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Abstract

Cpfl, a CRISPR endonuclease discovered in Prevotellaand Francisella 1 bacteria, offers an
alternative platform for CRISPR-based genome editing beyond the commonly used CRISPR-Cas9
system originally discovered in Streptococcus pyogenes. This protocol enables the design of
engineered CRISPR-Cpfl components, both CRISPR RNAs (crRNAS) to guide the endonuclease
and Cpfl mRNAs to express the endonuclease protein, and provides experimental procedures for
effective genome editing using this system. We also describe quantification of genome-editing
activity and off-target effects of the engineered CRISPR-Cpf1 in human cell lines using both T7
endonuclease | (T7E1) assay and targeted deep sequencing. This protocol enables rapid
construction and identification of engineered crRNAs and Cpf1 mRNASs to enhance genome-
editing efficiency using the CRISPR-Cpf1 system, as well as assessment of target specificity
within 2 months. this protocol may also be appropriate for fine-tuning other types of CRISPR
systems.

INTRODUCTION

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) from
Prevotellaand Francisellal (Cpfl) expanded the diversity of the CRISPR-Cas family (Fig.
1a)l. Among the 16 Cpfl-family proteins that were originally evaluated, two Cpf1 orthologs,
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Acidaminococcus sp. Cpfl (AsCpfl) and Lachnospiraceae bacterium Cpfl (LbCpfl), were
found to display robust genome-editing activity in human cells! and have been applied for
genome editing in a number of organisms, including plants and mice2-12, Most recently, two
engineered AsCpfl variants were shown to be able to recognize TYCV and TATV
protospacer adjacent motifs (PAMs; the sequences recognized by the Cpfl protein to
determine the cleavage site), which markedly increased the number of potentially targetable
sites!3. Compared with Cas9, Cpfl possesses several unique features-14: as shown in Figure
1b, Cpfl induces targeted DNA breaks via a single crRNA without an additional trans-
activating crRNA (tracrRNA); a 5" T-rich PAM is required for protein recognition; the
cleavage of the target DNA strand is attributed to the Nuc domain of the protein rather than
the HNH domain; Cpfl creates a staggered end at the PAM-distal region; and Cpfl
precursor crRNA is processed into mature crRNA through Cpfl protein without the
assistance of RNase 1. Crystal structures of the Cpfl-crRNA-dsDNA complex validate the
PAM recognition and cleavage model for the Cpf1 system5-19. The effector protein Cpfl
binds target sites with high preference in AT-rich genomic regions and cleaves the nontarget
and target DNA strands using the RuvC-like domain and the Nuc domain, respectively15-19,

To systematically study the structure—activity relationship of CRISPR-Cpfl components and
maximize genome-editing efficiency, we recently engineered a wide variety of chemically
and structurally modified crRNAs and AsCpfl mRNAsZC. The results showed that the
combination of the best-performing crRNA and AsCpfl mRNAs increased genome-editing
efficiency by > 300% in comparison with wild-type AsCpfl crRNA with the AsCpfl
expression plasmid. In the case of LbCpf1, co-delivery of engineered LbCpfl components
induced high-frequency editing at the DNMT1 gene locus, whereas the combination of wild-
type LbCpfl crRNA and LbCpfl expression plasmid led to undetectable levels of genome
editing20. Our studies also showed that AsCpf1 was capable of inducing genome editing
with crRNAs from the Cpf1 families of most of the different species tested20. Herein, we
describe the design criteria and experimental procedures for engineering the CRISPR-Cpfl
system and using it for genome-editing purposes.

Overview of the procedure

To date, a number of chemically modified nucleotides have been incorporated into synthetic
RNA molecules to enhance their chemical stability, nuclease resistance, binding affinity, and
the level of protein expression?1-25, Figure 2 displays three types of modifications: linkage,
ribose, and base modifications. Representative examples of chemically modified nucleotides
are shown in Supplementary Figure 1. To rationally design and evaluate engineered
CRISPR-Cpf1 crRNAs and mRNAs, we developed the following protocol, facilitating
genome editing using the CRISPR-Cpf1 system.

