activity is believed to be
detected by the SC (Saito and Isa, 2003). In turn, the SC projects feedback
connections on cortical neurons (Crapse and Sommer, 2009). At the time
of a saccade, SC neurons emit a corollary discharge (CD) through these
feedback connections (Sommer and Wurtz, 2008). The impact of this CD
as an inhibition has been discussed in various contexts (Crapse and Som-
mer, 2008; Sommer and Wurtz, 2008; Yang et al., 2008). The generation
of a corollary discharge resulting in an inhibitory input has been pro-
posed and discussed in several modeling works, in the case of the mod-
ulation of the decision threshold in reaction time tasks (Lo and Wang,
2006), in the context of learning (Engel et al., 2015), and in a ring model
of visual working memory (Bliss and D’Esposito, 2017).

We note here that, for simplicity and in accordance with the existing
literature (Lo and Wang, 2006; Engel et al., 2015; Bliss and D’Esposito,
2017), we will be referring to the inhibitory current resulting from the
corollary discharge as the corollary discharge.

In the context of attractor networks for decision tasks, Lo and Wang
(2006) introduce an extension of the biophysical model of Wang (2002)
that consists of modeling the coupling between the network, the basal
ganglia, and the SC. The net effect is an inhibition onto the populations in
charge of making the decision. Although Lo and Wang (2006) address the
issue of the control of the decision threshold, they do not discuss the



836 - J. Neurosci., January 30,2019 - 39(5):833—853

Berlemont and Nadal e Attractor Dynamics Explains Post-Error Adjustments

; /\. \“ ssol
E Q P Decision

v 200F
i I =
_____________________________ =
""""" =

150

Corallary Discharge
100
0.‘02 0.;)4 0.;)6 0.68 O.;lU
I CD,max
Stimulus 1 Stimulus 2
Decision 1 Decision 2
| RSI | | RSI |

Figure 2.

Extended version of the reduced model with the (D. 4, The extension consists in adding the corollary discharge originating from the basal ganglia, an inhibitory input onto both units

occurring just after a decision is made. B, Relaxation time constant of the system during the RSI (that is the relaxation dynamics toward the neutral attractor), with respect to the corollary discharge
amplitude. The values are obtained by computing the largest eigenvalue A of the dynamical system, Equations 1—6, when presenting a constant CD. The time constant is given by the inverse of the
eigenvalue, 7 = —1/A. C, The time-sketch of the simulations can be decomposed into a succession of identical blocks. Each block, corresponding to one trial, consists of: the presentation of a
stimulus with a randomly chosen coherence (gray box), a decision immediately followed by the removal of the stimulus, a waiting time of constant duration corresponding to the RSI.

relaxation dynamics induced by the CD, nor the effects on sequential
decision tasks outside a learning context (Hsiao and Lo, 2013).

To analyze these effects with the reduced attractor network model, we
assume that, after crossing the threshold, the network receives an inhib-
itory current, mimicking the joint effect of basal ganglia and SC on the
two neural populations (Fig. 2A).

In the case of Engel et al. (2015), the function of the CD is to reset the
neural activity to allow the network to learn during the next trial. For this,
the form of the CD input is chosen as a constant inhibitory current for a
duration of 300 ms. However, such strong input leads to an abrupt reset
to the neural state with no memory of the previous trial. We thus rather
consider here a smooth version of this discharge, considering that the
resulting inhibitory input has a standard exponential form (Finkel and
Redman, 1983). The inhibitory input, I~ (t), is then given by the
following:

during stimulus presentation
after the decision time, tp,

Iep(t) = {8

Iep maxexp( — (£ = tp)/ Tcp)

(7)

The relaxation time constant 7.y, is chosen in the biological range of

synaptic relaxation times and in accordance with the relaxation-time

range of the network dynamics, 7, = 200 ms (Fig. 2B; see Discussion).
Therefore the input currents are modified as follows:

IL,mt(t) = ]LLSL(t) - ]L,RSR(t) + Istim,L(t) + Inuise,L(t) + ICD(t)> (8)
Tneol®) = TeeSr(®) = TriSi(®) + Liimi(8) + Ligicer(® + Icp(®.  (9)

We can now study the dynamics of this system in a sequence of decision
trials (protocol illustrated in Fig. 2C). We address here two issues: first, is
there a parameter regime for which the network can engage in a series of
trials; that is, for which the state of the dynamical system, at the end of the
relaxation period (end of the RSI), is close to the neutral state (instead of
being trapped in the attractor reached at the first trial); second, is there a
domain within this parameter regime for which one expects to see se-

quential effects (instead of a complete loss of the memory of the previous
decision state).

In Figure 3 we illustrate the network dynamics between two consecu-
tive stimuli during a sequence of trials, comparing the cases with and
without the CD. In the absence of the CD input, the network is not able
to make a new decision different from the previous one (Fig. 3A). Even
when the opposite stimulus is presented, the system cannot leave the
attractor previously reached, unless in the presence of an unrealistic
strong input bias. If however the strength I, .. is strong enough, the
CD makes the system to escape from the previous attractor and to relax
toward near the neutral resting state with low firing rates. If too strong, or
in case of a too long RSI, at the onset of the next stimulus the neutral state
has been reached and memory of past trials is lost. For an intermediate
range of parameters, at the onset of the next stimulus the system has
escaped from the attractor but is still on a trajectory dependent on the
previous trial (Fig. 3B).

We have computed the time constant 7 of the network during relax-
ation (during the RSI), with respect to the CD amplitude, Icp, .., (Fig.
2B). This computation is done for a CD with a constant amplitude,
Ien(t) = Iep max- One sees that, for Iy ., of order 0.03 ~ 0.04 nA, the
network time constant 7is four to five times smaller than the duration of
the RSI. We choose the relaxation constant 7., of the CD of the same
order of magnitude (as in the above simulation where 7., = 200 ms).
With such value, at the onset of the next stimulus, the network state will
still be far enough from the symmetric attractor, so that we can expect to
observe sequential effects, as confirmed by the analysis in Results.

With the inhibitory CD, after the threshold is crossed by one of the two
neural populations, there is a big drop in the neuronal activity (Fig. 3B),
corresponding to the exit from the previous attractor state. This type of
time course is in agreement with the experimental findings of Roitman
and Shadlen (2002) and Ganguli et al. (2008), who measure the activity of
LIP neurons during a decision task. They show that neurons that accu-
mulate evidence during decision tasks experience rapid decay, or inhib-
itory suppression, of activity following responses, similar to Figure 3B
(but see Lo and Wang, 2006 for a related modeling study with spiking
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Time course of activities during two consecutive trials. 4, Without CD. Top (green plot), Time course of the stimulations. The first stimulus belongs to category L, the second to category

R. Middle, firing rates of the L (blue) and R (red) neural pools. Bottom, corresponding synaptic activities. The neural activity becomes stuck in the attractor corresponding to the first decision. B, With

D, with
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= 0.035 nA. Top, Time course of the stimulations (green plot; same protocol as for 4), and time course of the inhibitory current (black curve, represented inverted for clarity of the

presentation). B, Middle and Bottom, Neural and synaptic activities, respectively (L pool, blue; R pool, red). In that case, one observes the decay of activity after a decision has been made, and the

winning population is different for the two trials.

neurons, or Gao et al., 2009 for rapid decay of neural activity with an-
other type of attractor network).

We now derive the conditions on I, under which the network is able
to make a sequence of trials. To this end, we analyze the dynamics after a
decision has been made, during the RSI (hence during the period with no
external excitatory inputs). The results are illustrated in Figure 4 on
which we represent a sketch of the phase plane dynamics and a bifurca-
tion diagram.

