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Abstract Since the discovery of the role of proprotein convertase subtilisin kexin 9 (PCSK9) in the regulation of low-density
lipoprotein cholesterol (LDL-C) in 2003, a paradigm shift in the treatment of hypercholesterolaemia has occurred.
The PCSK9 secreted into the circulation is a major downregulator of the low-density lipoprotein receptor (LDLR)
protein, as it chaperones it to endosomes/lysosomes for degradation. Humans with loss-of-function of PCSK9
exhibit exceedingly low levels of LDL-C and are protected from atherosclerosis. As a consequence, innovative
strategies to modulate the levels of PCSK9 have been developed. Since 2015 inhibitory monoclonal antibodies
(evolocumab and alirocumab) are commercially available. When subcutaneously injected every 2–4 weeks, they trig-
ger a �60% LDL-C lowering and a 15% reduction in the risk of cardiovascular events. Another promising approach
consists of a liver-targetable specific PCSK9 siRNA which results in �50–60% LDL-C lowering that lasts up to
6 months (Phases II–III clinical trials). Other strategies under consideration include: (i) antibodies targeting the
C-terminal domain of PCSK9, thereby inhibiting the trafficking of PCSK9-LDLR to lysosomes; (ii) small molecules
that either prevent PCSK9 binding to the LDLR, its trafficking to lysosomes or its secretion from cells; (iii) complete
silencing of PCSK9 by CRISPR-Cas9 strategies; (iv) PCSK9 vaccines that inhibit the activity of circulating PCSK9.
Time will tell whether other strategies can be as potent and safe as monoclonal antibodies to lower LDL-C levels.
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1. PCSK9 biology

Proprotein convertase subtilisin kexin 9 (PCSK9) was discovered in
2003 as the last and unique inactive member of the family of subtilisin/
kexin-like serine proteases.1 In the same year, two gain-of-function
(GOF) mutations in its gene (S127R and F216L) were associated with au-
tosomal dominant hypercholesterolaemia2 and, a few months later, its
expression was shown to be downregulated by cholesterol in mice.3,4

Although PCSK9 and low-density lipoprotein receptor (LDLR) mRNA
levels were co-regulated by cholesterol, Maxwell et al.5 established in
2004 the capacity of PCSK9 to trigger hepatic LDLR degradation, thus
revealing a new level of regulation of hepatic LDLR levels. Subsequent
studies confirmed and extended these data.6,7

Another breakthrough was the discovery in 2005 of loss-of-function
(LOF) mutations in individuals with lifelong low levels of low-density li-
poprotein cholesterol (LDL-C)8 and reduced risk of coronary heart dis-
ease,9 thereby making PCSK9 an attractive therapeutic target to reduce
LDL-C levels.10 PCSK9 is highly expressed in the liver1 and secreted in

the plasma. Following the binding of circulating PCSK9 to the EGF-A do-
main of the LDLR,11–13 the complex is internalized and the LDLR is tar-
geted to lysosomes for degradation,14,15 thus resulting in a reduced
LDLR expression on the hepatic cell surface, a reduced uptake of LDL
particles from the blood, and a consequent rise in circulating LDL-C.16,17

The most deleterious GOF mutation D374Y,2,18 and others19,20 are
characterized by the early occurrence of cardiovascular events. These
findings led to the development of monoclonal antibodies targeting cir-
culating PCSK9, which reduce LDL-C levels by �60% and substantially
improve cardiovascular outcomes in a variety of high-risk patients.21–24

In addition to monoclonal antibodies,25 other strategies have been
developed to target PCSK9, including the possibility to silence its
mRNA expression, inhibit its mRNA translation, block the autocata-
lytic processing of proPCSK9 and alter the interaction between PCSK9
and the LDLR (Figure 1).26 Moreover, a vaccine strategy is under
evaluation. The aim of this review is to first summarize the ongoing
strategies targeting PCSK9 and, second, to discuss other promising in-
novative strategies.
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.. 2. Inhibition of the PCSK9-LDLR
interaction by monoclonal
antibodies

Anti-PCSK9 monoclonal antibodies (mAbs; alirocumab and evolocu-
mab) represent the first pharmacological approach developed to target
PCSK9 (Figure 2) and, so far, the only treatment approved by the regula-
tory agencies in many countries.

