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Virchow Klinikum, Berlin, Germany; 31DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; 32Department of Medical Biology, UiT, The Arctic
University of Norway, Norway; 33Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany; 34DZHK (German Centre for Cardiovascular
Research), Partner Site Göttingen, Göttingen, Germany; 35Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, III-V Floor, H-1089 Budapest,
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Abstract Morbidity and mortality from ischaemic heart disease (IHD) and heart failure (HF) remain significant in Europe and
are increasing worldwide. Patients with IHD or HF might benefit from novel therapeutic strategies, such as cell-
based therapies. We recently discussed the therapeutic potential of cell-based therapies and provided recommen-
dations on how to improve the therapeutic translation of these novel strategies for effective cardiac regeneration
and repair. Despite major advances in optimizing these strategies with respect to cell source and delivery method,
the clinical outcome of cell-based therapy remains unsatisfactory. Major obstacles are the low engraftment and sur-
vival rate of transplanted cells in the harmful microenvironment of the host tissue, and the paucity or even lack of
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endogenous cells with repair capacity. Therefore, new ways of delivering cells and their derivatives are required in
order to empower cell-based cardiac repair and regeneration in patients with IHD or HF. Strategies using tissue en-
gineering (TE) combine cells with matrix materials to enhance cell retention or cell delivery in the transplanted
area, and have recently received much attention for this purpose. Here, we summarize knowledge on novel
approaches emerging from the TE scenario. In particular, we will discuss how combinations of cell/bio-materials
(e.g. hydrogels, cell sheets, prefabricated matrices, microspheres, and injectable matrices) combinations might en-
hance cell retention or cell delivery in the transplantation areas, thereby increase the success rate of cell therapies
for IHD and HF. We will not focus on the use of classical engineering approaches, employing fully synthetic materi-
als, because of their unsatisfactory material properties which render them not clinically applicable. The overall aim
of this Position Paper from the ESC Working Group Cellular Biology of the Heart is to provide recommendations
on how to proceed in research with these novel TE strategies combined with cell-based therapies to boost cardiac
repair in the clinical settings of IHD and HF.
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1. Tissue engineering and cell
therapy: are they useful
approaches?

Most complex organisms have lost the ability to fully regenerate the
heart. However, stimuli to reactivate regenerative processes mammalian
cells have been identified.1 Despite this knowledge, we have learned
over the years that reactivation of heart muscle regeneration is much
more difficult than suggested by earlier studies.1 Nature Biotechnology
published an editorial in 2017, referring to ‘A futile cycle in cell therapy’2

because of the none-to-marginal benefits of cardiac cell therapy. The dis-
credit on the entire research area has increased following the emergence
of unreliable publications, especially in the infancy of the field, by unreli-
able unscrupulous scientists simply willing to ride a fashionable horse, re-
capitulating the story of gene therapy 20 years before. All that has
prompted individual scientists declared ‘the death of this research field’.
Yet, it is not a novel observation that after an unreasonable hype and a
phase of frustration that the true value of scientific discoveries unveil.
And most importantly, in light of the huge clinical need it is in our view
fully warranted to further scrutinize the possibility to regenerate the fail-
ing heart by remuscularization. Obvious roadblocks (e.g. poor cell reten-
tion and lack of proper integration) must be overcome to unfold the
true potential of novel regenerative treatments. For this is important to
ask: What have we learned so far and what needs to be achieved to ob-
tain better result? In recent years, a consensus has been reached on sev-
eral aspects that still require attention for the successful implementation
of myocardial cell therapy.3,4 To this aim, different cell types endowed
with various regenerative activities have been used, with various out-
comes. Currently, we consider first-generation clinical cell therapy candi-
dates, i.e. cell types that can be relatively easy prepared for clinical
applications, but exhibit limited regenerative potential, including bone
marrow-derived mononuclear cells or mesenchymal stromal cells
(MSCs) with a focus on stimulation of endogenous regenerative
responses.5 Second-generation clinical cell therapy candidates need
more refined isolation and ex vivo amplification procedures, but have a
higher regenerative potential, such as several cardiac derived progenitor
cells in the form of cardiospheres and pluripotent stem cell-cardiac
derivatives, including cardiac progenitor cells and cardiomyocytes and
are considered more like an exogenous regenerative approach to re-
place lost myocardial cells. However, and irrespective of the cell source,
a major problem for cell therapy is the low level of retention of infused

or injected cell products. Indeed, although encouraging results have
been reported, most studies concur that only few of the transplanted
cells survive in the hostile environment of the host tissue, such as that
occurring after an infarction, and even fewer integrate and are retained
in the host myocardium/myocardial scar. Transplanted cells quickly dis-
appear from the injection site because they simply die in the disease
struck and thus typically hostile environment or are ‘washed out’ into
the circulation.6 The poor cell retention in the receiving tissue is primar-
ily related to typically used delivery methods, such as intramyocardial
(IM) injection, anterograde intracoronary perfusion, or retrograde deliv-
ery via the coronary venous (RV) delivery with short-term engraftment
of approximately 10–15% can be detected, regardless of the dose of
injected cells,7 long-term engraftment (>1 month) is reported to be less
than 1%,6 questioning their direct contribution to myocardial remuscula-
rization. Irrespective of the cell type, a significant fraction of cells (�35%)
localizes to the lungs after IM delivery apparently due to clearance
through venous myocardial drainage.8 MSCs applied attached to small
gelatinous carriers resulted in reduced drainage from the myocardium
compared with freely suspended MSC controls.8 Although such
approaches are promising, initial high cell retentions may be lost when
cells detach in time in the myocardium, subsequently causing a significant
drop in cell numbers.9 More advanced tissue engineering (TE)
approaches have led to long-term cell retentions of more than 80%, and
therefore have gained much attention in recent years.10

The success of TE in the treatment of other medical conditions11

should motivate the continuation of work in the cardiovascular field. In
this position paper, we therefore discuss how new technologies, such as
TE/biomaterials tools, can be used to promote the success rate of cell
therapies for ischaemic heart disease (IHD) and heart failure (HF). In this
context, some semantic considerations in terms of TE and regenerative
medicine must be made to better understand how the two fields inter-
sect and synergize each other.