Consider first what would happen under a scenario of a constant, time
independent, inhibitory input during all the RSI (Fig. 4A-D; formally,
this corresponded to setting 7o, = + % in Eq. 7). At small values of the
inhibitory current, the attractor landscape is qualitatively the same as in
the absence of inhibitory current: in the absence of noise there is three
fixed points, one associated with each category and the neutral one (Fig.
3B). At some critical value, of ~0.0215 nA, there is a bifurcation (Fig.
4D); for larger values of the inhibitory current, only one fixed point
remains, the neutral one (Fig. 4D). As a result, applying a constant CD
would either have no effect on the attractor landscape, (current ampli-
tude below the critical value), so that the dynamics remains within the
basin of attraction of the attractor reaches at the previous trial; or would
reset the activity at the neutral state (current amplitude above the critical
value), losing all memory of the previous decision.

Now in the case of a CD with a value decreasing with time (Fig. 4E-H,
scenario of an exponential decay), the network behavior will depend on
where the dynamics lies at the time of the onset of the next stimulus. The
dynamics, starting from a decision state (Fig. 4 F, G, near the blue attrac-
tor), is more easily understood by considering the limit of slow relaxation
(large time constant T,). Between times ¢ and ¢ + At, with At small
compared with 7, the dynamics is similar to what it would be with a
constant CD with amplitude I, (). Hence if Io(¢) is larger than the
critical value discussed above, the dynamics “sees” a unique attractor, the
neutral state, and is driven toward it. When I-,(f) becomes smaller than
the critical value, the system sees again three attractors, and finds itself
within the basin of attraction of either the initial fixed point (correspond-
ing to the previous decision; Fig. 4F), or of the neutral fixed point (Fig.
4G). In the latter case, the network is able to engage in a new decision task.

To conclude, to have the network performing sequential decision

tasks, one needs I, ., to be larger than the critical value (~I-, =
0.0215 nA; Fig. 4H), and, for a given value of I ., to have a time
constant 7., large enough compared with the RSI for the system to relax
close enough to the neutral attractor at the onset of the next stimulus.
However, sequential effects may exist only if the current decreases suffi-
ciently rapidly, so that the trajectory is still significantly dependent on the
state at the previous decision. This justifies the choice of exponential
decrease of the inhibitory current (Eq. 7) and the numerical value of
Tep = 200 ms. We note that recording from relay neurons, Sommer and
Wurtz (2002) show that the signal corresponding to the CD last several
hundreds of milliseconds. This time scale falls precisely in the range of
values of the relaxation time constant of the model (Fig. 2B), and corre-
sponds to values for which, as we will see, the model shows sequential
effects.

Numerical simulations design and statistical tests

Numerical simulations. The simulation of sequential decision-making is
as follows: a stimulus with a randomly chosen coherence is presented
until the network reaches a decision (decision threshold crossed). The
decision is immediately followed by the removal of the stimulus, and a
relaxation period during the RSI. Then a new stimulus is presented,
initiating the next trial (Fig. 2C). The set of dynamical equations (Egs. 1,
6), with the definitions (Egs. 2, 5, 7-9), is numerically integrated using
Euler—-Maruyama method with a time step of 0.5 ms. At the beginning of
asimulation, the system is set in a symmetric state S, = Sy = s, with low
firing rates and synaptic activities, s, = 0.1. We compute the instanta-
neous population firing rates, or the synaptic dynamical variables S; and
Sg» by averaging on a time window of 2 ms, slided with a time step of 1 ms.
The accuracy of the network’s performance is defined as the percentage
of trials for which the units crossing the threshold corresponds to the
stronger input. For data analysis we mainly work with the variables S,
and S, which are analog to the firing rates R; and Ry [because they are
monotonic functions of §; and S; (Wong and Wang, 2006) but are less
noisy; Fig. 3]. We consider that the system has made a decision when for
the first time the firing rate of one unit crosses a threshold 6, fixed at 20
Hz. The reaction time during one trial is defined as the time needed for
the network to reach the threshold from the onset of the input stimulus.
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is too weak and the network remains locked to the attractor corresponding to the previous decision state. On the right side the network dynamics lies

within the basin of attraction of the neutral attractor, allowing the network to engage in a new decision task.

We neglect the possible additional time because of motor reaction and
signal transduction. In addition to the reaction times, we compute the
discrimination threshold, which is linked to the accuracy. The definition is
based on the use of a Weibull function commonly used to fit the psycho-
metric curves (Quick, 1974). That is, one writes the performance (mean
success rate) as follows:

Perf(c) = 1 — 0.5 exp(— c/ @)*), (10)

where « and B are parameters. Then, for ¢ = «, Perf(c) =1— 0.5
exp(—1) ~ 0.82.

Hence one defines the discrimination threshold as the coherence level
at which the subject responds correctly 82% of the time.

We list in Table 1 the model parameters that correspond to the one of
the simulations. For Figures 5 and 7 we have used continuous sequences
of 1000 trials averaged over 24 independent simulations, allowing to
more specifically compare with the experiments of Bonaiuto et al. (2016)
done with 24 subjects. Figures 9 to 16 present results obtained for se-
quences of 1000 trials averaged over 50 independent simulations to allow
for a better statistical analysis. The number of sequences, 1000, is a typical

order of magnitude in experiments (Bonaiuto et al. 2016; Danielmeier
and Ullsperger, 2011).

Statistical tests. Following Benjamin et al. (2018), we consider a p value
0f 0.005 as a criterion for rejecting the null hypothesis in a statistical test.
To assess whether the distributions of two continuous variables are dif-
ferent, we make use of the Kolmogorov—Smirnov test (Hollander et al.,
2014), and in the case of discrete variable distributions we use the Ander-
son—Darling test (Shorack and Wellner, 2009). For very large samples, we
use the energy distance (Rizzo and Székely, 2016), which is a metric
distance between the distributions of random vectors. We use the asso-
ciated E-statistic (Szekely and Rizzo, 2013) for testing the null hypothesis
that two random variables X and Y have the same cumulative distribution
functions. For testing whether the means of two samples are different we
make use of the unequal variance test (Welch’s test; Hollander et al.,
2014).

Software and code accessibility. For the simulations we made use of the
Julia language (Bezanson et al., 2017). The code of the simulations can be
obtained from the corresponding author upon request. We made use of
the XPP software (Ermentrout and Mahajan, 2003) for the phase-space
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analysis and the computation of the relaxation time constant of the dy-
namical system. Figures 9, 10, 11, 12, and 19 were realized using Python
and the other are in the same language as the simulations. The E-statistics
tests were performed using the R-Package: energy package (Rizzo and
Székely, 2014).

Results

Sequential dynamics and choice repetition biases

The dynamical properties described above give that, for the ap-
propriate parameter regime, the RSI relaxation leads to a state
which is between the previous decision state and the neutral at-
tractor. If it is still within the basin of attraction of the previous
decision state at the onset of the next stimulus, one expects se-
quential biases. This mechanism is similar to the one discussed by
Bonaiuto et al. (2016). However, the relaxation mechanisms are
different, as discussed in the Introduction. This results in differ-
ent quantitative properties, notably and quite importantly in the
time scale of the relaxation, which is here more in agreement with
experimental findings (Cho et al., 2002).

We will specifically show that nonlinear dynamical effects are
at the core of post-error adjustments. As a preliminary step, it is
necessary to investigate the occurrence of sequential effects in our
model. We do so by describing more precisely the intertrial dy-
namics: we need to specify where the network state lies at the
onset of a new stimulus, with respect to the boundaries between
the basins of attraction. We take advantage of this analysis to
explore response repetition bias as studied by Bonaiuto et al.
(2016), and to confront the model behavior with other empirical
findings (Laming, 1979a; Cho etal., 2002). In all the following, we
study the model properties in function of the two parameters, the
amplitude of the corollary discharge, I-p, ;,..» and the duration of
the RSI.