Following the positive results from Phase I and Phase II clinical trials,27

the efficacy and safety of two anti-PCSK9 mAbs have been evaluated in
two major programs (PROFICIO for evolocumab and ODYSSEY for
alirocumab) including several Phase III trials. These studies have evalu-
ated the effects of inhibitory mAbs to PCSK9 either as monotherapy or
in combination with other lipid-lowering drugs across a broad patient
population, including high cardiovascular risk patients, patients with het-
erozygous familial hypercholesterolaemia (HeFH) who cannot reach the

Figure 2 PCSK9 function and potential targets for inhibition. Following transcription and translation, PCSK9 is processed in the endoplasmic reticulum
into the mature form and then secreted. In the absence of PCSK9, LDLR binds to circulating low-density lipoprotein (LDL) particle and the complex
LDLR/LDL is internalized in the endosomes; LDL are shuttled in the lysosome for degradation while LDLR is recycled to the cell surface. When PCSK9 is
present, it binds and escorts the LDLR/LDL complex for degradation in the lysosomes, with the net effect of reducing the number of LDLR on cell surface.
PCSK9 can be inhibited at different levels including DNA gene editing (1); mRNA gene silencing (2); mRNA translational inhibition (3). In addition mole-
cules targeting circulating PCSK9 are available or under development, these include adnectins (4), ABD-fused Anticalin (5), or selective antibodies (6–9)
which, by binding PCSK9 prevent its interaction with LDLR (6–8) or the interaction of a hypothetical ‘Px’ protein to the complex LDLR-PCSK9 (9).

Targeting PCSK9
Inhibition of Pharmacological toolsTargeted processInhibition of Pharmacological tools

plasma PCSK9 activity
PCSK9-LDLR interaction
trafficking to lysosomes
vaccine

Targeted process

Abs, EGF-A mimetics, 
small molecules

PCSK9 expression
antisense drugs (siRNAs, 
miRNAs), small molecules, 
gene disruption by CRISPR

mRNA stability
mRNA translation
gene integrity

PCSK9 secretion
autocatalytic activation
exit from the cell

gene disruption by CRISPRgene integrity

small molecules

Figure 1 Strategies targeting PCSK9. PCSK9 activity can be inhibited
at several levels. To date, only the PCSK9-LDLR interaction and PCSK9
mRNA stability are successfully targeted in humans with injectable
mAbs (alirocumab, evolocumab) and siRNA (inclisiran), respectively.
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recommended LDL-C levels with current lipid-lowering therapies, as
well as patients intolerant to statins. All these studies have indeed
demonstrated that the inhibition of PCSK9 by the use of mAbs is
overall safe; indeed, on top of maximally tolerated doses of statins,
LDL-C levels are dramatically and significantly reduced (mean reduc-
tion: �60%) (Table 1). In addition, the treatment with mAbs to
PCSK9 is associated with significant reductions of Lp(a) levels by
about 20–30%38–40; the clinical relevance of this effect, however, is
still uncertain.41 Finally, the addition of an anti-PCSK9 mAb to statin
therapy results in the regression of coronary atherosclerosis42 with-
out affecting plaque composition,43 with a continuous linear relation
between achieved LDL-C levels and plaque regression. Although this
study was not powered to assess clinical outcomes, a �20% relative
and �3% absolute risk reduction for the first major adverse coronary
event were observed.42 Based on the results of these clinical trials,
the two mAbs evolocumab (Repatha; https://www.accessdata.fda.
gov/drugsatfda_docs/label/2017/125522s014lbl.pdf) and alirocumab
(Praluent; https://www.accessdata.fda.gov/drugsatfda_docs/label/
2017/125559s002lbl.pdf) have been approved by the US FDA for
subjects with HeFH or clinical atherosclerotic cardiovascular disease
(ASCVD) under maximally tolerated statin doses and who still re-
quire additional lowering of LDL-C. Furthermore, evolocumab has
received approval for use in homozygous FH. Similar indications were
adopted by the European Medicines Agency (EMA) for the prescrip-
tion of evolocumab (http://www.ema.europa.eu/docs/en_GB/docu
ment_library/Summary_of_opinion/human/003766/WC500246329.pdf)
and alirocumab (http://www.ema.europa.eu/docs/en_GB/document_li
brary/Press_release/2015/07/WC500190458.pdf). Outcome trials
showed for evolocumab (FOURIER)28 and alirocumab (ODYSSEY
OUTCOMES)24 that the reduction in plasma cholesterol levels trans-
lates into a significant reduction in the incidence of cardiovascular
events (-15%). Based on the results of the FOURIER trial,28 evolocu-
mab has been approved also for the treatment of adults with estab-
lished cardiovascular disease to reduce the risk of myocardial
infarction, stroke, and coronary revascularization.