TE aims at assembling functional constructs that restore, maintain, or
improve damaged tissues or entire organs, through the combined use of
scaffolds, cells, and biologically active molecules. Regenerative medicine
includes TE, but, in addition, also includes research on self-healing—
where the body uses endogenous mechanisms, sometimes with the help
of foreign biological materials—to recreate cells and rebuild tissues and
organs. TE emphasizes the starting materials and scaffolds used to create
de novo tissue implants, while regenerative medicine encompasses the
formation of new tissue induced by tissue-engineered materials. The
Committee on the Biological and Biomedical Applications of Stem Cell
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Research (https://www.ncbi.nlm.nih.gov/books/NBK223688/) stated that
in the new era of TE combined with regenerative medicine, ‘regenerative
medicine seeks to understand how and why stem cells, whether derived
from human embryos or adult tissues, are able to develop into special-
ized tissues, and seeks to find new ways of applying cells and their deriva-
tives in order to empower cell based repair and regeneration that will
restore lost function in damaged organs’. Therefore, for the purpose of
this Position paper, we will discuss on TE as a strategy that can help the
regenerative process initiated by the cellular component, providing a
biomolecular and spatial environment conductive to cell survival, prolif-
eration and vascularization, aimed at supporting cell and tissue growth.
We will focus on how biomaterials, in combination with a cellular com-
ponent (culture systems or cell products) can be used to increase the
success rate of cell therapies for IHD and HF by inducing reparative
processes.

2. Major properties and
requirements of cell types

Cardiac cell-based TE aims to remuscularize post-infarct myocardial
scars, provide paracrine support for activation of endogenous repair
mechanisms, and add substitute tissue for failing hearts using a three-
dimensional approach. Depending on the specific therapeutic goal, the
cell requirements vary and different cell types are needed. If the primary
objective is remuscularization, a large number of bona fide cardiomyo-
cytes are required, which eventually couple with endogenous cardio-
myocytes. The general feasibility of cardiomyocytes engraftment with
electromechanical integration was demonstrated earlier for foetal12 and
pluripotent stem cell derived13 cardiomyocytes as well as engineered
heart muscle (EHM)14 allografts, using either voltage indicator dyes and
two-photon imaging or multi-array electrode recordings of the epicardial
spread of electrical excitation. Murry et al.15 pioneered the use of geneti-
cally encoded calcium indictors to demonstrate electrical coupling of
human ES-cell-derived cardiomyocyte grafts in injured guinea-pig and
non-human primate.16 Whilst the original studies in only mildly injured
non-human primate demonstrated ventricular arrhythmias in all investi-
gated animals,16 recently published data suggest a lower risk of ventricu-
lar arrhythmias and ectopy rather than re-entry as the underlying
mechanism.17 In case of activation of host-associated repair pathways via
paracrine signalling, the flexibility of cell type is greater. TE is here mainly
directed at optimizing the early cell retention, which allows the release
of paracrine factors, a strategy which might later be replaced by the ad-
ministration of their secretome only.18 Independent of the objective, the
cells used for TE should be compliant with the ‘Guideline on human cell-
based medicinal products’ from the European Medicines Agency, related
to the identity of the cell population, potency, purity, viability, safety, effi-
cacy, and suitability for intended use. For more details see ref.4

2.1 Cells and their requirements for
TE-directed remuscularization
With the advent of human pluripotent stem cells (hPSC), including hu-
man embryonic stem cells (hESC) and human induced pluripotent stem
cells (hiPSC), the availability of large-scale production in bioreactors and
differentiation/purification protocols, sufficient quantities of essentially
pure human cardiomyocytes can be produced according to GMP
requirements and applied in the engineering of heart muscle.19

Human EHM rings and patches19–21 as well as human engineered
heart tissue strips22 from human embryonic (hESC)- and hiPSC-derived
cardiomyocytes could be implanted and used to partially repair large
muscle defects in rat and guinea-pig hearts. These studies collectively
demonstrated long-term cardiomyocyte retention (>200 days), matura-
tion, graft vascularization, and a variable degree of proliferation; further
electrical coupling to the host myocardium was observed in some, but
not all investigated guinea-pigs,22 in line with earlier studies demonstrat-
ing the isolation of human engineered muscle xenograft grafts by scar
formation in athymic rats.23 Three-dimensional culture and maturation
of hiPSC-cardiomyocytes can be stimulated in clinical scalable 3D cul-
tures, displaying robust electromechanical coupling, consistent H-zones,
I-bands, and evidence for T-tubules and M-bands, and there is a general
agreement that engineered three-dimensional heart muscle cultures
achieve a greater resemblance to bona fide human myocardium in com-
parison to standard 2D monolayer cultures.21,22,24–33 Several specific
interventions have been identified to improve the maturation of hPSC-
derived cardiomyocytes including (i) addition of thyroid hormone,34

(ii) application of electrical stimulation,33,35,36, (iii) mechanical
loading21,27,37–39, or (iv) co-culture with cardiac-specific cell types includ-
ing endothelial cells22 and cardiac fibroblasts21,31,40–42 or a mixture of
fibroblast-like stromal cells.37,43 A good understanding of the optimal
cellular make up as well as reliable quality markers for cardiomyocytes
and non-myocyte maturation should be instrumental to further improve
the sophisticated architecture and function engineered myocardium.

Current protocols mainly give rise to ventricular-like cardiomyocytes.
Going forward, the field would benefit from the development of precise,
directed standardized protocols for cardiomyocytes subtype specifica-
tion and functional maturation. Accordingly, several steps have been
taken, including the formation of atrial myocytes specification,44 epicar-
dial progenitor cells,45,46 and sinoatrial node cells.47 Recently, protocols
for the engineering of EHM with distinct atrial and ventricular properties
have been reported.48 Non-cardiomyocytes are included in most TE
studies—either by their addition or by a contamination of the cardio-
myocyte pool. Whether and in particular how they contribute to tissue
assembly, maturation, and survival after implantation needs further
mechanistic studies. It seems clear that endothelial cells can support
angiogenesis49 and fibroblasts contribute to extracellular matrix (ECM)
homeostasis as well as its viscoelastic properties.21 In addition, there is
certainly paracrine cross-talk which may be instrumental in the heart
muscle tissue formation process.