Network behavior: reaction times biases

After running simulations of the network dynamics with the pro-
tocol of Figure 2C, we analyze the effects of response repetition by
separating the trials into two groups, the Repeated and Alternated
cases. The repeated (respectively alternated) trials are those for
which the decision is identical to (respectively, different from)
the decision at the previous trial. Note that we do not consider
whether the stimulus category is repeated or alternated: the anal-
ysis is based on whether the decision is identical or different
between two consecutive trials (Fleming et al., 2010; Padoa-
Schioppa, 2013). Such analysis is appropriate, because the effects

under consideration depend on the levels of activity specific to
the previous decision. We run a simulation of 1000 consecutive
trials, each of them with a coherence value randomly chosen
between 20 values in the range (—0.512, 0.512). We do so for two
values of the CD amplitude, Icp max = 0.035 nA and Icp .y =
0.08 nA, with a RSI of 1 s, the other parameters being given on
Table 1.

We find that the distribution of coherence values are identical
for the two groups, for both values of I, .., (Anderson—Darling
test, p = 0.75 and p = 0.84, respectively). We study the reaction
times separately for the two groups, and present the results in
Figure 5. In Figure 5C we represent the so called energy distance
(Szekely and Rizzo, 2013; Rizzo and Székely, 2016) between the
repeated and alternated reaction-time distribution. As we can
observe, the distance decreases, hence the sequential effect di-
minishes, as the CD amplitude I, ..., increases. For the specific
case of Figures 5, A and B, the corresponding E-statistic for testing
equal distributions leads to the conclusion that in the case I a0 =
0.035 nA, the two reaction-time distributions are different (p =
0.0019). This implies that the behavior of the network is influ-
enced by the previous trial. We observe a faster mean reaction
time (~55 ms) when the choice is repeated (Fig. 5A), with iden-
tical shape of the reaction times distributions. The difference in
means is of the same order as found by Cho et al. (2002) in
experiments on 2AFC tasks. On the contrary, for Icp ., = 0.08
nA (Fig. 5B), the two histograms cannot be distinguished (E-
statistic test, p = 0.25).

We have checked that increasing the RSI has a similar effect to
increasing the CD amplitude. We observe sequential effects for
RSI values in the range 0.5-5 s, in accordance with two-choice
decision-making experiments, where such effects are observed
for RSI <5 s (Rabbitt and Rodgers, 1977; Laming, 1979a; Soetens
et al., 1985).

Neural correlates: dynamic analysis

With the relaxation of the activities induced by the CD, the state
of the network at the onset of the next stimulus lies in-between
the attractor state corresponding to the previous decision, and
the neutral attractor state. When averaging separately over
repeated and alternated trials, we find, as detailed below, that this
relaxation dynamic has different behaviors depending on
whether the next decision is identical or different from the pre-
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vious one. Note that this is a statistical effect which can only be
seen by averaging over a very large number of trials.

In Figure 6 we compare two examples of network activity, one
with an alternated choice, and one with a repeated choice, by
plotting the dynamics during two consecutive trials. We observe
in Figure 6A, the alternated case, that previous to the onset of the
second stimulus (light blue rectangle) the activities of the two
populations are at very similar levels. In contrast, for the case of a
repeated choice, Figure 6C, the activities are well separated, with
higher firing rates.

In Figure 6B we give a classical phase-plane representation of
the network dynamics during two consecutive trials, with the
axes as the synaptic activities of the winning versus loosing neu-
ronal populations in the first trial. One sees a trajectory starting
from the neutral state, going to the vicinity of the attractor cor-
responding to the first decision, and then relaxing to the vicinity
of the neutral state (as illustrated in Fig. 4G). Then the trajectory
goes toward the attractor corresponding to the next decision,
different from the first one. This aspect of the dynamics is similar
to what is obtained by Gao et al. (2009) with another type of
attractor network. We show in Figure 6D the phase-plane dy-
namics in the case of a repeated choice (trajectory in blue). On
this same panel, for comparison we reproduce in light red the
dynamics, shown in Figure 6B, during the first trial in the alter-
nated case. As can be seen in Figure 6D, the network states at the
time of decision are different depending on whether the network
makes a decision identical to, or different from, the one made at
the previous trial.

To check the statistical significance of these observations, we
represent in Figure 7 the mean activities during the RSI, obtained

by averaging the dynamics over all trials, separately for the alter-
nated and repeated groups. As expected, for small values of
Icp max (0.035 nA), the two dynamics are clearly different. This
difference diminishes during relaxation. However at the onset of
the next stimulus we can still observe some residues, statistically
significant according to an Anderson—Darling test done on the
500 ms before the next stimulus (between winning population,
p = 0.0034, between losing population p = 3.2 X 10 ~®).

Looking at Figure 7A, we observe that the ending points of the
alternated and repeated relaxations are biased with respect to the
symmetric state. At the beginning of the next stimulus the net-
work is already in the basin of attraction of the repeated case.
Hence, it will be harder to reach the alternated attractor stated (in
the green region). When increasing Icp, .., (Fig. 7B), we observe
that the ending state of the relaxation is closer to the attractor
state. Hence, the biases in sequential effects disappear because at
the beginning of the next stimuli the network starts from the
symmetric (neutral) state. The same analysis holds for longer RS,
the dynamics are almost identical (Anderson—Darling test: be-
tween winning population, p = 0.25, between losing population
p = 0.4), and both relaxation end near the neutral attractor
state. The bias depending on the next stimulus is not observed
anymore, and the sequential effect on reaction time hence
disappears.

Note that the sequential effects only depend on whether or not
the states at the end of the relaxation lie on the basin boundary.
However, we have just seen that the effects can also be observed at
the level of the relaxation dynamics, because the trajectories for
alternated and repeated cases are identical when there is no effect,
and different in the case of sequential effects.
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The analysis of the dynamics also leads to expectations for
what concerns the bias in accuracy toward the previous decision.
Indeed, this can be deduced from Figure 7. If the choice at the
previous trial was R (respectively L), then, at the end of the relax-
ation, the network lies closer to the basin of attraction of attractor
R (respectively L). Thus when presenting the next stimulus, the
decision will be biased toward the previous state, so that the prob-
ability of making the same choice will be greater than the one of
making the opposite choice. Otherwise stated, given the stimulus
presented at the current trial, the probability to make the choice R
will be greater when the previous choice was also R, than when the
previous choice was L. Numerical simulations confirm this anal-
ysis, as illustrated on Figure 8. The RSI dependency is statistically
significant (generalized linear model: r = —3.9, p < 0.0001). For

small RSI (500 ms), the decision is biased toward the previous
one, and for RSI of several seconds this effect disappears. These
results are in agreement with experimental findings of Bonaiuto
et al. (2016). The authors studied response repetition biases in
human with RSIs of at least 1.5 s. In these experiments, they
measure the Left—Right indecision point, that is the level of co-
herence resulting in chance selection. Compared with the re-
peated case, they find that the indecision point for the alternated
case is at a higher coherence level, and this shift decreases as the
RSI increases.

Sequential decision effects have also been analyzed within the
drift-diffusion model (DDM) framework (Farrell and Ludwig,
2008; Goldfarb et al., 2012). Behavioral data can be fitted by
different choices of starting points, and possibly of thresholds



842 - J. Neurosci., January 30,2019 - 39(5):833—853

A

0.1

0.09

e
1=
»

0.071

Corollary discharge (nA)

16 18

Coherence level (‘%)

Figure 9.