Based on the structure of wild-type AsCpfl crRNA (termed crWT, Fig. 1b), we synthesized
a series of engineered crRNAs, including chemically modified and structurally altered
crRNAs, and systematically investigated their structure—activity relationships, which enabled
us to establish a set of design criteria for engineering Cpfl crRNAs and identifying the
optimal crRNA. This was found to contain five 2 -fluoro ribose modifications at the 3
terminus (termed cr3’5F). In addition, based on our previous work24, we examined the
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activity of engineered AsCpfl mRNAs produced by fully substituting uridines with modified
bases or introducing mutations during /n7 vitro transcription. We determined that
pseudouridine (W) was a favorable modification as compared with the wild-type AsCpfl
MRNA.

To maximize genome-editing efficiency of the CRISPR—Cpf1 system, we simultaneously
delivered the best-performing AsCpfl crRNA and AsCpfl mRNAs into human 293T cells.
Such a combination gave rise to a marked enhancement in genome-editing activity at the
DNMT1 gene locus of human cell lines in comparison with the combination of wild-type
crRNA and AsCpfl plasmid, as determined by the T7 endonuclease | assay and further
validated by targeted deep sequencing. This strategy has also been successfully applied for
other locus-specific crRNAs, including crRNAs targeting AAVSZ and FANCF (ref. 20).
Furthermore, co-delivery of the best-performing crRNA and mRNA did not increase off-
target effects, as determined by targeted deep sequencing. For LbCpfl-mediated genome
editing, the enhanced efficiency of genome editing was more pronounced when using the
best-performing LbCpfl components. In addition, we also examined the effects of the loop
structure of crRNA on Cpfl-mediated genome-editing activity by substituting the loop of
AsCpfl crRNA with those from other crRNAs of the Cpfl family and demonstrated that
AsCpfl was able to complex with crRNAs from the majority of Cpfl orthologs to execute
genome editing?0.

Advantages and limitations

Carrying out genome editing with Cpfl mRNA offers several advantages in comparison with
its plasmid counterpart. Cpf1 mRNA ensures transient expression of Cpfl endonuclease in
order to cleave the gene of interest, reducing unexpected toxicity due to long-term
expression of Cpfl. The mRNA does not integrate into the genome of host cells, thus
avoiding potential genotoxicity. Moreover, in comparison with the combination of wild-type
crRNA and Cpf1l plasmid, the engineered CRISPR-Cpf1 system described here displays a
much higher genome-editing efficiency in the three human cell lines tested20. Furthermore,
this approach can be adapted to engineer other types of CRISPR—Cas systems. Finally, broad
applicability of crRNAs from Cpfl orthologs may provide more options for guiding the
construction of AsCpfl-mediated genome-editing systems.

One limitation of this approach is that extra attention must be paid during experimental
procedures, as both mMRNA and crRNA are sensitive to ribonuclease. However,
precautionary measures can be taken to address this issue (see TROUBLESHOOTING). In
this protocol, Lipofectamine 3000 is used to deliver the CRISPR-Cpfl components. Other
types of delivery methods would need to be validated for use with the engineered CRISPR-
Cpf1l system. Furthermore, genome-wide analysis of off-target effects may be necessary to
provide additional insight into the effects of using the engineered system.

Experimental design

As illustrated in Figure 3, we describe here detailed experimental procedures, including
crRNA selection and optimization, engineering of Cpfl mRNA, and evaluation of biological
activity. We use the DNMT1 locus as an example of the target site in human 293T cells. The
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procedures are compatible with other genomic loci (AAVSZ and FANCF) and cell types
(Hep3B and U87), as shown in Figure 4 (ref. 20).