The clinical relevance of anti-PCSK9 mAbs administered as self-
injection monthly or biweekly44 may be also related to a higher

adherence to treatment compared with a daily orally administered statin.
The adherence to statin therapy may be negatively affected by muscle
symptoms,45 often leading to therapy discontinuation and consequent in-
crease of cardiovascular risk. In addition, the variability in LDL-C levels
during lipid-lowering treatment is a strong and independent predictor of
cardiovascular events.46 One- or two-year-long treatment with evolocu-
mab47,48 or alirocumab,49 respectively, provides a sustained LDL-C low-
ering, although LDL-C level variability appears to be lower with every-2-
week dosing than with every-4-week dosing.50,51 A recent analysis of
patients with statin-associated muscle symptoms and treated with evolo-
cumab for up to 2 years showed that evolocumab provided persistent
tolerability, adherence, safety, and efficacy in statin-intolerant patients.52.
Of note, the treatment with mAbs targets circulating PCSK9, which ex-
clusively originates from liver53,54 without inhibiting intracellular PCSK9
in liver or other tissues. This might increase PCSK9 production in the
liver as well as maintain PCSK9 intracellular activities which contribute
to other processes.1,10,55

The therapeutic safety of anti-PCSK9 mAbs has been evaluated in sev-
eral trials. Overall, adverse event rates did not differ between subjects
treated with mAbs or control, which is reassuring in terms of the safety
of very low LDL-C levels reached with these drugs. Creatine kinase and
liver enzyme increases were infrequent and comparable between
groups, and no drug-induced liver injury or renal impairment were
observed.56,57 A recent meta-analysis that investigated the effect of
mAbs to PCSK9 on glycaemia and new-onset diabetes did not un-
cover drug-related changes in these parameters, independently of the
mAb type, the characteristics of patients or treatment duration.58 In
addition, no evidence of side effects including neurocognitive adverse
events were found to be associated with alirocumab or evolocumab
treatment,59,60 even in subjects who achieved very low levels of LDL-
C. Noteworthy, no evidence for an increased risk of muscle-related
adverse events was reported, despite the inclusion of statin-
intolerant patients who experienced myalgia during statin therapy.22

Finally, meta-analyses of various outcome trials revealed that the
cost–benefit ratio for the use of PCSK9 mAbs together with statins
over more than 2-years is highest for patients with baseline levels of
LDL-C higher than 100–130 mg/dL.61,62

..............................................................................................................................................................................................................................

Table 1 LDL-C reduction through different PCSK9 inhibition approaches

Type of inhibition LDL-C

reduction (%)

Relative CV

reduction

Status References

mAbs targeting circulating PCSK9

(evolocumab and alirocumab)

55–60% 15–20% Approved by FDA and EMA 24,28

Gene silencing (siRNA and inclisiran) 30–50% Under evaluation in

ORION-4

Phase III 29,30

Gene editing (CRISPR-Cas9) �30% (TC) – Preclinical 31

Inhibition of PCSK9 mRNA translation

(PF-06446846)