Berlemont and Nadal e Attractor Dynamics Explains Post-Error Adjustments

2 0 5 10 15 20
7 Coherence level (%)

PES (ms)

20

5 10
Coherence level (%)

PES in the simulated network at a RSI of 500 ms. A, Phase diagram of the PES effect at RSI of 500 ms. The hottom white zone corresponds to parameters where sequential

decision-making is impossible as the network is unable to leave the attractor state during the RSI. The red square corresponds to regions where PES is observed, and the blue ones where PEQ is
observed (the darker the color, the stronger the effect). The black dashed squares correspond to specific regions where B and € zoom. B, PES effect (ms) with respect to the coherence level at

/CD,max
0.035 nA. The light blue zone corresponds to the bootstrapped confidence interval at 95%.

(Goldfarb et al., 2012). The modification of the starting pointin a
DDM framework is analog to the effect of the relaxation in our
model. However, most works based on DDM make a post hoc
analysis of empirical data, with separate fits for alternated and
repeated cases.

To conclude this section, at the time of decision, the winning
population has a firing rate higher than the losing population.
After relaxation, at the onset of the next stimulus, the two neural
pools have more similar activities, but are still sufficiently differ-
ent, thatis the dynamics is still significantly away from the neutral
attractor. At the onset of the next stimulus, the systems finds itself
in the basin of attraction of the attractor associated to the same
decision as the previous one. This results in a dynamical bias in
favor of the previous decision. The probability to make the same
choice as the previous one is then larger than the one of the other
choice, and the reaction time, for making the same choice (re-
peated case), is shorter than for making the opposite choice (al-
ternated case). In accordance with these results, studies on the
LIP, SC, and basal ganglia have found that the baseline activities
before the onset of the stimuli can reflect the probabilities of
making the saccade, under specific conditions (Lauwereyns et al.,
2002; Ding and Hikosaka, 2006; Rao et al., 2012). Our model
shows that these modulations of the baseline activities can be
understood as resulting from the across-trial dynamics of the
decision process.

Post-error effects

Post-error adjustments on reaction times

The most interesting and well established effect is the one of PES
(Laming, 1979a; for review, see Danielmeier and Ullsperger,
2011). It consists of prolonged reaction times in trials following
an error, compared with reaction times following a correct trial.

= 0.047 nA. The light blue zone corresponds to the bootstrapped (Efron and Tibshirani, 1994) confidence interval at 95%. C, PES effect (ms) with respect to the coherence level at /¢p, o, =

This effect has been observed in a variety of tasks: categorization
(Jentzsch and Dudschig, 2009), flanker (Debener et al., 2005),
and Stroop (Gehring and Fencsik, 2001) tasks. Jentzsch and Dud-
schig (2009) and Danielmeier and Ullsperger (2011) found that
the PES effect depends on the RSI. The amplitude of this effect,
defined as the difference between the mean reaction times of
post-error and post-correct trials, decreases as one increases the
RSI, with values going from several dozens of milliseconds to
zero. For RSIs >750-1500 ms, PES is not observed anymore.
Remarkably, the PES effect is reported in cases where the subject
does not receive information on the correctness of the decision
(Jentzsch and Dudschig, 2009; Danielmeier and Ullsperger, 2011;
Danielmeier et al., 2011). Moreover, this effect is automatic and
involuntary (Rabbitt, 2002), and is independent of error detec-
tion and the correction process, which involve other cortical ar-
eas (Rodriguez-Fornells et al., 2002). This suggests a rather low
level processing origin in line with the present model.

In this section we investigate the occurrence of post-error
adjustments in our model. We confront the results to empirical
findings from various behavioral experiments with TAFC (and
marginally also 4-AFC) protocols in which, as it is also the case in
our model, there is no feedback on the correctness of the decision.
We will notably discuss the model predictions comparing the
results with those of Danielmeier and Ullsperger (2011) who
studied the dependence of PES with respect to the RSI, as well as
the relation between PES and PIA.

We studied the occurrence of the PES effect in the model with
respect to the coherence level and I, .., at an intermediate RSI
value of 500 ms, leading to the phase diagram in Figure 9A. We
find alarge domain in parameter space showing PES effect (Fig. 9,
red). Figure 9B zooms on a value of I, ..., for which PES occurs
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(Icp.max = 0.035 nA). We observe that the magnitude of the PES
effect goes from 0 to 10 ms at ¢ = 10%, hence remaining within
the range of behavioral data (Jentzsch and Dudschig, 2009; Dan-
ielmeier and Ullsperger, 2011; 10—15 ms for a RSI of 0.5-1 s). In
these experiments (a flanker task with stimuli belonging to 1 of 2
opposite categories, Left or Right directions), the ambiguity level
is not quantified. However, the observed error rates are found
~10%, which, within our model, corresponds to a coherence
level of about ¢ = 10%. On the phase diagram, one can observe
the variation of the PES effect with respect to the coherence level.
In the region where we observe a PES effect, we find that it is
enhanced under conditions when errors are infrequent. How-
ever, for large values of the coherence level, this effect cannot be
observed anymore because of the absence of any error in the
successive trials (~100% of correct trials). This occurrence of
PES, principally at low error rates, has been found in experiments
of Notebaert et al. (2009); Nufiez Castellar et al. (2010), for which
the authors observe PES when errors are infrequent, but not
when errors are frequent. Note that these experiments are with
4-AFC tasks, but we expect the same type of properties as for
TAFC tasks, and the model could easily be adapted to such cases
with a neural pool specific to each one of the four categories.

The phase diagram, Figure 94, also shows parameter values
with no effect at all (gray), and a domain with the opposite effect,
that is with reaction times faster after an error than after a correct
trial (blue). We propose to call this effect post-error quickening
(PEQ), as opposed to PES. As shown in Figure 9C, we find that,
for a given value of Ip, ..., one can have PES at low coherence
level, and PEQ at high coherence level.

This PEQ effect, although much less studied, has been ob-
served in various AFC experiments, either without feedback
(Rabbitt and Rodgers, 1977; Notebaert et al., 2009; King et al.,
2010) or with feedback (Purcell and Kiani, 2016), notably for
fast-response regimes (Notebaert et al., 2009; King et al., 2010).
The conditions for observing PEQ remain however not well es-
tablished, with some contradictory results. We note that with
go/no-go protocols (which are similar to AFC protocols in many
respects), Hester et al. (2005) report post-error decrease in reac-
tion times for aware errors, but not for unaware errors, whereas

|12
. PES (ms)

Post-error slowing depending on RSI. A, Phase diagram of the PES effect at /¢y, ., = 0.045 nA. The red square
corresponds to regions where PES is observed, and the blue ones where PEQ is observed (the darker the color, the stronger the
effect). We used a bootstrapped confidence interval to decide whether or not PES/PEQ is observed.
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Cohen et al. (2009) on the contrary re-
ports no PEQ effect, but alarger PES effect
for aware errors than for unaware errors.
The fact that the model predicts PEQ in
TAFC tasks at high coherence levels is
more in line with the results of the fMRI
experiments of Hester et al. (2005). In-
deed, at high coherence levels, responses
are fast and most often correct. In the rare
0 case of an error, the subject is likely to

become aware that an error has been
~4 PEQ (ms) made (Yeung and Summerfield, 2012).
-8 This thus may lead to a correlation (with-
out causal links) between aware errors
and PEQ.

We also studied the RSI dependency of
the PES effects by plotting the phase dia-
gramatIcp . = 0.045 nA with respect to
the RSI (Fig. 10). In behavioral experi-
ments the PES effect depends strongly on
the RSI. For RSIs >1000-1500 ms the ob-
servation or not of PES depends specifi-
cally on the decision task (Jentzsch and
Dudschig, 2009; King et al., 2010). How-
ever, a common observation is that, whenever PES is observed, if
one keeps increasing the RSI, the PES effect eventually disap-
pears. In Figure 10, we observe that, for parameters where PES is
observed at a RSI of 500 ms, increasing the RSI leads to the weak-
ening of the PES effect until its disappearance. At a RSI of 1000—
1500 ms this effect is not present anymore, in agreement with
experimental results (Jentzsch and Dudschig, 2009).