Selection of Cpfl crRNAs.—Selection of appropriate Cpfl crRNAs is an essential step
toward engineering the CRISPR-Cpf1 system. crRNAs can be designed via online design
tools such as Benchling (https://www.benchling.com) and CHOPCHOP v2 (http://
chopchop.cbu.uib.no)26. The Cpfl-crRNA complex recognizes the target DNA region via
PAM scanning and Watson—Crick base pairing between crRNA and the target DNA15-19,
Previous studies elucidated that PAM recognition of Cpfl is highly specific to the TTTV
sequence?’. In addition, crRNA with GC content in the range of 30-70% typically possesses
superior activity?”. On the basis of these principles, genome-editing activity of designed
crRNAs can be scored and ranked by the web tool CINDEL (http://big.hanyang.ac.kr/
cindel)27, We used the crRNA that targets the DNMT1 locus (5'-
UAAUUUCUACUCUUGUAGAUCUGAUGGUCCAUG UCUGUUACUC-3")L. To
evaluate off-target effects, we applied the web-based tools Cas-OFFinder (http://
www.rgenome.net/casoffinder)28 or COSMID (https://crispr.ome.gatech.edu)?®. Both
consider genomic regions that contain insertions and deletions relative to the crRNA
sequence as potential off-target sites28:29,

Engineering of crRNAs.—crRNAs are highly conserved in the Cpfl orthologs of
different bacterial species?. Typically, AsCpfl crRNA is composed of a 20-nt direct repeat
(also known as a 5" handle) and a 23-nt spacer (guide segment) (Fig. 1b; refs. 1,15). The
direct repeat adopts a pseudoknot structure, which contains five Watson—Crick base pairs,
one noncanonical U-U base pair, one UCUU tetraloop, one reverse Hoogsteen A-U base
pair, and three 5"-end bases'®. The spacer is complementary to the target DNA sequence,
and the seed region located at the first eight nucleotides of the spacer has a critical role in the
target specificity of the CRISPR-Cpf1 system?4.

In our work, two strategies were applied to engineer Cpfl crRNAs: chemical modifications
and structural alterations. We first constructed two chemically modified crRNAs according
to the modification pattern used for Cas9 guide RNAs30:31, The results indicated that
chemical modifications of AsCpfl crRNA must be different from those used to engineer
Cas9 guide RNAs. We subsequently constructed a library of modified AsCpfl crRNAs by
incorporating diverse chemical modifications, including 2’ fluoro, 2’- O-methyl, and
phosphorothioate (PS) modifications, as well as locked and unlocked nucleotides, into
different regions of the wild-type crRNA. We also generated crRNAs with interspersed
modifications through the whole crRNA based on the interactions among AsCpfl, crRNA,
and the target DNA1,

In addition to chemical modifications, structural alteration is a useful approach for
engineering crRNAs32:33, We designed a series of crRNASs through shortening or extending
the stem of the crRNA. We also split the single crRNA into two strands in the middle of the
loop and rehybridized them to form a hairpin-like structure. However, these structural
alterations were found to reduce genome-editing activity20. Finally, we modified the loop
structure of AsCpfl crRNA by replacing its loop with those from Cpfl orthologs reported
previouslyl. We found that crRNASs containing a three- or five-nucleotide loop impaired
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genome-editing activity20. For four-nucleotide loop-bearing crRNAs, the base at position -9
(Fig. 1b) substantially affected cleavage potency (the order of genome-editing potency was
A>C>G>U)%, U (-10) is a critical position that interacts with A (-18) and A (-19) (ref.
15), and so could not tolerate changes. LbCpfl was found to be more conservative for
recognition of the loop structure as compared with AsCpf1 (ref. 20). After systematic
analysis of these data, we established a set of design criteria for future genome-editing
applications (Box 1)20. All engineered crRNAs and their mass spectrometry data are shown
in Supplementary Table 1. Of note, the purity of the crRNAs described above may greatly
affect their efficiencies.