Additional open questions include: Are there any circumstances in
which non-cardiomyocytes can be damaging to graft or host? Is there an
ideal mixture of cardiomyocytes with the multiple stroma cell species
found in the healthy heart? Recently Gao et al.50 reported the use of hu-
man induced PS derived cardiomyocytes (hiPSC), smooth muscle cells
(hiPS-SMC), and endothelial cells (hiPS-EC) that were mixed into a fibrin
scaffold for 7 days to create a cardiac muscle patch. The patch was used
to cover an infarct area in a pig heart. Beneficial effects, likely mediated
by paracrine cross-talk, were observed after 4 weeks.50 It is clear that
the proximity between capillary endothelial cells and cardiomyocytes in
the healthy adult heart has a functional role beyond lining of the capil-
lary,51 which includes pro-angiogenic paracrine signalling.52

2.2 Cells and their requirements for
TE-directed endogenous regeneration
Cells committed to a cardiac lineage such as right ventricle-derived car-
diosphere-derived cells,53 bone marrow-derived MSC engineered to
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express cardiac transcription factors,54 and ESC-derived cardiac progeni-
tor cells55 may be used in TE to stimulate endogenous regeneration by
the release of paracrine factors. ESC/iPSC-derived cells carry the risk of
teratoma formation due to contamination with residual pluripotent cells
that have not responded to lineage-specific instructive cues, and there-
fore have retained their state of uncontrolled proliferative potential. To
avoid this contamination, a selection step based on surface antigens is
mandatory for obvious safety reasons.56 From a translational point of
view a more realistic approach is to control the differentiation and prolif-
eration processes properly to exclude the presence of teratogenic cells.
With regards to the prediction of the efficacy of cells to be used for TE, a
cardiopoietic index was recently established.57 This biomarker-based in-
dex relies on canonical cardiac transcription factors employing gene ex-
pression profiles as a means to assess the regenerative quotient of
patient-derived cells.

2.3 Allogeneic vs. autologous cells
The use of allogeneic cells is preferential over autologous cells since they
are not exposed to patient risk factors (i.e. age, diabetes mellitus, and
smoking), known to impair the potential of autologous stem cells58 and
allow off-the-shelf use: streamlined logistics, consistency and immediate
availability of the product and guaranteed dosage. However, allogeneic
cells will always induce an immune response. Alloreactivity depends on
foreign peptide presentation by major histocompatibility complex
(MHC) on antigen presenting cells and detection by T cells59 and can be
modulated by T cell suppressors, including calcineurin inhibitors (cyclo-
sporine and tacrolimus are commonly used) and corticosteroids.
Immunosuppressive treatment is associated with a number of unwanted
effects, including hypertension due to kidney damage, transaminitis due
to liver damage, an increased risk for infections, and if used long term
with malignancies). These are the same risks heart transplant patients
are exposed to and have been proven to be manageable. An alternative
strategy to avoid the need for long-term immunosuppression is modula-
tion of the innate immune system. A very recent paper from Braza
et al.60 demonstrated the feasibility of promoting long-term organ trans-
plant acceptance by inhibiting macrophage activation with nano
therapeutics.

Another strategy to prevent allogeneic cell transplantation-related im-
mune rejection is the use of MHC-matched donor cells or to engineer
grafts with immune tolerant properties such as recently demonstrated
by a functional HLA knock-out via beta-2-microgbulin (B2M) deletion
with subsequent insertion of a B2M-HLA-E fusion to overcome T- and
NK-cell mediated killing.61 Although similarly appealing as autologous
cells from the immunology point of view, these cells will be more difficult
to eradicate if unwanted side effects occur, because they will not be
detected as foreign by the endogenous immune system. A potential
strategy for eradication of immune tolerant cells is the use of suicide
genes, as pioneered by Malcom Brenner and Helen Heslop for treatment
of graft vs. host disease following adoptive cell therapy.62

Systematic review and meta-analysis of cell therapy in large animal
studies concluded effects of autologous and allogeneic cell therapy for
IHD were similar, irrespective of immunosuppressive therapy63 which
can be taken as an additional indirect evidence for a similar cell loss with
predominantly paracrine mechanisms of action in the reported studies.

In the context of TE, strict immunologic monitoring as well as for ex-
ample monitoring circulating cell-free allograft DNA64 will be helpful to
if needed adapt immune suppression protocols for enhanced graft sur-
vival. It appears likely that a differentiated use and need for

immunosuppressive therapy and MHC matching will depend also on the
cell type and TE approach used.

For a TE strategy directed at stimulating cardiac endogenous regener-
ation via paracrine effects, a short-term immunosuppressive treatment
would be recommended with the premise that the transplanted cells
would be likely short-lived and act via paracrine signalling.18 This short-
term immunosuppressive regime is underscored by the finding that al-
though allogeneic cells are expected to be eliminated more rapidly than
autologous cells, their transient presence shortly after transplantation is
sufficient to yield equivalent long-term benefits.65 In the case of TE-
directed remuscularization with iPS- or ESC-derived cardiomyocytes,
durable engraftment of the cells/graft is required along with long-term
state-of-the-art immunosuppressive therapies. MHC matching of iPS-
derived cardiomyocytes has been shown to enhance cell engraftment in
non-human primates.66 Translated to patients, a large repository with a
variety of MHC-homozygous stem cell lines, collected from donors or
engineered, may solve this issue.67

3. Methods for engineering
myocardial tissue

As indicated, major hurdles to therapeutic applications have been ob-
served, including low cellular survivals, and poor localization to the target
area. To further facilitate integration and prolonged activities, several
approaches are under development that each have various properties
and advantages. These approaches include (i) seeding of cells on pre-
formed scaffolds, (ii) self-assembly of cells in hydrogels, and (iii) cell sheet
engineering (reviewed in ref.68,69).