The variation of PEQ with respect to RSI has not been exper-
imentally studied, as this effect is more controversial. However,
our model shows that the dependence on RSI is similar to the one
of PES, and predicts that when both effects exists at a same RSI
value (for different coherence levels), increasing the RSI leads to
the disappearance of both of them.

We note here that the set of phase diagrams that we present in
this work on the various effects, Figures 9—12, provide testable
behavioral predictions. As just discussed in the particular case of
PES and PEQ, they predict how the effects on reaction times are
or are not correlated, and in particular how they qualitatively
depend on, and covary with, the coherence level or the duration
of the RSI.

4

Post-error improvement in accuracy

PIA isanother sequential effect reported in experiments (Laming,
1979a; Marco-Pallarés et al., 2008; Danielmeier and Ullsperger,
2011). PIA has been observed on different time-scales: long-term
learning effects following error (Hester et al., 2005) and trial-to-
trial adjustments directly after commission of error responses.
We only consider this latter type of PIA. The specific conditions
under which PIA can be observed in behavioral experiments have
not been totally understood. We investigate this effect in the spe-
cific context of our model, considering that the strength of the
effect is linked to the difference in error rates between post-error
and post-correct trials.

In Figure 11 we represent the phase diagram of the PIA effect
with respect to coherence levels (x-axis) and corollary discharge
amplitude (y-axis). We denote a large region of parameters for
which PIA is present. We find a magnitude of the PIA effect of
~2—4%, which is of the same order of magnitude as in the exper-
iments where, for RSIs in the range 500—1000 ms, it is found that
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post-error accuracy is improved by ~3% (Jentzsch and Dud-
schig, 2009).

Looking at Figure 11, one sees that the PIA and PES effects
append in the same region of parameters. However, if we
zoom in on specific regions (Fig. 11 B, C), we can notice some
differences in the variation of these effects. The black dashed
rectangular regions correspond to the same parameters as in
Figure 9. We first note that PIA is also observed in these re-
gions. However, we observe a decrease of PES at very large
coherence (Fig. 9B), but not of PIA (Fig. 11B). Moreover the
decrease of the PIA effect in Figure 9C does not occur at the
same values of parameters as for the PES one. It would be
tempting to interpret PIA as a better accuracy resulting from
taking more time for making the decision. This is not the case,
because PIA does not appear uniquely in the PES region, but in
the PEQ one too. In agreement with these model predictions,
Danielmeier et al. (2011), in a TAFC task with color-based
categories, observe that PIA can occur in the absence of PES,
but that the occurrence of PES is always associated with PIA
(except for 1 subject among 20, results reported by Dan-
ielmeier and Ullsperger, 2011), their Fig. 1).

In EEG experiments, Marco-Pallarés et al. (2008) find that
time courses of PES and PIA seem to be dissociable as they ob-
serve post-error improvements in accuracy with longer intertrial
intervals (up to 2250 ms) than PES. We note that these authors
consider protocols with and without stop-signals, and here we are
only concerned by those without. We investigate the variation
with respect to the RSI of PIA in our model (Fig. 12). We note
that, for long RSIs, the PIA effect is not observed anymore. How-
ever as observed by Marco-Pallarés et al. (2008), the PIA effect
occurs for longer RSIs than the PES effect (Fig. 11A). In the same
way, PIA is more robust with respect to the intensity of the cor-
ollary discharge. This is corroborated by Figure 13, A and B,

D,max —

which represents PES and PIA effect for a larger relaxation time,
Tep = 500 ms, hence with a stronger CD. We note that all the
regimes previously observed are present, for slightly different pa-
rameter ranges. This shows that the global picture illustrated by
the phase diagrams, Figures 9 and 11, is not specific to a narrow
range of Icp ,q, and 7cp, values.

Verguts et al. (2011) find that PIA and PES seem to happen
independently, suggesting that at least two post-error processes
takes place in parallel. An important outcome of our analysis is to
show that PIA and PES effects can both result from the same
underlying dynamics. In addition, in the parameters domain
where they both occur, we find that the variations of these effects
with respect to the coherence levels are indeed uncorrelated
(Pearson correlation test: RSI of 500 ms and I ., = 0.035 nA, p =
0.58, I, = 0.05,p = 0.79and I, = 0.1 nA, p = 0.25; RSI 0f 2000
ms and I, = 0.035 nA, p = 0.37). This non-correlation high-
lights the complexity of such post-error adjustments, as explored
by Verguts et al. (2011).

To gain more insights into the PIA effect, we study the dis-
crimination threshold following an error or a success, with re-
spect to the RSI (Fig. 12B-D). In Figure 12B we represent the
distribution of the discrimination threshold for I ., = 0.035
nA and a RSI of 500 ms. For these parameters, the distributions
for the post-error and post-success cases are highly different
(Smirnov—Kolmogorov test: p < 10 >°). If one increases the
RSI (Fig. 12C, 1000 ms, D, 1500 ms), this difference disappears
(Smirnov—Kolmogorov test: p = 0.038 and p = 0.4, respectively).
However, we note that the model predicts a wider distribution of
the discrimination threshold after an error than after a correct
trial, independently of the presence of the PIA effect. This might
result from the wider distribution in the neural (or synaptic)
activities after an error that we discuss n the next section. To
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our knowledge, this effect has not been studied in behavioral
experiments.

Dynamical analysis

In this section we analyze the PES and PEQ effects in terms of
neural dynamics. First of all, we represent and discuss the dynam-
ics on individual trials for the three regions of parameters: with
neither PES nor PEQ effects, with PES effect, and with PEQ effect
(Fig. 14). We observe the dynamics for post-error and post-
correct trials during the relaxation period following a decision
and during the presentation of the next stimulus. Already on
individual trials we notice differences between the regions. Figure
14A represents a trial in the region without PES or PEQ. The
post-error/correct dynamics are indistinguishable. Hence we do
not observe any differences in the reaction times. Looking at a
trial in the PEQ region (Fig. 14B), we notice that the population L
(the winning one for the second stimulus) for the post-error case
seems a bit higher in activity than for the post-correct case. This
leads to the post-error quickening effect, as the post-error (or-
ange) curve will reach the threshold sooner than the post-correct
(blue) one. Finally, Figure 14C represents individual trials for
parameters in the PES region. In the phase diagram (Fig. 9) the
effect was more pronounced than PEQ, thus it is more pro-
nounced on the dynamics too. During the relaxation, and the
presentation of the next stimulus, the post-correct dynamics
(blue curve) for population L (the winning one for the second
stimulus) is higher than the post-error one. As we can observe
this leads to a faster decision time for the post-correct trial than
for the post-error one.

We show now that the dynamics explains the three effects PES,
PEQ and PIA. We provide in Figures 16—18 a semiqualitative and
semiquantitative analysis of the dynamics of the synaptic activi-
ties in the phase plane of the system, for several parameter re-
gimes. Here again, the analysis is easier working on the synaptic
activities. This can be seen by considering Figure 15 on which we
represent the mean firing rate and synaptic activity of the winning
population in the PES case. Because of the range of variation of
the firing rates, and the intrinsic noise of the system, it is hard to
observe a difference between the neural activities. However, if we

compute this difference (Fig. 15, inset) we note the following. At
the beginning of the next trial, the difference between the post-
error and post-correct firing rates is significantly below zero,
hence the reaction time will be shorter for post-correct than for
post-error trials. We find the same behavior for the synaptic ac-
tivities (Fig. 15B), but much less noisy, as expected from the
discussion in Materials and Methods.