Engineering of Cpfl mRNAs.—To reduce immunogenicity and improve translational
efficiency of MRNASs, numerous approaches have been investigated24:34-41, Based on our
previous studies?4, we designed pseudouridine- (¥-), N1-methylpseudouridine- (mel¥-),
and 5-methoxyuridine- (5moU-)modified AsCpfl mRNAs. In addition, we incorporated
both chemical modifications and sequence mutations during mRNA production. For
example, we constructed S1228A&Y mRNA by substituting the nucleotides that encode
serine1228 (S1228) with those encoding alanine (A) and replacing uridines with ¥ in the
whole mRNA sequencel®20, These mRNAs were produced via /n vitro transcription. In
general, ¥-modified AsCpfl mRNA showed the highest increase (177%) in genome-editing
activity in comparison with AsCpf1 plasmid2C.

Co-delivery of the best-performing Cpfl mRNA and crRNA.—In this section, we
formulated Cpfl mRNA (or plasmid) and crRNA, using Lipofectamine 3000. Subsequently,
two CRISPR-Cpfl components were simultaneously added to 293T cells. After 2 d of
treatment, genomic DNA (gDNA) was harvested for downstream assays. Regarding crRNAs
with low activity, increase of dosage may be a feasible method as long as no substantial
cytotoxicity is observed. Otherwise, new crRNAs must be designed and tested. The
combination of wild-type crRNA and an AsCpfl expression plasmid was included in each
independent experiment in order to normalize genome-editing efficiency for other treatment
groups2°.

Assessment of efficacy and specificity of the engineered CRISPR-Cpfl
system.—T7EL has been routinely used to quantify the indel (insertion and deletion)
percentage induced by the CRISPR system due to its ability to recognize and cleave non-
perfectly matched DNA20, T7E1 is compatible with normal PCR buffer and easy to use
without the need to further purify the PCR products. Yet it might be challenging to detect
low mutagenesis rates and single-base mutations*2. Deep sequencing, also known as high-
throughput sequencing or next-generation sequencing, is a powerful technology for
identifying indels with superior accuracy“3. In addition to indel frequency, deep sequencing
also provides informative data such as indel patterns, their individual percentage, and size
and position distribution®. In this protocol, both T7E1 assay (Fig. 4) and targeted deep
sequencing (Fig. 5) are used for assessing efficacy and target specificity of the engineered
CRISPR-Cpf1 system. To obtain more accurate genome-editing outcomes, the sequencing
data are analyzed by the computational tool CRISPResso (http://crispresso.rocks)*. The
detailed data processing and specific parameters are described in Steps 68 and 69.
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Acrylamide/bis-acrylamide solution, 40% (wt/vol), 19:1 (Bio-Rad, cat. no.
1610144) ! CAUTION This solution is toxic. Work with it under a fume hood.
Wear a lab coat, gloves, and protective goggles.

Ammonium persulfate (Bio-Rad, cat. no. 1610700)
AMPure XP (Beckman Coulter, cat. no. A63881)
Antarctic phosphatase (New England Biolabs, cat. no. M2089S)

Base-modified ribonucleoside triphosphates (TriLink BioTechnologies, 5-
methoxyuridine-5’-triphosphate, cat. no. N1093; N1-methylpseudouridine-5’-
triphosphate, cat. no. N1081; pseudouridine-5’-triphosphate, cat. no. N1019)

dNTP solution mix (New England Biolabs, cat. no. N0447L)
DMSO (TCI America, cat. no. D0798)
DNA gel loading dye, 6% (Thermo Fisher Scientific, cat. no. R0611)

DNeasy Blood & Tissue Kits (Qiagen, cat. no. 69506) ! CAUTION This kit
contains guanidine hydrochloride and proteinase K. When working with this kit,
always wear a lab coat, gloves, and protective goggles.

Dpnl restriction enzyme (New England Biolabs, cat. no. R0176S)
DMEM (Corning, cat. no. 10-027-CV)

Ethanol, USP grade, 200 proof (Thermo Fisher Scientific, cat no. 04—-355-223) !
CAUTION Ethanol is flammable. Handle with care.