3.1 Hydrogels
Hydrogel-based injection and TE are promising techniques in which hy-
drophilic structures are used, made of either synthetic or natural poly-
mers, which can assemble into a three-dimensional polymeric
network.70 Hydrogels have a high number of essential scaffold require-
ments, including the exchange of oxygen, nutrients and metabolites due
to their porosity and the possibility of including growth factors and other
molecules to mediate cross talk between cells.71 However, in general
the hydrogel structures lack structural supportive characteristics and the
correct stiffness of cardiac materials.72

3.2 Engineered myocardial tissue
Engineered myocardial tissue can be used to aim at the restoration and
improvement of cardiac function in terms of tissue regeneration, as indi-
cated above, however, they can also be used to develop three-
dimensional in vitro models able to mimic the native heart muscle.
Construction of engineered heart tissue/muscle (EHT/M) was pioneered
and continuously developed by the laboratories of Eschenhagen and
Zimmermann21,73–76 and became widely used recently.49,77–79 To this
end, a range of innovative three-dimensional culture in vitro systems for
cardiac disease modelling has been developed. In both approaches over-
lapping characterizations are needed, including the presence of (i) native-
like biochemical, electrophysiological, and mechanical cell-ECM and cell–
cell interactions, (ii) dynamic in vivo like conditions such as fluid flow and
shear stress, and (iii) correct cell characteristics and morphologies and
structural micro-architectures.
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3.3 Extracellular matrix
In addition to the cellular components of myocardial tissue, the ECM is a
major player in normal cardiac functioning and homeostasis and cellular
behaviour. Ideally, a hydrogel or engineered construct should perfectly
mimic native cardiac ECM and provide a physiological micro-
environment for cells. The cardiac ECM consists of a complex network
of structural and non-structural (matricellular) proteins, of which three-
dimensional hydrogel scaffolds have been generated from decellularized
cardiac ECM80 and used as injectable biomaterial for myocardial repair,81

currently under clinical investigation (NCT02305602).
In addition to the native cardiac ECM, naturally occurring ECM pro-

teins are suitable materials to be used as a hydrogel-based scaffold in car-
diac TE due to their bio-mimicking and bioactive properties.82 Some of
the frequently used hydrogels from natural sources include collagen,21

fibrin,35 gelatin,83 hyaluronic acid,84 and alginate.10 Matrigel was originally
introduced as being supportive in the engineering of rat EHT76 with also
subsequent application in human TE, but will not be applicable in clinical
applications.

While the primary advantage of these materials is to maintain trans-
planted cells alive in the myocardium and retain them in situ following
transplantation, a potential shortcoming is the possibility that even small
modifications of local mechanical compliance could activate fibrosis due
to the emerging stiffness-sensitivity of myocardial resident stromal
cells.85 This problem may be overcome by finely controlling the visco-
elastic properties of the materials employed to encapsulate cells, or by
providing them with sufficiently controlled level of degradation to avoid
changes in myocardium compliance. In this respect, employment of ‘bio-
ink’ materials, such as gelatin methacryloyl (GelMA) hydrogels, whose
stiffness may be easily adjusted by, e.g. pre-injection photo-polymer-
ization86 offer a new opportunity for advanced myocardial TE
applications.

3.4 Cell sheets
Alternatively, non-cardiomyocytes can be employed for endogenous
ECM production, resulting in a replacement of exogenous scaffold mate-
rial.87 Similarly, in cell sheet engineering88 it is well established that cell-
secreted ECM plays a key role in sheet assembly and epicardial connec-
tion after implantation.89 Cell sheet engineering makes use of
temperature-responsive polymer surfaces to enable the controlled re-
lease of cell monolayers; free-floating sheet of cohesive cells that can, for
example, be placed onto the epicardium with or without stiches.89 Using
this approach 3–4 monolayers can be fused without a palpable core ne-
crosis. The cell sheet approach can be applied to all cell types, which are
capable of forming a biomechanically interconnected monolayer, such as
cardiomyocytes for contractile support and non-myocytes for the deliv-
ery of secreted factors.90–92 This technology has been recently tested
clinically for the delivery of skeletal myoblasts to the failing human
heart93 and is presently further exploited for the delivery of allogeneic
iPSC-derived cardiomyocytes.94 Issues with this approach are the frailty
of these sheets which may cause their folding or tearing during manipula-
tions and the limited number of sheets which can be stacked on each
other without cell death.95

3.5 Biofabrication
The major concern with classical TE, which entails the seeding of pre-
fabricated scaffolds with cells, is that only inhomogeneous cell densities
can be achieved, because of the cells propensity to remain at the scaf-
folds surface, and thus only weakly contracting cardiac tissues can be

fabricated. This caveat may not apply to the delivery of non-
cardiomyocytes with a primary mode of action related to their paracrine
activity. In hydrogel approaches, cell content is typically more homoge-
neous, and anisotropic growth is typically guided by mechanical stimuli.
A better understanding of how to achieve dense anisotropic muscle
structures with capillarization would be important for the development
of the next generation of tissue-engineered products. Accordingly, tre-
mendous effort is invested into improved biofabrication technologies
combining additive manufacturing techniques with cell printing to create
hierarchical tissue-like structures; commonly known as three-
dimensional printing.96,97 In principle, biofabrication allows the produc-
tion of cardiac tissues layer by layer utilizing multiple print heads and inks
(e.g. shear thinning gels) containing distinct cell-types. In this way, various
parameters can be controlled such as correct cellular composition, the
positioning of various cell-types and materials, vascularization, and the in-
corporation of bioactive substances.98 Currently, the field focusses on
improving the hardware, to provide more additional gels for printing,
and to include materials that can change their shape after printing upon
defined stimuli (4D biofabrication) to generate for example vascular-like
networks.99,100 Although promising and potentially very versatile in its
applicability, it remains a key challenge to printing tissues at meaningful
dimensions for heart repair applications.

4. How biomaterials and myocardial
engineering can influence cell
therapy in the repair and
regeneration of the heart

Two substantially different strategies can be endeavoured in myocardial
TE: (i) cell-based methods in which differentiated myocardium tissue
patches, or progenitor cells ‘niches’, can be implanted directly in areas
lacking contractile tissue; or (ii) in situ strategies, in which composite bio-
materials (cells þ ECM) may be designed to support the regeneration
capacity of endogenous myocardial cells.

4.1 Cell-based methods
For clinical translation, the first discussed strategy requires not only
fine-tuning of materials/cells combinations to recapitulate the physiol-
ogy of the normal tissue environment, but also an enhancement of the
propensity for electromechanical and vascular coupling with the re-
cipient myocardial tissue. The latter aspect is crucial to promote sta-
ble patch engraftment and coordinated action potential propagation
from pre-existing myocardium (reviewed in ref.80). A second problem
inherent to the generation of myocardial patches concerns the status
of cell maturity inside the engineered grafts. Commonly used stem or
progenitor cell derivatives have a variable level of proliferation and
phenotypic immaturity, which results in the formation of rather imma-
ture muscle in vitro. Maturation occurs after implantation in vivo, ren-
dering the cells indistinguishable from native myocardium in an
allograft setting.13 Whether similar factors would drive human cardio-
myocyte maturation in the diseased heart remains an open question.
Data on advanced maturation after implantation even in a xenograft
setting suggest that similar maturation capacities exist in human PSC-
derived cardiomyocytes.19,69 The underlying process of in vivo matura-
tion are however not well understood and further optimization of en-
gineering paradigms may benefit from further mechanistic insight. A
possible implementation of engineering systems to overcome these
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shortcomings may consist in using biomaterial fabrication criteria sup-
porting coordinated multi-layered vascular and myocardial cell
growth,100 systems favouring electro-mechanical coupling of cells in
the patch101,102 and, finally, materials with defined biophysical charac-
teristics (e.g. stiffness) promoting maturation of myocyte action po-
tential propagation.103