PES effect

We now detail the analysis of the PES effect (and of the concom-
itant PIA effect) based on Figure 16. Let us first explain how each
panel is done. Without loss of generality, we assume that the last
decision made is R. Repeated and Alternated cases thus corre-
spond to next trial decisions R and L, respectively. The x- and
y-axes are the synaptic activities S; and Sy, respectively; hence, the
losing and winning populations for the first trial.

On the left, we represent with dashed lines the average dynam-
ics during the relaxation period, that is from the decision time for
the previous stimulus to the onset of the next stimulus. This
allows to identify clearly the typical neural states at the end of the
relaxation period. The average is done over post-error (respec-
tively, post-correct) trajectories sharing a same state at the time of
the last decision. The choice of these two initial states is based on
the following remark. A typical trial with a correct decision will
lead, at the time of decision, to losing and winning populations
with highly different activity rates, hence a neural activity, and
thus a synaptic activity S;, far from the threshold value. On the
contrary, a typical error trial will show a losing activity not far
from the threshold; this can also be observed in the study by-
Wong et al. (2007, their Fig. 4B). We can thus represent post-
correct trials, respectively post-error trials, by dynamics with
initial states having a rather small, respectively large, value of S;
(and in both cases the first trial winning population Sy, at thresh-
old value).

We then represent with a continuous line the average trajec-
tory following the onset of the next stimulus. We observe this
dynamics during the same time for post-error and post-
correct cases, as if there were no decision threshold, to com-
pare the dynamics of post-error and post-correct cases for the
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Figure 16.  Analysis of the post-error trajectories for the PES regime. Phase-plane trajectories (in log-log plot, for ease of viewing) of the post-correct and post-error trials. We consider that the
previous decision was decision R. The black filled circle shows the neutral attractor state (during the relaxation period). During the presentation of the next stimulus, the attractors and basins of
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one for post-error. A, Average dynamics; B, single trajectories during the next trial. ¢, D, Regime with PES and PIA in the alternated case (c = —10% and /gy, ., = 0.035 nA). The dynamics after
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same duration of time. Decision actually occurs when the tra-
jectory crosses the decision line (dashed gray line); this is
approximate: because of the noise, there is no one to one
correspondence between a neural activity reaching the deci-
sion threshold and a particular value of the associated synaptic
activity. Having all the trajectories plotted for the same dura-

tion (and not only until the decision time) allows to visually
compare the associated reaction times.

On the right, we represent typical trajectories during the pre-
sentation of the next stimulus. The black dot on every panel gives
the location of the neutral attractor that exists during the relax-
ation dynamics. The basins of attractions that are represented are



848 - J. Neurosci., January 30,2019 - 39(5):833—853

Berlemont and Nadal e Attractor Dynamics Explains Post-Error Adjustments

A Mean Activities Single Activities
-0.51 - .
Coherence level : 20 % Decision R z Decision R
T ""'H‘“"")*‘""'“'"';' :
Icp,max = 0.047 nA  -1.0f oo S P
S * \' v
= T Kl
4 & K4 -
2o K4 =
@ o :
~ 20 e :
' 4 :
o ’ =
~ D L
25 ’ eCls:lon
-2.5 -2.0 -1.5 -1.0
log(SL)
C Mean Activities
Decision R "
Coherence level : -20 % v Hren ,)”' /'k' L;N Eian
- -, ¢ Y = i
16D maz = 0.047 nA s R \‘\ - Decision L
R s . )
= R . 'y’ =
R <
5 \ :
ot :
-2.0 E
[ ) =
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5
log(SL) log(St)
== = Mean Post-correct relaxation ¥ Ending point of post-error's relaxation 1ina Approximate decision line
=== = Mean Post-error relaxation X Ending point of post-correct's relaxation BII]  Invariant manifold for stimulus L

@ Neutral attractor

=== Mean post-correct decision

=== Mean post-error decision

== 1 == 1m0 [nvariant manifold for stimulus R

Basin of attraction for the current trial

Figure 17.

Analysis of the post-error trajectories in the PEQ regime. Phase-plane trajectories (in log-log plot, for ease of viewing) of the post-correct and post-error trials (same as Fig. 16 in the
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relaxation already lies within the alternated basin of attraction. For alternated trials, the dynamics needs to cross the invariant manifold (green dashed line), which denotes the boundary between
the basins of attraction. The dynamics is followed during 400 ms for repeated and 800 ms for alternated case, as if there were no decision threshold. The actual decision occurs at the crossing of the

dashed gray line, indicating the threshold.

the ones associated with the attractors, L and R, of the dynamics
induced by the onset of the next stimulus. Be reminded that these
attractors are different from the ones associated to the dynamics
during the relaxation period.

We can now analyze the dynamics. In the repeated case (Fig.
16 A, B), at the end of the relaxation (that is at the onset of the next
stimulus), both post-correct and post-error trials lie into the cor-
rect basin of attraction. Hence, the error rates for these trials are
similar. However, the neural states reached at the end of the
relaxations are different. Compared with the post-error trial, the
post-correct state is closer to the boundary of the new attractor
associated to decision R, and the corresponding decision will thus
be faster. In the alternate case (Fig. 16C,D), the states reached at
the end of the relaxation period do not lie within the correct basin
of attraction. During the decision-making dynamics, the trajec-
tory needs to cross the boundary between the two basins of at-
traction. The post-correct trials leading to an alternate decision
have rather straight dynamics across the boundary, leading to
relatively fast decision times. In contrast, the states at the onset of
the stimulus of the post-error trials are closer to the boundary so
that the corresponding trajectories cross with a smaller angle with
respect to the basin boundary. This leads to longer reaction times,
hence the PES effect. It would be interesting to have electrophys-
iological data with which the model predictions could be directly
compared. However, in a typical experiment on monkeys, a feed-

back on the correctness of the decision is given, because the ani-
mal learns the task thanks to a reward-based protocol.
Nevertheless, we note that, in the random-dot experiments on
monkeys by Purcell and Kiani (2016), the authors find a higher
buildup rate of the neural activity for post-correct trials than for
post-error trials (Purcell and Kiani (2016), their Fig. 6). Within
our framework, this can be understood as trajectories that cross
the basin boundary more quickly for post-correct trials, in accor-
dance with our model’s predictions. This suggests that the ob-
served difference in buildup rates may not result from some
mechanism making use of the information on the correctness of
the decision, but rather from the nonlinear dynamics discussed
here.

The PIA is understood from the same analysis as for the PES
effect. For specific realizations of the noise that lead to error trials,
the post-error trials dynamics is closer to the boundary. Thus it
has a higher probability to fall on the other side of the basin of
attraction. Hence, the error rates are lower for post-error trials
than post-correct trials.

PEQ effect

The PEQ effect can be understood from the same kind of analysis,
based here on Figure 17 (analogous for the PEQ effect to Fig. 16
for the PES effect). As seen previously, the PEQ effect occurs
mostly at high level of coherence. We consider first the repeated
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Analysis of the post-error trajectories in the regime with neither PES nor PEQ effect Phase-plane trajectories (in log-log plot, for ease of viewing) of the post-correct and post-error trials.