EZ-Vision In-Gel Solution, 10,000x (Amresco, cat. no. N391-0.5ML)

FBS, heat inactivated (Thermo Fisher Scientific, cat. no. 10082147)
GeneRuler 100-bp DNA ladder (Thermo Fisher Scientific, cat. no. SM0241)
Hemocytometer (Hausser Scientific, cat. no. 3100)

HiScribe T7 ARCA mRNA Kit (New England Biolabs, cat. no. E2065S)

Human embryonic kidney 293T cell line (American Type Culture Collection, cat.
no. CRL-3216) ! CAUTION The cell line should be regularly checked to ensure
that the cells are authentic and are not infected with mycoplasma.

Human glioblastoma U-87 MG cell line (American Type Culture Collection, cat.
no. HTB-14) I CAUTION The cell line should be regularly checked to ensure
that the cells are authentic and are not infected with mycoplasma.

Human hepatoma Hep3B cell line (American Type Culture Collection, cat. no.
HB-8064) ! CAUTION The cell line should be regularly checked to ensure that
the cells are authentic and are not infected with mycoplasma.
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. KAPA HiFi HotStart Ready Mix, 2x (Kapa Biosystems, cat. no. KK2601)
. Lipofectamine 3000 (Thermo Fisher Scientific, cat. no. L3000008)

. Low-electroendosmosis agarose (BioExpress, cat. no. E-3120-500)

. NEBuffer2 (New England Biolabs, cat. no. B7002S)

. Nextera XT Index Kit (Illumina, cat. no. FC-131-1002)

. Opti-MEM 1 reduced-serum medium (Thermo Fisher Scientific, cat. no. 31985-
070)

. PBS, 1x, pH 7.4 (Thermo Fisher Scientific, cat. no. 10010049)

. Q5 Hot Start High-Fidelity Master Mix, 2x (New England Biolabs, cat. no.
MO0494L) A CRITICAL Use a high-fidelity polymerase to minimize error rates
during PCR amplification.

. Q5 High-Fidelity DNA Polymerase (New England Biolabs, cat. no. M0491L)
. QIAquick PCR Purification Kit (Qiagen, cat. no. 28104)
. RNA Clean & Concentrator Kit (Zymo Research, cat. no. R1018)

. RNA phosphoramidites (Glen Research, Bz-A-CE phosphoramidite, cat. no. 10—
3003-02; U-CE phosphoramidite, cat. no. 10-3030-02; Ac-C-CE
phosphoramidite, cat. no. 10-3015-02; Ac-G-CE phosphoramidite, cat. no. 10—
3025-02)

. RNase AWAY surface decontaminant (Thermo Fisher Scientific, cat. no. 7002)
. Small-RNA PAGE Recovery Kit (Zymo Research, cat. no. R1070)

. T7 Endonuclease | (New England Biolabs, cat. no. M0302L)

. TBE-urea sample buffer, 2x (Thermo Fisher Scientific, cat. no. LC6876)

. Tetramethylethylenediamine (Bio-Rad Laboratories, cat. no. 1610800)

. Tris-acetate-EDTA (TAE) buffer, 10x (Sigma-Aldrich, cat. no. 574797-1L)

. Tris-borate-EDTA buffer, 10x (Thermo Fisher Scientific, cat. no. 03500529)

. Tris-EDTA buffer, 1x, pH 7.6, nuclease-free (Thermo Fisher Scientific, cat. no.
BP2474-1)

. Trypsin-EDTA (0.05% (wt/vol)), phenol red (Thermo Fisher Scientific, cat. no.
25300062)

. UltraPure dH,0, DNase/RNase-free (Thermo Fisher Scientific, cat. no.
10977015)

. Urea (Sigma-Aldrich, cat. no. U5378-1KG)
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Plasmids, Cpfl crRNAs, Cpfl mRNAs, and primers

Cpfl crRNAs, PAGE-purified (TriLink BioTechnologies, custom RNA
oligonucleotide synthesis) A CRITICAL Cpfl crRNAs degrade easily. Store at
-80 °C in small aliquots for up to 1 year.