An emerging area of interest in myocardial engineering is the
modelling of the so-called cardiac niches, which can be defined as indi-
vidual ‘functional units’ that include spatially prearranged biochemical/
biophysical information. These functional units can instruct the
coordinated differentiation of stem/progenitor cells into terminally
differentiated cardiomyocytes, while maintaining stable amounts of
self-renewing cells in its core.104 By exploiting the natural stem/pro-
genitor cardiogenic differentiation process, this strategy may lead to a
new ‘organoid’-based approach to cardiac (re)generation.105 In case
standardization and scalability will be demonstrated, this method
could be employed to produce large amounts of allogenic or even
personalized tissue ‘building blocks’, that could be transplanted into
the recipient myocardium using appropriate delivery systems. Trans-
endocardial injection guided by real-time electrophysiology myocar-
dial mapping (e.g. NOGA4) is an example of delivery systems, with the
caveat that endocardial deliveries of a bulk material need a careful
safety assessment because of the potential of systemic embolization
of the material end-products. An alternative without this limitation is
the percutaneous delivery of tissue-engineered products with a
shape-memory onto the epicardium.106

4.2 In situ strategies
A systematic investigation of the conditions promoting stem/progenitor
cells cardiogenic differentiation could either lead to improved existing
regenerative approaches by ‘combining’ materials/cells, or even cell-free
in situ strategies. A first possibility is offered by embedding therapeutic
cells into unstructured biomaterials (e.g. hydrogels) and combining them
with survival/cardiogenic factors which may preserve their vitality, prolif-
eration and/or enhance differentiation capacity in the potentially hostile
environment.107 In a second formulation, the injection of ‘smart’ materi-
als that instruct in situ cellular specifications has been demonstrated, at
least at a proof of concept level.108 In this formulation, the therapeutic
approach could consist of hydrogels containing instructing signals for car-
diac cell reprogramming (e.g. slowly releasing miRNAs109), or stem cell-
derived secretome survival factors.110 In the case where the combination
of materials/bioactive factors includes formulations with stiffness charac-
teristics consistent with myocardium elasticity,111 materials making them
electrically conductive102,112 or topologically arranged substrates,113

there will be valuable options to operate cell-free cardiac regeneration
that could lead to the delivery of clinically effective therapies. In fact,
these applications would not only boost the inefficient myocardium re-
generation process,114 but would also permit a coordinated and
spatially-organized regeneration of myocardial contractile tissue in areas
where cardiomyocyte death and myofibroblast-dependent fibrosis typi-
cally limit the replacement with new contractile cells. In this regard, the
inclusion of materials (e.g. silk-derived proteins115) or drugs (e.g. anti-
inflammatory molecules116) capable of suppressing pathways mediating
the early inflammatory response leading to myofibroblast activation in
response to myocardium damage, or of stimulating cardiomyocyte cell-
cycle re-entry in the myocardium,116,117 could be effective enhancement
strategies limiting the extent of post-ischaemic damage and, at the same
time, promoting cardiac regeneration.

4.3 How to prevent inflammatory/immune
reactions in the host environment
One of the most important challenges in the field of cardiac TE is to
avoid adverse foreign-body host immune response to implanted scaf-
folds. Novel biocompatible, immunomodulatory biomaterials can reduce
the foreign-body response and improve engraftment.118 Furthermore,
because inflammation is a critical component influencing cardiac regener-
ation,118,119 immunomodulation by smart biomaterials is a potential
strategy to overcome this major challenge in cardiovascular regenerative
medicine. The modification of the physicochemical properties of bioma-
terials can modify the host inflammatory response, which can improve
biomaterial integration and their interaction with immune cells including
the reparative cells such as macrophages and MSC, as well as the con-
trolled delivery of anti-inflammatory small molecules and cytokines.118

5. Cell-free (secretome) approaches

5.1 Acellular biomaterials
These cell-free materials include the use of material itself for directing
cardiac responses or as delivery vehicles for biologics. The material is
typically natural (e.g.: alginate, collagen, hyaluronic acid, chitosan, decellu-
larized ECM), or less commonly, a synthetic polymer (reviewed in
ref.120). The proposed mechanisms of benefit include reduction of wall
stress by mechanical support, and modulation of host cellular responses
including inflammation, neovascularization, fibroblast activity, stem cell
recruitment, and protection against cell death. The potential advantages
of this approach are that it is cost-effective, localized (vs. systemic), and
avoids the need to consider cell survival in the injected biomaterial. The
method of delivery is an important factor, with injectable methods that
have the advantage of a minimally invasive delivery route, though the
need for injection confers several design limitations on the gels.120 To
date, results of the few clinical trials of acellular biomaterials have been
mixed.121–123 Another promising approach is the injection of
VentriGelTM (Ventrix), an injectable hydrogel derived from porcine
myocardial ECM, which showed benefits in pigs81 and is currently in a
Phase I clinical trial in patients with HF post-myocardial infarction (MI)
(NCT02305602).

Biomaterials can be used to deliver biologics such as growth or sur-
vival factors. This places further limitations on the biomaterial, necessi-
tating carefully controlled rates of degradation and release. In a
successful example, an epicardial collagen patch was used to deliver re-
combinant follistatin-like 1 (Fstl1), stimulating cardiomyocyte prolifera-
tion, and improving cardiac function and survival in mouse and swine
models of myocardial infarction.124 To improve the localization and re-
tention in the heart once the factors are released, the biomaterial can be
modified to bind the factors. This approach has seen some success in
small and large animals,120 but clinical translation may be limited by the
expense of synthesizing and incorporating peptide growth factors.