�58% – Preclinical (halted) 32

Adnectins �50% – Preclinical (halted) 33

ABD-fused Anticalin �50–60% – Preclinical 34

mAb against PCSK9 CHRD �40% – Preclinical 35

Single domain antibodies (sdAbs) �50% – Preclinical 36,37

Vaccine 13.3% – Phase I Bauer et al., ESC Congress,

2018 Munich
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3. PCSK9 gene silencing and
CRISPR editing

Gene silencing is a physiological post-transcriptional process by which cells
regulate gene expression via turning off a selected gene. This approach has
been translated into selective pharmacological targeting with the develop-
ment of small interfering RNA (siRNA) controlling the expression of spe-
cific genes playing key roles under different physiopathological conditions,
including those involved in lipid and lipoprotein metabolism.63

Inclisiran is a double strand siRNA of the latest generation (Figure 2),
with a specific chemistry designed to increase its half-life29 and a covalent
linkage to a ligand containing three molecules of N-acetylgalactosamine
(GalNAc). The latter confers liver specificity to inclisiran by binding the
ASGR1/ASGR2 receptors, essentially localized at the hepatocyte
surface.64

Results from Phase I study in healthy volunteers with LDL-
C >_ 100 mg/dL showed that a single inclisiran dose of 300 mg injected
subcutaneously reduced PCSK9 levels by �75% and LDL-C levels by
50% on average for 6 months.29

The ORION-1 Phase 2 trial further explored the impact of single dose
(200, 300, or 500 mg) or two doses (100, 200, or 300 mg) at Days 1 and
90.30 The two-dose regimen of inclisiran, 300 mg each, achieved a sus-
tained 52.6% LDL-C reduction similar to that achieved by mAbs for
6 months (Table 1),30 and the reduction was independent of the diabetic
status presence.65 Interestingly, although the siRNA inclisiran is expected
to also reduce the intracellular levels of PCSK9, the generated drops in
apoB, non-HDL-C, VLDL-C, and triglycerides were comparable to those
obtained with mAbs, suggesting a limited impact of liver intracellular
PCSK9 in cholesterol metabolism. Lp(a) levels were reduced by 26%, al-
though not significantly, due to large inter-individual variations.66. A clini-
cal Phase 3 trial is ongoing to evaluate the effects of inclisiran in
hypercholesteraemic and heterozygous FH subjects, while the ORION-
4 trial will examine clinical outcomes at 6 years or more.67 Time will tell
whether the reduction of both circulating and intracellular PCSK9 gener-
ates unexpected/unwanted effects. So far, inclisiran was shown to lack
side effects.29

Another approach is the delivery of CRISPR-Cas9 to the liver for the
in vivo base editing of PCSK931,68,69 (Figure 2) as an alternative to siRNA
therapy in liver. So far, the results in animal models revealed a�30% re-
duction in plasma cholesterol levels (Table 1), with no apparent evidence
of off-target mutagenesis.31 More recently, as a proof-of-concept for
treating genetic diseases before birth, CRISPR-mediated gene editing in
utero resulted in adult mice expressing a W159X LOF-PCSK9 that ex-
hibit a substantial reduction in serum cholesterol.70 Additional studies
are needed to critically evaluate whether this approach might be trans-
lated into the clinic.

4. Inhibition of PCSK9 mRNA
translation

A recent report reveals that translational inhibition of PCSK9 mRNA
may represent an attractive approach to block PCSK9 synthesis71

(Figure 2). An orally active compound (PF-06446846) efficiently inter-
rupted PCSK9 translation around codon 34, within the Leu stretch of
the signal peptide coding region32. Although leucine/hydrophobic
stretches are not known to cause translation stalls, the string of 9 to 11
CUG leucine codons72–74 present in the signal peptide coding region of

PCSK9 was likely recognized by this inhibitor.32 Unfortunately, even
though such translational inhibitors were optimized,75 the lack of PCSK9
specificity halted further development of this approach.