Cpfl mRNAs (TriLink BioTechnologies, custom mRNA synthesis). A
CRITICAL Cpfl mRNAs degrade easily. Store at —80 °C in small aliquots for
up to 1 year.

Human codon-optimized AsCpfl expression plasmid, pcDNA3.1-hAsCpfl (gift
from F. Zhang’s lab at the Broad Institute of MIT and Harvard,; this plasmid is
currently available from Addgene, plasmid ID 69982)

Human codon-optimized LbCpf1 expression plasmid, pcDNA3.1-hLbCpf1l (gift
from F. Zhang’s lab at the Broad Institute of MIT and Harvard,; this plasmid is
currently available from Addgene, plasmid ID 69988)

Plasmid-encoding Cpf1 protein used for /n vitrotranscription (TriLink
BioTechnologies, custom plasmid synthesis)

Primers (Integrated DNA Technologies, custom DNA oligonucleotide synthesis,
standard desalting) for T7E1 assay are listed in Table 1.

Primers with overhang adapter (Eurofins Genomics, custom DNA
oligonucleotide synthesis, standard desalting) for targeted deep sequencing are
listed in Table 1.

Eight-strip PCR tubes (BioExpress, cat. no. T-3135-1)

Axygen microcentrifuge tubes, sterile, 1.5 ml, RNase, DNase, pyrogen-free
(Corning, cat. no. MCT-150-C-S)

Biological safety cabinet (Thermo Fisher Scientific, model no. 1300 Series A2)
Cell culture flasks, TC treated, 25 cm? (Corning, cat. no. 430639)

Cell culture flasks, TC treated, 75 cm? (Corning, cat. no. 430641U)

Cell culture plates, TC treated, 24 well (Corning, cat. no. 3526)

Bench-top centrifuge (Eppendorf, model nos. 5427 R and 5804 R)

Cryogenic tubes (2 ml; Fisher Scientific, cat. no. 033377D)

Digital water bath (Thermo Fisher Scientific, cat. no. 2320)

Digital dry bath (Thermo Fisher Scientific, cat. no. 88-860-023)

Eppendorf tubes, PCR clean (5 ml; Fisher Scientific, cat. no. 14-282-301)
Falcon conical tubes, polypropylene (15 ml; Corning, cat. no. 430790)

Falcon conical tubes, polypropylene (50 ml; Corning, cat. no. 430828)
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Complete growth medium—Add 50 ml of FBS to 450 ml of DMEM. Filter the mixed
solution with a 0.22-um vacuum filter bottle system. The prepared medium can be stored at
4 °C for up to 1 month. Prewarm the medium to 37 °C before use.

Page 9

Falcon serological pipettes (5 ml; Corning, cat. no. 357543)
Falcon serological pipettes (10 ml; Corning, cat. no. 357551)
Freezing container (Thermo Fisher Scientific, cat. no. 15-350-50)
Gel-imaging systems (ChemiDoc XRS; Bio-Rad Laboratories)
Incubator (Thermo Fisher Scientific, model no. Heracell 150i)
Inverted microscope (Leica, model no. DMil)

Mini centrifuge (Thermo Fisher Scientific, cat. no. 12-006-901)
MiSeq system (Illumina, cat. no. SY-410-1003)

Nuclease-free pipette tips (Rainin, 20 pl, cat. no. GPS-L10; 200 pl, cat. no. GPS-
L250; 1,000 pl, cat. no. GPS-L1000)

Pasteur pipettes (Fisher Scientific, cat. no. 22-042817)
PowerPac basic power supply (Bio-Rad, cat. no. 1645050)
PowerPac HV power supply (Bio-Rad, cat. no. 1645056)