5.2 Exosomes and microvesicles with
biomaterials
The secretome of stem cells contains a rich cocktail of growth factors
and other pro-regenerative molecules including extracellular vesicles
(EVs) such as exosomes and microvesicles.125 In fact, the secretome may
mediate much of the benefit in cardiac function that has been observed
after the injection of stem cells into the heart, via mechanisms that in-
clude paracrine stimulation of pro-angiogenesis pathways, alterations of
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macrophage phenotype and anti-fibrotic effects.3,126 In a recent head-to-
head comparison, EVs from human cardiovascular progenitors outper-
formed the cells themselves at improving cardiac function in mice with
HF post-MI.127 Although some long-lasting benefits have been observed
after a single injection of EVs, it may be presumed that controlled release
of the secretome from an injected biomaterial would allow for maximum
and/or prolonged benefit.128 Although there are few studies using this
approach to date, its feasibility has been demonstrated by the use of a hy-
drogel based on polyethylene glycol (PEG), end-modified with ureido-
pyrimidinone moieties to deliver growth factors in the soluble phase
with no exosome delivery to pig myocardium.129,130 A gelatin and lapon-
ite nanocomposite hydrogel has been used to deliver the complete
secretome of human adipose-derived stem cells (hASC) to the peri-
infarct myocardium of rats, and was found to reduce relative infarct size
after 21 days recovery, and significantly improve EF.110 Finally, in a small
feasibility study in patients, hESC-derived cardiovascular progenitors
were encapsulated in a fibrin patch which was then sewn to the epicar-
dial surface of the hearts of six patients with HF. Although this was a
safety study, an improvement in cardiac regional systolic contractile func-
tion was seen, which was most likely mediated via secreted paracrine
factors.55

6. Modes of cell applications and
retention with biomaterial carriers

6.1 In vitro and in vivo engineering and the
three routes of cell delivery
The ideal strategy to deliver cells in biomaterial carriers depends on mul-
tiple factors including features of the diseased heart (type of cardiomy-
opathy, location of scarring), the clinical setting [e.g. whether or not it is
combined with coronary artery bypass grafting (CABG)], biomaterial
characteristics, and to a lesser extent cell characteristics. The actual TE
process can take place in vitro where the cells are seeded or grown into a
pre-formed structure, or in vivo after injection of cells in conjunction with
a biomaterial. The stimulation of endogenous repair by transplanted
cells, or the direct reprogramming of other cell types into cardiomyo-
cytes, is sometimes also referred to as in vivo TE.

IM injection can be performed via the endocardial or epicardial route.
The epicardial route is the only one that allows direct visualization, and
therefore, usually used in preclinical (small animal) research or in combi-
nation with open chest surgery, most often CABG for ischaemic cardio-
myopathy. The endocardial application, via a percutaneous approach, is
less invasive and allows for precisely targeted therapy if a special electro-
mechanical mapping system (e.g. NOGA) is used, although these map-
pings have their limitations in their anatomical visualizations. The
transvenous approach represents a combination of the two techniques,
as cells are injected through a coronary vein puncture131 under
IntraVascular UltraSound guidance. IM injection thus has the advantage
of delivery to a specific location but the risk of rapid wash-out of cells via
venous drainage is high8 and should be overcome with suitable
biomaterials.

The epicardial application can also be in the form of an engineered tis-
sue patch that is sutured on top of the heart. This ensures an excellent
cell retention mechanically, but electromechanical integration via this
route may be more challenging and the technique currently depends on
open chest surgery. Future technical developments should allow for less
invasive epicardial (and potentially endocardial) application, parallel with

developments in minimal invasive valve surgery. Intracoronary infusion is
minimally invasive and easy to perform with standard catheterization lab
equipment, but caution should be taken not to induce embolization, es-
pecially when thicker biomaterials are used. In addition, the coronary ar-
teries may be inaccessible due to the nature of the disease. The
interstitial retrograde coronary venous infusion may then serve as an al-
ternative. It is performed by placing a balloon-catheter in the coronary si-
nus or one of the coronary veins and occluding the distal side
temporarily to allow the cells to disseminate into the heart.132 In each
case, the cells need to be able to migrate across the microvascular endo-
thelium to reach their planned site of action. Finally, because repeated
dosing may be required to achieve a maximal therapeutic benefit,133 less
invasive approaches likely need to be considered and in this setting it
might be worth further investigating the intravenous route.

6.2 Injectable hydrogels
Non-gelated, switchable hydrogels can be administered using a syringe
and incorporated into any catheter-based application. Cells, and addi-
tives such as growth factors, are suspended in or co-injected with the liq-
uid material provided it features visco-elastic properties allowing it to
take a liquid form as the shear stress increases. The solution should be
designed to polymerize/crosslink quickly after arrival in vivo in the heart,
usually due to pH or temperature change, and remain stable afterwards
to prevent embolization. Degradation should occur without toxic
byproducts.131 This has been reported to enhance cell retention signifi-
cantly and possibly improve differentiation and functional effects in pre-
clinical models.107

6.3 Porous scaffolds
Therapeutic cells can be grown into a three-dimensional construct on a
porous or fibrous scaffold, which usually needs additional treatment to
maximize cell attachment.69 In cell sheets, usually cardiomyocytes or
progenitor cells are combined with support cells which enhance tissue
organization and robustness.134–136 Until now, patches have been placed
on the epicardial side of the myocardium via open chest surgery but the
development of less invasive techniques may change this requirement in
the future.

6.4 Microcapsules
Sized in the order of hundreds of microns or less, microcapsules consist
of cells encapsulated with nanoporous materials.137 The capsules pro-
tect the cells from recognition by the immune system and may enhance
the long-term paracrine action of the transplanted cells. Although intra-
coronary infusion of encapsulated glucagon-like peptide-1-eluting mes-
enchymal stem cells preserved left ventricular function in a porcine
model of acute MI, the suggestion of coronary occlusion halted these
preclinical studies. For cardiac applications, biodegradable hydrogels
such as gelatin seem most appropriate.9 So far, application has been via
IM injection due to the size of the cell-laden capsules and the necessity
to pass the endothelial barrier in intravascular routes. On top of micro-
capsules or carriers, also (mixed) aggregates138 of iPSC-cardiomyocytes
in capsules is a potential route to improve cellular retention and thereby
increase myocardial function.139

7. Towards clinical applications

The clinical use of tissue-engineered constructs in myocardial regenera-
tion is still at an early phase. Although the regulatory framework needed
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to achieve authorization of a tissue engineering product is similar to that
of cell-based therapy, the combination of cells and materials in an ad-
vanced therapy medicinal products will require more stringent quality
criteria, and therefore, more advanced preclinical testing before it can be
approved. This includes a careful assessment of potential benefits and
obvious risks in a well-defined patient population and ultimately also eco-
nomic considerations.136,140