Another potential approach is represented by microRNA mimetics.
Recently, miR-191, miR-222, and miR-224 were shown to post-
transcriptionally down-regulate the levels of PCSK9 mRNA.76 However,
it needs to be taken into account that these miRNAs are not PCSK9-
specific, as exemplified by the ability of miR-222 to also down-regulate
the expression of CD4 receptor.77

5. Targeting the autocatalytic
processing of proPCSK9

An additional strategy to target PCSK9 is to interfere with the autocata-
lytic processing of proPCSK9 into PCSK9. This is based on the original
observation that PCSK9 can exit the endoplasmic reticulum (ER) only
following the autocatalytic cleavage of the zymogen proPCSK9 and the
generation of a heterodimer of mature PCSK9 with its prodomain which
remains non-covalently bound to the catalytic domain.1 Natural78,79 and
engineered6,80,81 PCSK9 mutants were found unable to undergo auto-
processing and were retained in the ER. Interestingly, these zymogen
forms act as dominant-negatives, as they can dimerize with wild type
PCSK9 forcing its retention in the ER.78–80 Of note the few heterozygous
subjects carrying the LOF PCSK9-Q152H, which prevents zymogen
processing and retains proPCSK9 in the ER, have all very low levels of
circulating PCSK9 and LDL-C,78 supporting the potential relevance of
this approach. Seemingly, they are in good health and do not exhibit any
overt pathology associated with the lack of circulating PCSK9, indicating
that complete retention of proPCSK9 in the ER may not result in
unwanted side effects. Indeed, our recent data revealed that PCSK9 is
protective against the induction of ER stress and that the Q152H mutant
is poised to protect cells from the unfolded protein response inducing
ER stress.82,83 Inhibition of the autocatalytic processing is thus an attrac-
tive approach to prevent PCSK9 secretion. However, engineering of a
small molecule inhibitor turned out to be difficult because of the zero or-
der kinetics of the autocatalytic processing of proPCSK9 into PCSK9 and
the necessity to cross both plasma and ER membranes to reach the ER
lumen.84,85

Finally, PCSK9 secretion may be reduced by inhibitors that would pre-
vent the interaction of a recently reported ER resident cargo receptor,
SURF4, with mature PCSK9, thereby facilitating its efficient exit from the
ER into COP-II vesicles en route to the Golgi apparatus.86

6. Other inhibitors of PCSK9-LDLR
binding

Within the strategies to inhibit the interaction between PCSK9 and the
LDLR, a lot of interest is focused on EGF-A-like peptides or small mole-
cule inhibitors. The first EGF-A-like peptide identified that effectively inhib-
ited the PCSK9-LDLR binding was a Fc-fusion EGF66 that bound PCSK9
with a Kd of�70 nM and inhibited the PCSK9-induced LDLR degradation
in HepG2 cells and in mice.87 Later on, shorter peptides able to bind
PCSK9 with increased affinity have been generated, including the 13 amino
acid (aa) Pep2-8, which however is 10-fold less active than EGF66.88

Efforts to further improve the potency of Pep2-8 led to the discovery of a
targetable pocket region in PCSK9 structure very close to the EGFA-
PCSK9 interaction surface89 that interacts with the N-terminal 10 aa P’

Targeting PCSK9 513
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helix peptide (aa 153–162; SIPWNLERIT) of the catalytic domain of
PCSK9. An intense engineering effort led to the design of a modestly ac-
tive first generation 16-residue linear peptide
MESFPGWNLV(homoR)IGLLR, which antagonizes PCSK9 activity.89

Efforts are underway to improve this structure and generate a potent
orally active small molecule inhibitor.90

Another approach to disrupt the extracellular PCSK9-LDLR interac-
tion is the use of engineered adnectins (Figure 2). These are �11 kDa
fragments of fibronectin type III domain (BMS-962476) that bind the cat-
alytic subunit of PCSK9. A single injection in cynomolgus monkeys led to
a �50% reduction in LDL-C (Table 1).33 Although promising, the clinical
development of this strategy has been abandoned as it could not favour-
ably replace the mAb approach.

A recent alternative biologic approach was to use a�22 kDa albumin-
binding domain (ABD)-fused Anticalin protein DS-9001a produced in
bacteria (Figure 2).34 In cynomolgus monkeys, a single subcutaneous in-
jection of such ABD-fused Anticalin protein was reported to have a
somewhat longer half-life in plasma (�120h)34 compared to mAbs
(�60–120 h)91 and BMS-962476 (�74–108 h).33 Such treatment
resulted in a sustained �50–60% reduction of LDL-C lasting up to
21 days (Table 1), and its effect was significantly potentiated by atorva-
statin.34 We have to wait until these compounds are tested in clinical tri-
als before drawing firm conclusions on the efficacy and safety of this
promising new class of biologics.