Protean Il xi vertical electrophoresis cell (Bio-Rad Laboratories, cat. no.
1651813)

Thermal cycler (Bio-Rad, model no. T100)

UV-visible spectrophotometer (Thermo Fisher Scientific, model no. NanoDrop
2000)

Vacuum filter bottle system, 0.22-um PES membrane (Corning, cat. no. 431097)
\Vortex mixer (Scientific Industries, model no. Genie 2)
Water purification system (Millipore)

Wide Mini-Sub cell GT horizontal electrophoresis system (Bio-Rad, cat. no.
1704468)

crRNA working solution—Prepare a 15 pM crRNA working solution in Tris-EDTA
buffer on ice. Aliquots (50 pl/tube) can be stored at —80 °C for up to 1 year. ! CAUTION
Prepare a working solution in an RNase-free area to prevent degradation.

Cryopreservation medium—Mix complete growth medium and DMSO at a ratio of 9:1
and keep the solution at 4 °C for up to 2 months.
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Plasmid and mRNA working solution—Prepare a 200 pug/ml working solution in Tris-
EDTA buffer on ice. Aliquots (50 ul/tube) can be stored at =80 °C for up to 1 year. !
CAUTION Prepare the working solution in an RNase-free area.

TAE electrophoresis buffer—Dilute 10x TAE buffer to a 1x working solution with
ultrapure water from a Millipore water purification system and store it at room temperature
(20-25 °C) for up to 2 months.

PROCEDURE

Design of crRNAs targeting the genes of interest @ TIMING 4-6 h

1.

Design of AsCpfl crRNAs. crRNAs can be designed via online tools, such as
Benchling (https://benchling.com) and CHOPCHOP v2 (http://
chopchop.chu.uib.no) using 5’-TTTV-3" as the PAM (Experimental design).
Alternatively, sequences of crRNAs can be obtained from the literature.

Ildentification of potential off-target sites. The potential off-target sites associated
with crRNAs can be ranked through the web-based tools Cas-OFFinder (http://
www.rgenome.net/cas-offinder) or COSMID (https://crispr.ome.gatech.edu). As
COSMID is primarily designed for the CRISPR-Cas9 system, input TTTV plus
the protospacer sequence into the ‘Guide Strand Sequence’ text window and
leave the PAM suffix empty when using COSMID.

Rank crRNAs for their indels with an online tool: CRISPR AsCpfl INDEL
Score tool (http://big.hanyang.ac.kr/cindel).

Select one crRNA with low off-target effects and a high indel score for
experimental studies.

Using COSMID, design primer pairs to amplify genomic segments spanning on-
target or off-target sites (used for the T7E1 cleavage assay in Step 39).

A CRITICAL STEP A PCR product in the range of 600-1,000 bp—with the
cleavage site away from the center of the amplicons to ensure that T7E1 digested
products can be easily differentiated on an agarose gel—is optimal. Other tools
such as CHOPCHOP v2 and Primer-BLAST (https://www.nchi.nlm.nih.gov/
tools/primer-blast) can be used for primer design as well.

Check the specificity of the selected primers with Primer-BLAST.

Order the primers; after obtaining them, resuspend the primers to a stock
concentration of 100 uM.

Engineering of the components of the CRISPR-Cpfl system @ TIMING 30-60 d

8.

Synthesize engineered Cpfl crRNAS using an automated solid-phase DNA/RNA
synthesizer according to the manufacturer’s instructions. For chemically
modified crRNAs, replace unmodified RNA phosphoramidites at the desired
positions with corresponding modified phosphoramidites during synthesis
(supplementary table 1). Regarding structurally altered crRNAs, substitute only
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the loop sequences of the wild-type AsCpfl crRNA with those of crRNAs from
other Cpfl orthologs, while keeping the remaining sequences unchanged during
synthesis (supplementary table 1). Alternatively, Cpfl crRNAs are commercially
available from TriLink BioTechnologies.