7.1 Factors influencing results/limitations
In fact, although effective carrier materials and/or engineering
approaches may enhance cell or tissue retention, the problems with
sources of autologous cell and survival in the host tissue remains prob-
lematic, similarly to any cell-based therapies. The quality and number of
cells may diminish in patients who are older or have comorbidities (to-
gether with specific medications for the comorbidity) or genetic defects.
Moreover, cell/tissue survival is also effected by the host tissue environ-
ment with comorbidities, aging, gender, etc. (for review, see ref.3).
Unfortunately, little is known about the effect of major comorbidities
and risk factors on quality of cell source and cell survival in the host
tissue.141,142

Other limitations are the logistics and high costs of such advanced
therapy medicinal products as well as the failure of many biomaterials to
meet translationally relevant requirements. The first in man phase one
trials using products of TE will require dedicated GMP-production and
clinical infrastructure for the implantation procedure and follow-up.
GMP-production according to the relevant regulatory demands would
for preclinical trials ideally be at one site to ensure quality and compara-
bility of a TEP. This will be particularly important in case of multicentre
studies. This requires qualified protocols and carriers for TEP delivery to
the point-of-care. In this context, recent data on transatlantic shipping of
EHM without an apparent loss in potency and quality is encouraging.19

Early clinical trials would also in light of the high costs associated with the
set-up of GMP-production clearly be facilitated by single production
units. If later phase clinical testing and market authorization is considered
based on compelling clinical data, production logistics will have to be
reconsidered. A general concern is related to the high cost of advanced
therapy medicinal products in general, leading to their withdrawal from
the market despite approval by the European Medical Agency (EMA)
and no safety or efficacy concerns.143 Thus, setting up cost effective pro-
duction processes will be at least as important as compelling data from
clinical trials.

7.2 Potential risks: arrhythmias, tumour
development, rejection, calcification
Since myocardial tissue is subject to the coordinated propagation of
electromechanical stimuli, the development of arrhythmias is a key risk
for all cell therapeutics and especially so for conductive myocyte-
containing therapeutics. This caveat has been clearly recognized as clini-
cally relevant in the first clinical trials on skeletal muscle cells for heart
remuscularization.144 A number of important preclinical large animal
studies have further underscored this risk in case of the application of
cardiomyocytes.16,145,146 Conversely, a recent study on fibrin-patch me-
diated delivery of ESC-derived cardiac progenitors did not provide evi-
dence for arrhythmia,18 which is in line with the primarily secretome
associated mechanism of action but also suggests that avoidance of IM
punctures may mitigate the risk of uneven integration of the grafted cells
and the attendant predisposition of inhomogeneous coupling at the
graft-host interface to trigger arrhythmias.

Potential risks that could constitute a serious obstacle to the clinical
translation of tissue-engineered myocardium could arise from uncon-
trolled proliferation and unwanted differentiation of cells in the con-
structs that may lead to, e.g., tumour formation in case of iPSC/
ESC,147,148 or to calcification of the host myocardium by MSC.148 These
issues remain essentially the same as those of classical cell-based cardio-
myoplasty approaches, with the caveat that an increased efficiency of cell
survival and engraftment, resulting from embedding cells into hydrogels
or structured tissue patches, could enhance the risks of side effects.
Another relevant issue that may need to be solved is the problem of
immune-rejection against cells/materials combinations. In this regard, the
materials causing no inflammatory or foreign body reactions would be
ideal (reviewed in ref.149). This class of materials includes, (i) naturally de-
rived polymers with an innate anti-inflammatory activity (e.g. silk), (ii)
ECM matrix components deriving from decellularization or
lyophilization procedures, or finally, (iii) materials with controlled release
of anti-inflammatory/immune-suppressive molecules. A final strategy,
which can be used for cardiac TE with allogenic cells could derive from
the exploitation of cell combinations that maximize the suppression of
immune responses in vivo.150

7.3 Safety, regulatory and ethical
frameworks related to the use of tissue
engineering products in myocardial repair
According to the EMA classification (EC No. 1394/2007), tissue-
engineered constructs and combinations of cells/biomaterials fall in the
definition of advanced therapy medicinal product. A conceptually similar
definition (Human Cells, Tissues, or Cellular and Tissue-Based Products
HCT/Ps) is adopted by the Food and Drug Administration in United
States.151 In either cases, the adoption of stringent quality criteria comply-
ing with the Good Manufacturing Practice (GMP) production under a
manufacturing authorization by the local competent authority is the basis
to ensure standardization, safety, traceability, and potency of the final
product. Recognizing the diverse nature of advanced therapy medicinal
products, including the tissue-engineered products (TEP), EU guidelines
(e.g. Guidelines on Safety and Efficacy Follow-up: Risk Management of
Advanced Therapy Medicinal Products—EMEA/149995/2008) provide
guidance as to how to (i) ensure quality of the production process, (ii)
evaluate potential risks, and (iii) demonstrate potency and efficacy of the
final product with in vitro/in vivo tests. Issues that are particularly recog-
nized include: (i) ‘transmission of infectious agents to the patient and to close
contacts’, (ii) ‘graft dysfunction and/or rejection’, (iii) ‘induction of autoimmunity
or immunogenic reactions’, (iv) ‘induction of malignancies’, and (v) ‘impossibility
of discontinuing or removal of the product’. In case of cell/materials combina-
tions, the same guideline additionally recommends specific testing of
biodegradation and mechanical factors, thus asking for an evaluation of
long-term patient/graft interactions possibly affecting the graft perfor-
mance at long term. These latter recommendations may be particularly
important for setting myocardial therapy using, for example, cellularized
patches. These patches should, alternatively, be produced with fully bio-
absorbable materials, able to release therapeutic cells without eliciting in-
flammatory responses secondary to material degradation, or be designed
to resist to biodegradation, thereby prompting a full functional integration
in the host’s myocardium. Finally, each TEP has to be evaluated by the re-
sponsible regulatory authority to specify the required manufacturing and
preclinical strategy before embarking on first-in-patient trial.