We consider that the previous decision was decision R. The black filled circle shows the neutral attractor state (during the relaxation period). During the presentation of the next stimulus, the
attractors and basins of attraction change (gray area and the green dashed lines). A, (mean dynamics) and B (single dynamics), Regime without PES or PIA (c = *2%and /¢y ., = 0.035 nA). We
show both the alternated and the repeated case, with the corresponding basins of attraction. The blue color codes for post-correct trials, and the red one for post-error. For alternated trials, the
dynamics needs to cross the invariant manifold (green dashed line), which denotes the boundary between the basins of attraction. € (mean dynamics) and D (single dynamics), Regime with PIA but
without PES (c = +20% and /¢y, ., = 0.035 nA). The dynamics is followed during 400 ms for repeated and 800 ms for alternated case, as if there were no decision threshold. The actual decision

occurs at the crossing of the dashed gray line, indicating the threshold.

case (Fig. 17 A, B). Because the coherence level is high, at the end
of the relaxation period, both post-correct and post-error trials
lie within the correct basin of attraction, far from the basin
boundary. The reaction times and error rates of post-correct and
post-error trials for repeated decisions are thus similar.

In contrast, the alternated case (Fig. 17C,D) exhibits both the PIA
and the PEQ effects. The post-error’s end of relaxation now is inside
the basin of attraction of the alternated choice. Hence, the error rate
will be lower than when the ending point is outside this region (post-
correct trials begin at the boundary of the basin of attraction). More-
over, the post-correct trials dynamics have to cross the boundary.
Hence they are closer to the manifold, which lead to slower dynam-
ics, whereas the post-error dynamics can directly reach the new at-
tractor state. This analysis explains why the decreasing of PES and
PIA do not occur at the same coherence level too. Indeed the de-
creasing of PIA occurs when the ending point of the post-error re-
laxation crosses the boundary, whereas the post-correct ending
point remains into the same basin of attraction. For the PES effect to
decrease, the dynamics for both cases just need to be closer to the
boundary and not necessarily on the opposite side. Hence the de-
crease of the PES effect occurs at lower coherence than the PIA one.

Here we have seen that the occurrence of the PEQ effect de-
pends on some very specific and fragile feature, the crossing or
not of a basin boundary. The conditions for observing the effect
are thus likely to vary from individual to individual, and from
experiment to experiment. This may explain why the experimen-
tal results about the PEQ effect remain controversial.

In Figure 18, A and B, we investigate the parameter regime, at
low coherence level, for which there is no effect; neither PES, nor
PEQ or PIA. The post-error and post-correct dynamics are very
similar and lead to the same relaxation ending point, far from the
basin boundary. Finally, in Figure 18, C and D, we consider the
parameter regime, at high coherence level, with only the PIA
effect. Here the relaxations of post-error and post-correct trials
are different. However, as for the PEQ effect, at high coherence
level both dynamics will be fast. For alternated trials, none of the
two ending points are in the correct basin of attraction.

As discussed for the PES effect, electrophysiological data only
exist for experiments with feedback on the correctness of the deci-
sion. In experiments on monkeys, Purcell and Kiani (2016) obtain
puzzling results for what concerns the PEQ effect. They observe an
important difference in baseline activities for post-correct and post-
error trials, which is not well accounted for either by their DDM
analysis or by our model. However, in terms of neural dynamics, this
observed difference in the level of neural activities obviously implies
that the dynamical states are different at the time of the onset of the
stimulus, a fact in agreement with our model’s predictions. One may
wonder if the separation in baseline activities, and not just in starting
points, could be a consequence of the feedback.

Correlating post-error effects with the activity distributions at the
previous decision

To go beyond the above analysis on the post-error adjustments
(PES, PEQ, and PIA effects), we analyze the respective influence
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of the winning and losing population lev-
els of activity at the time of the previous
decision, onto the decision at the next 40
trial. This will first confirm the previous
analysis, butalso provide more insights on
the specificity of the two opposite effects,
PES and PEQ.

The mean activity, at the time of the -20
decision, of the winning population is
indistinguishable between post-correct C

and post-error trials [unequal variance
(Welch) test: fail to reject, p = 0.16 at RSI
of 500 ms; fail to reject, p = 0.87 at RSI of
2000 ms]. However, for short RSIs (corre-
sponding to PES regime) the mean synap-
tic activities, at the time of the decision, of -10
the losing population are different for 20
post-correct and post-error trials are dif-
ferent for post-correct and post-error tri-
als [unequal variance (Welch) test: reject,
p = 2.7 X 10 7% at RSI of 500 ms; fail to
reject, p = 0.57 at RSI of 2000 ms].

To gain more insight, we plot in Figure
19 the amplitude of the PES effect with
respect to the interpercentile range of the distribution of the syn-
aptic activities of the winning and losing populations at the time
of the previous decision. We note that when PES occurs, the
higher the activity of the losing population at the time of decision,
the stronger this effect will be. The influence of the winning pop-
ulation is observed, although in an opposite way. When PES oc-
curs these effects are correlated (dark blue: Pearson correlation:
r=—0.98, p = 2.6 X 10 ~7; medium blue: r = —0.98 and p =
9.5 X 1077), in the sense that the variations with respect to the
interpercentile of the winning and losing population are corre-
lated. These observations are consistent with the analysis of the
PES phase-plane trajectories. Indeed, the higher the losing pop-
ulation activity is, the closer to the invariant manifold the state at
the end of the relaxation period will be. Hence, the effect will be
stronger as it becomes easier (more likely) to cross the boundary.

However, we observe in Figure 19, A and C, a different behav-
ior for the PEQ effect: there is an almost constant value of the
PEQ effect with respect to the interpercentiles of the distributions
of the winning and losing populations activities. This is explained
by the fact that, at the end of the relaxation, if the category of the
next stimulus is the opposite of the previous decision, the net-
work state finds itself within the (correct) associated basin of
attraction, but very close to the boundary. This is true whatever
the correctness of the previous decision. However, the post-
correct case will lead to an even closer location from the basin
boundary. The nonlinearity of the dynamics near the basin
boundary will strongly amplify the small difference between
post-correct and post-error ending point. The PEQ effect will
thus not be correlated with the size of this difference.

For what concerns the PIA effect, we observe in Figure 19, C
and D, a similar dependency in the synaptic activities as for the
PES effect, with a stronger effect for high activities of the losing
population. This corroborates the above phase plane analysis of
the trajectories (Fig. 13). Indeed, the PES and PIA effects both
depend on the position of the relaxation in the phase plane. Being
closer to the boundary (high activity of the losing population)
leads to a smaller error rate in the next trial.

From the above analysis, a prediction of the model is that, when-
ever there are PES or PIA effects, the mean activity of the losing

Figure 19.
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Influence of the losing and winning population on the post-error adjustments. 4, B, Respectively, the reaction time
(PES effect) and accuracy (PIA effect) with respect to the interpercentile range of the losing population synaptic activity distribu-
tion, at a RSl of 500 ms. The red curve corresponds to ¢ = 18 and /gy, ., = 0.047, where we observe PEQ. Dark blue corresponds
to strong PES effect (¢ = 10, /¢ yax = 0.035), medium blue to medium PES effect (¢ = 5, /¢y, ., = 0.05). Light blue corresponds
= 0.035), fora RSl of 2 5. C, D, The same curves for the winning population, with the same color
code. The shadow area represents the 95% bootstrapped confidence intervals of the corresponding effect.

population is different for correct and error decisions. Moreover,
this level of activity is correlated with the amplitude of the post-error
adjustment effect. This can be seen in Figure 19, A and B. In this
figure we present the quantiles of the synaptic activities. The results
would be similar, but much more noisy, for the firing rates. We
expect that this prediction can be tested in experiments by measur-
ing the correlation between the amplitude of the PES (or PIA) effect,
and the difference in mean activities of the losing neural population
(difference between post-error and post-correct trials).

Discussion

We have shown that, without fine tuning of parameters, an attractor
neural network accounts, qualitatively and with the correct orders of
magnitude, for sequential effects and post-error adjustments re-
ported in TAFC experiments in the absence of feedback about the
correctness of the decision.