7. Blockade of PCSK9-LDLR sorting
to lysosomes by CHRD antibodies

Antibodies against PCSK9 were designed to recognize the C-terminal
cysteine–histidine rich domain (CHRD), which is critical for sorting the
PCSK9-LDLR complex to lysosomes/endosomes for degradation.10,15,92

Deletion of the CHRD does not impair PCSK9 folding and secretion, but
results in an inactive secreted form of PCSK9 that still binds the LDLR
but cannot sort it to degradation compartments.15 This result suggested
that a so far unidentified ‘protein X (Px)’ is required to bind the CHRD
and/or LDLR and to escort the PCSK9-LDLR complex to lysosomes for
degradation (Figure 2).10,93 Thus, any approach that prevents the forma-
tion of the Px-PCSK9-LDLR trimeric complex could potentially inhibit
PCSK9 function without necessarily preventing binding of PCSK9 to the
LDLR. Indeed, a bulky Fab94 that binds the CHRD was shown to inhibit
�50% of the extracellular PCSK9’s ability to enhance the degradation of
the LDLR. Moreover, a CHRD-specific mAb also reduced LDL-C levels
by�40% when injected to cynomolgus monkeys (Table 1).35

Recently, three single domain antibodies (sdAbs) raised in llamas that
recognize exclusively the C-terminal M1/M3 domains11 of the CHRD of
PCSK9 have been generated (Figure 2).36 When the antigen-binding
nanobody domains are fused to a mouse Fc-sequence and injected in
mice expressing exclusively human PCSK9,37 a sustained �50% reduc-
tion of LDL-C that lasted more than 17 days was observed (Table 1).36,37

Different from the mAbs that prevent the formation of the PCSK9-
LDLR complex, the sdAbs did not inhibit such complex formation nor
did they increase the levels of circulating PCSK9, but rather prevented
PCSK9 activity on the LDLR. It could be hypothesized that the sdAb in-
terfered with the binding of Px to the PCSK9-LDLR complex and hence
prevented its intracellular sorting to lysosomes.37 Although these sdAbs
do not reach the efficacy of the mAbs, they represent a unique tool to
dissect out the sorting mechanism of the PCSK9-LDLR complex to
endosomes/lysosomes. Further experiments based on the crystal

structure of the sdAb-CHRD complexes and site directed-mutagenesis
of the CHRD domain are ongoing to identify critical residues regulating
such trafficking, which might result in more effective sdAbs.37

8. PCSK9 vaccine

A completely different approach to interfere with PCSK9 is to instruct
the immune system to eliminate endogenous circulating PCSK9. This
could be achieved by using PCSK9-peptide-based vaccines (Figure 2).95,96

So far preclinical studies in mice have shown that immunization induces a
strong and long-lasting immune response resulting in reduced plasma
levels of PCSK9, total cholesterol and non-HDL-C (VLDL-C and LDL-
C), as well as systemic inflammation.97 Moreover, immunization resulted
in reduced atherosclerotic lesion area and aortic inflammation compared
with control mice.97 This vaccine has been tested in a Phase I clinical trial
(https://clinicaltrials.gov/ct2/show/NCT02508896). Preliminary data
showed that in healthy subjects immunization was safe and well toler-
ated; more than 90% of immunized subjects developed a PCSK9-specific
antibody response that was reactivated after a second injection at Week
60; the mean LDL-C reduction was 13.3% at Week 70 (Table 1), and per-
sisted for at least 30 weeks after the boost immunization (Bauer et al.,
Communication at ESC Congress, 2018 Munich). Although this ap-
proach seems attractive and more permanent, similar to the CRISPR ap-
proach, it is crucial to exclude the possibility of any serious unsuspected
side effects due to the absence of PCSK9 expression in adult livers, espe-
cially in situations where liver function is compromised, such as during
regeneration or viral infections.98

9. Conclusions and perspectives

These last 15 years of experimental and clinical research have demon-
strated that the LOF of PCSK9 towards the LDLR associates with re-
duced levels of LDL-C and overall lower rate of cardiovascular
complications and all-cause mortality,99 especially for patients starting
with higher baseline levels of LDL-C.62 The beneficial effects of the loss
of PCSK9 are independent from other risk factors such as diabetes and
hypertension. Lower PCSK9 levels/activity also associate with a reduced
risk of complications in sepsis and/or inflammation.100,101 Thus abolishing
circulating PCSK9 seems to offer multiple advantages and minimal side
effects.