At the time of the preparation of our current paper, the available
EMA ‘Scientific Recommendations’ lists (www.ema.europa.eu/ema/in
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dex.jsp?curl=pages/regulation/general/general_content_000301.jsp&mid
=WC0b01ac05800862c0) the following advanced therapy medicinal
products for myocardial regeneration, such as e.g. autologous/allogenic
hematopoietic stem cells (CD34þ/CD133þ), adult bone marrow/adi-
pose tissue-, or placental (Wharton Jelly)-derived mesenchymal stem
cells, none of which is based on material/cells combinations.

7.4 Ongoing clinical trials
We are aware of six clinical trials (according to www.clinicaltrials.gov),
which have been organized up to date with a TE approach in myocardial
repair. In Table 1, we report the five clinical trials according to www.clini
caltrials.gov. In an actively recruiting trial, a CorMatrixTM ECM sheet is ap-
plied on the epicardium of patients undergoing bypass implantation after
an acute ischaemic event. This study was corroborated by a preclinical in-
vestigation performed in pigs supporting the cardioprotective and pro-vas-
culogenic effect of the matrix. In another recently completed trial, a
combination of allogeneic embryonic stem cell-derived cardiac progenitor
cells and fibrin was employed to create an engineered tissue patch that
was sutured to the necrotic portion of the ventricle cover by a pericardial
flap. Results of this study in six patients were recently published,18 and
showed a promising outcome as to safety (the primary endpoint of the
trial) and hints supporting the concept of functional recovery of the heart.
In a different approach, therapeutic material (a myocardium specific ECM
matrix) is delivered inside the myocardium using a minimally invasive pro-
cedure. In this case, the choice of the regions of the myocardium to be
treated is guided by the mapping of myocardial viability, available by elec-
tric voltage mapping (e.g. NOGA system). The clinical trial approved in
Japan and previously mentioned (see Section 4.3) is registered in the
Japanese clinical trial registry. It will for the first time test human iPSC-
derived cardiomyocytes implanted epicardially as cell sheets in patients
with HF. As such it is a follow-up study to the completed skeletal myo-
blast cell sheet trial by the same group of investigators.93 The propensity
for arrhythmia induction and tumour formation as well as immune
responses to the allograft will have to be monitored carefully. Following
the fast track developmental strategy of the Japanese government, the
study is planned to be performed in three patients under a conditional ap-
proval of the cardiomyocyte cell sheet for application in HF repair.94

8. Recommendations

• The application of non-myocytes appears to be safe in patients with
IHD and HF, but so far largely ineffective. Low cell retention at the
site of injury and false expectations as to the outcome of the mostly

small clinical trials, which were naturally designed to test for safety
and feasibility, but often misinterpreted as efficacy trials, contributed
to the perception of futile outcome. These underpowered trials were
successful in all cases, but not designed with sufficient power to test
efficacy. Sufficiently long retention of the biologically active constitu-
ent, i.e. either cardiomyocytes or cells with paracrine activity, must be
ensured to render tissue-engineered products effective in the remus-
cularization/regeneration of the failing heart;

• TE strategies should be further explored and optimized as they offer
means to significantly enhance cell retention at the site of injury.

• Advanced preclinical development including manufacturing of tissue-
engineered products should be in close interaction with the relevant
regulatory authorities to be in-line with regulatory demands. In addi-
tion to an agreement on the GMP-manufacturing process this also
includes a detailed discussion of typically rodent and large animal
experiments.

• Further refinement of TE strategies, including the testing of three-
dimensional printing, are attractive to optimize the biological activity
of tissue-engineered products, i.e. either contractile performance or
secretome activity or both, to continuously develop the next genera-
tion tissue-engineered products as well as strategies for their optimal
administration.
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Table 1 Ongoing human clinical trials for cardiac tissue engineering

Clinical trial name Material/cells/tissue Trial identifier

www.clinicaltrials.gov

Phase (enrolled

patients)—

(publication)

Epicardial infarct repair using CorMatrixVR -ECM:

clinical feasibility study (EIR)

CorMatrix-extracellular matrix NCT02887768 Phase 1119

Transplantation of human embryonic stem cell-derived

progenitors in severe heart failure (ESCORT)

Human ESC-derived progenitors

embedded into a fibrin patch

NCT02057900 Phase 157,116

A study of VentriGel in post-MI patients VentriGel extracellular matrix hydrogel NCT02305602 Phase 1 (recruiting)

Myocardial assistance by grafting a new bioartificial

upgraded myocardium (MAGNUM trial)

Collagen matrix seeded with bone marrow cells NCT01429415 Completed140
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13. Didié M, Christalla P, Rubart M, Muppala V, Döker S, Unsöld B, El-Armouche A,
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Armouche A, Lehnart SE, Vunjak-Novakovic G, Zimmermann WH. Physiologic
force-frequency response in engineered heart muscle by electromechanical stimula-
tion. Biomaterials 2015;60:82–91.

30. Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic
G. Biomimetic perfusion and electrical stimulation applied in concert improved the as-
sembly of engineered cardiac tissue. J Tissue Eng Regen Med 2012;6:e12–e23.

31. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered
cardiac patch for advanced functional maturation of human ESC-derived cardiomyo-
cytes. Biomaterials 2013;34:5813–5820.

32. Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripo-
tent stem cell-derived cardiomyocytes. Circ Res 2014;114:511–523.

Tissue engineering and cell-based therapies for cardiac repair in ischaemic heart disease and heart failure 497

Deleted Text: grant no. 
Deleted Text: grant 


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
33. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song LJ, Sirabella D, Morikawa K,

Teles D, Yazawa M, Vunjak-Novakovic G. Advanced maturation of human cardiac
tissue grown from pluripotent stem cells. Nature 2018;556:239–243.

34. Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ,
Ruohola-Baker H, Murry CE. Tri-iodo-l-thyronine promotes the maturation of hu-
man cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol
2014;72:296–304.

35. Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Börnchen C, Müller C, Schulz H,
Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther PK, Hansen A,
Eschenhagen T. Functional improvement and maturation of rat and human engi-
neered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 2014;74:
151–161.

36. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S,
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do-Ó P, Aoyagi T, Forte G. Hippo pathway effectors control cardiac progenitor cell
fate by acting as dynamic sensors of substrate mechanics and nanostructure. ACS
Nano 2014;8:2033–2047.

86. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini
A. Synthesis, properties, and biomedical applications of gelatin methacryloyl
(GelMA) hydrogels. Biomaterials 2015;73:254–271.
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