We provide evidence that these effects all result from the same
intrinsic properties of the nonlinear neural dynamics. We present in
Figure 20 a schematic diagram of the occurrence of the effects de-
pending on the parameters, even though this does not exhaust the
richness of the systems behavior as discussed in this paper. Our re-
sults suggest to test experimentally this general picture, and more
precisely what is predicted by the phase diagrams, Figures
9—12. In particular it would be interesting to test the occurrence
of post-error quickening at large coherence level or the variations
of post-error adjustments with respect to coherence levels.

Explanations for PES
Several cognitive explanations of PES effects have been proposed
(Rabbitt and Rodgers, 1977; Laming, 1979b; Notebaert et al., 2009).
In particular, these effects have been discussed in the frame-
work of DDMs (Dutilh et al., 2012; Goldfarb et al., 2012; Purcell
and Kiani, 2016). Dutilh et al. (2012), in experiments without
feedback about the correctness of the decision, and Purcell and
Kiani (2016), but in experiments with feedback, show that post-
error and post-correct trials can be fitted by DDMs with different
sets of parameter values for post-error and post-correct trials. In
addition, Dutilh et al. (2012) argue that the modification of the
decision threshold within the DDM framework, would corre-
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Figure 20.  Schematic diagram of the post-error adjustments observations. The x-axis rep-
resents the distance between the ending state of the relaxations and the boundary of the
following basins of attraction. It goes from “the ending states are far away from the boundary”
to “both ending states are in correct basin of attraction”. The y-axis corresponds to the distance
between the post-error and post-correct relaxations. The crosses denote regions that are not
relevant, or inside which the network do not commit errors.

spond to the hypothesis of increased response caution, the deci-
sion becoming more cautious after an error. Yet, the neural
correlates, which would determine the threshold or the starting
point remain obscure, especially in the absence of feedback on the
correctness of the trial.

Within the attractor network framework considered here, the
PES and PEQ effects are explained thanks to an in-depth analysis of
the neural dynamics. We have shown that the location of the dynam-
ical state at the end of the relaxation period (end of the RSI), with
respect to the basins of attraction of the attractors induced by the
next stimulus, depends on what occurred at the previous trial. The
fact that we have different properties, e.g., for post-correct and post-
error trials, for a same set of parameter values, is a result of the
nonlinear dynamics which amplifies the difference in ending points
of the relaxation. This cannot be obtained within the DDM frame-
work (without the addition of other mechanisms) because, in a
DDM, the state reached at the time of a decision is identical for an
error and a correct trial. An additional outcome of the analysis is that,
for a given set of parameter values, different regimes (PES, PEQ, or
no effect) may be observed depending on the coherence level of the
stimulus: because of the nonlinearities, the dynamical state at the end
of the RSI also depends on the coherence level.

Typical experiments on monkeys make use of reward-based pro-
tocols, hence with feedback. This makes difficult to have electro-
physiological data in the absence of feedback. Yet, as discussed in this
paper, the faster buildup of neural activity in post-correct trials than
in post-error trials, as observed by Purcell and Kiani (2016) on mon-
keys in random-dot experiments, can be understood within our
framework as a faster dynamics near the boundary between attrac-
tion basins in the post-correct case.

As discussed above, another prediction of the model is that, in the
case of PES or PIA, the mean activity of the losing neural population
is different for correct and error decisions, a difference which should
correlate with the amplitude of the effect.
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First- and higher-order sequential effects

Sequential effects can be categorized as first order (if caused by the
immediately previous trial), or higher order (if caused by earlier
trials in the sequence; Laming, 1979a; Soetens et al., 1984, 1985; Cho
et al., 2002). Post-error adjustments have also been experimentally
observed at higher order (Laming, 1979a).

Within the framework of attractor networks, the sequential ef-
fects in choice repetitions are explained by a starting bias, as dis-
cussed by Gao et al. (2009) and Bonaiuto et al. (2016), and in the
present paper. As stated by Gao et al. (2009), without any additional
memory module, an attractor network cannot reproduce the tran-
sition between automatic facilitation and strategic expectancy (Lam-
ing, 1968). In our network, for too short RSIs (a few dozens of
milliseconds) the sequential effects are too strong to be plausible.
Decision conflict mechanisms (Jones et al., 2002) could be imple-
mented to correct this effect and to investigate other effects of repe-
titions and alternations (Gao et al., 2009).

To account for higher-order effects, Gao et al. (2009) considered
a dynamical network making use of additional memory modules.
This network is explicitly set up to reproduce automatic facilitation
and strategic expectancy effects. In this model, even the first-order
effects result from a coupling between a short-term memory module
and the decision network. In contrast, we have shown here that a
single attractor network, without memory units, presents first-order
effects as an intrinsic property of the dynamics.

However, because of the nature of the dynamics in our model,
we do not expect to reproduce higher-order effects. Indeed, for pa-
rameters for which the model exhibits first-order sequential effects
(Icp.max = 0.035 nA), we find neither second-order sequential ef-
fects, nor post-error adjustments, as illustrated in Figure 13C and D.

One may ask whether a more complex architecture, taking
into account other brain areas, could account for higher-order
repetition biases and post-error adjustments effects as resulting
from some intrinsic properties of the dynamics, in the absence of
specific memory units.

Working memory and decision-making

In this work we have considered free response time task (Roitman
and Shadlen, 2002) in which the subject must make a decision as
soon as possible. In the different protocol delayed visual motion
discrimination experiment (Shadlen and Newsome, 2001), the sub-
ject must make the decision at a prescribed time after the onset of the
stimulus. In such task, the decision choice must be stored to be
retrieved at the prescribed instant of time. In the original attractor
neural network model (Wang, 2002), the decision is stored as in a
working memory. As discussed at the beginning of this paper, within
the framework of a single module of attractor decision network, the
CD considered in the present paper allows the system to make suc-
cessive decisions, at the price of removing the working memory be-
havior. An important issue is to understand how the decision-
making system can adapt itself to these opposite contexts (for a
model with gain modulation, see Niyogi and Wong-Lin, 2013 ). It is
not unrealistic to expect a control mechanism onto the inhibitory
current. Depending on the task, the inhibitory current could be sent
either just after the decision has been made, or later after the end of
the delay period. In the latter case, a prediction is that, compared
with cases without delay, there should be weaker post-error effects,
but stronger repeated/alternated effects.

An alternative is to have a more complex architecture. However,
the memory units used by Gao et al. (2009) are not appropriate for
dealing with delayed discrimination experiments. For experiments
with delays, Murray et al. (2017) consider two interacting modules,
one implementing the posterior parietal cortex and another one the
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posterior frontal cortex. It will be interesting to extend the present
work by adding a working memory module in line with Murray et al.
(2017), to obtain a network performing sequential decision-making
while keeping the working memory behavior.

Finally we note that various brain areas have been shown to be
involved in sequential decision tasks in which the memory of the last
decision has to be maintained (Middlebrooks and Sommer, 2012;
Donahue etal., 2013; Abzug and Sommer, 2018). This suggests more
generally that a broader network is necessary for decision tasks re-
quiring memory.

Future prospects

During behavioral tasks, subjects are not always aware of their mis-
takes (Yeung and Summerfield, 2012), but do show PES. One may
thus ask why one does not generally become aware that an error has
been made, because the neural dynamics is different following an
error or a success. As discussed in the present work, these differences
in the dynamics are very subtle. The post-error and post-correct
firing rates have broad distributions, with some common properties
(the same mean for example). The strong overlapping of these dis-
tributions makes it difficult to infer the correctness of the decision on
asingle trial basis. Yet, the tails of the post-error synaptic distribution
should allow in some cases to infer that an error has been made. It
would be interesting to see in behavioral experiments whether the
post-error effects can be related to the confidence in one’s decision
(Wei et al., 2015; Insabato et al., 2017).
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