PCSK9 is expected to have other functions in the developing liver and
extrahepatic tissues, such as small intestine, cerebellum, pancreas, and
kidney.10,55,102,103 A recent paper reported an association between a
PCSK9 LOF and a reduced risk of abdominal aortic aneurism,104 an ob-
servation that may further extend the therapeutic indications for PCSK9
inhibition. Alirocumab and evolocumab reduce circulating PCSK9, which
originates from the liver only.53,54 Although a few individuals lack func-
tional PCSK9,79,105,106 only time will tell whether siRNA silencing of liver
intracellular and secreted PCSK9 or lifelong deletion of PCSK9 in the
above tissues by way of CRISPR/Cas9 is still as beneficial. It should be
emphasized that, with regard to its impact on the LDLR, hepatocyte-
derived PCSK9 mostly acts extracellularly after its secretion. This may
not be the case for other functions or in other tissues where PCSK9 may
act intracellularly, indeed some experimental evidence purports a role
for intracellular PCSK9 in hepatic and non-hepatic cell metabolism.107

Although the mAb approach, that only targets circulating PCSK9,
does not seem to enhance the onset of diabetes on the short
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run,23,58,108 it may on the long run increase the metabolic risk of devel-
oping a pre-diabetes state, possibly due to the increased ratio of apoB/
PCSK9.109 Indeed, a higher apoB/PCSK9 ratio is associated with higher
postprandial white adipose tissue macrophage infiltration and priming of
the NLRP3 inflammasome, whose role in the aetiology of type 2 diabetes
is well established.110

While much work is needed to unravel PCSK9 functions in extrahe-
patic tissues,103 its involvement in immune-inflammatory responses is
emerging111 thanks to its ability to modulate the innate immune re-
sponse during sepsis112 or to affect hepatitis C virus infectivity via the
regulation of hepatic surface entry proteins.113 Of note, anti-PCSK9
monoclonal antibodies reverse the pro-inflammatory profile of mono-
cytes in familial hypercholesterolaemia114 and improve vascular
inflammation.115

Moreover, the observation that lower levels of PCSK9 are associated
with reduced inflammation, especially in patients with the highest level of
the inflammatory marker high sensitivity C-reactive protein (hs-CRP),116

will need to be properly validated in specific clinical trials on inflammation-
associated pathologies, as was done with the mAb canakinumab targeting
interleukin-1b in the CANTOS anti-inflammatory thrombosis outcome
study.117 A recent meta-analysis reported a lack of effect of anti-PCSK9
therapy with mAbs on circulating hs-CRP levels, at least for the short-
term treatment,118 and an analysis of the FOURIER trial showed that
changes in hs-CRP levels were similar between evolocumab and placebo,
even in subjects with a higher baseline hs-CRP level.119 Whether the com-
bination of a PCSK9 inhibitor with canakinumab, or any other anti-
inflammatory mAb,120 is clinically beneficial in patients with an elevated
atherogenic profile will have to be carefully evaluated.

In conclusion, the discovery of PCSK9 in 2003 and its powerful regula-
tion of LDL-C via the enhanced degradation of the LDLR has led the way
towards the development of powerful new strategies to significantly en-
hance the reduction of LDL-C over and above the levels achieved with
the more commonly used orally active statins or statins þ ezetimibe.
While some of the injectable PCSK9-targeting drugs are rapidly evolving,
we may still witness the development of safe, orally active PCSK9-
inhibitors in the future.89 Because of their anticipated lower cost, the lat-
ter may have a more widespread use worldwide in the treatment of vari-
ous pathologies, benefiting from low levels of PCSK9.
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