9. Cast a 20% (wt/vol) denaturing preparative polyacrylamide gel.
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A CRITICAL STEP Cast the polyacrylamide gel in a fume hood. Prepare an
ammonium persulfate solution shortly before use. Do not add ammonium
persulfate or tetramethylethylenediamine solution until the urea has completely
dissolved in the other components.

Allow the gel to polymerize for ~60 min.
Prerun the gel in Tris-borate-EDTA buffer for 2 h at 10 V/cm.

Furification of synthetic Cpfl crRNAs. Denature crRNA samples in an equal
volume of TBE-urea sample buffer at 90 °C for 90 s. Load the sample solution
onto the gel, and run polyacrylamide urea gel electrophoresis at room
temperature for 16 h at 25 V/cm.

Cut the desired RNA bands out of the gel under UV shadowing.

A CRITICAL STEP Wear gloves, and face and eye protection to avoid
exposure to UV.

Extract crRNAs with a Small-RNA PAGE Recovery Kit by following the
manufacturer’s instructions.

Quantify Cpfl crRNAs (2 pl) with a NanoDrop 2000 spectrophotometer.
Store the synthetic crRNAs at — 80 °C in small aliquots (20 pl/tube) until use.
B PAUSE POINT crRNA stock can be stored at — 80 °C for up to 1 year.

To produce engineered AsCpfl mRNAs, prepare DNA templates for /n vitro
transcription from a plasmid-encoding Cpf1 protein from TriLink
BioTechnologies, by using a reverse primer containing 120 poly(T) and a
corresponding forward primer in the following PCR reaction:
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Forward primer, TGCAAGGCGATTAAGTTGGGTAAC.

Reverse primer,
TTTTTTTTTTTTITTITTI T T T I T TTI T I T T T T T T T T I T T T I TTITTTTITTTTTI T
TTTTTTTTTTTTITITTTI I T T T T I T I I T T T T T T T T TTITITTITTI T T
TTTTTTTTTTTTTTTTTTTTCTTCCTACTCAGGCTTTATTCAAAGACC.

A CRITICAL STEP Use high-fidelity DNA polymerase such as Q5 Hot Start
enzyme to minimize errors in PCR amplification.

18.  Carry out PCR reactions on a thermal cycler with the following cycling
conditions:
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28.

Page 17

Remove AsCpfl plasmid with 1 pl of Dpnl at 37 °C for 30 min.

Purify DNA templates with a QIAquick PCR Purification Kit, following the
manufacturer’s instructions.

Conduct /in vitrotranscription of ARCA-capped and poly(A)-tailed mRNA
transcripts using a HiScribe T7 ARCA mRNA Kit according to the
manufacturer’s protocols. For base-modified mMRNA transcripts, replace natural
ribonucleoside triphosphates with the corresponding base-modified
ribonucleoside triphosphates during /n vitro transcription.

Purify the Cpfl mRNA transcripts using an RNA Clean & Concentrator Kit
according to the manufacturer’s instructions.

Treat the Cpf1l mRNA transcripts with 2 ul of Antarctic phosphatase at 37 °C for
30 min.

Purify the Cpfl mRNA transcripts again using an RNA Clean & Concentrator
Kit, following the manufacturer’s instructions.

Cast a 1% (wt/vol) agarose gel. Add 0.9 g of agarose powder to 90 ml of TAE
buffer. Microwave for 2 min and add 9 pl of EZ-Vision In-Gel Solution. Gently
mix and slowly pour into a gel tray to avoid bubbles. Cool for ~30 min at room
temperature.

To validate the length of mRNA transcripts, denature the mMRNA samples in an
equal volume of TBE-urea sample buffer for 90 s at 90 °C. Load the sample
solution onto the gel and perform agarose gel electrophoresis at room
temperature for 40 min at 6 V/cm.

Quantify the concentration of Cpf1 mRNAs with a NanoDrop 2000
spectrophotometer.

Store the synthetic mRNAs at — 80 °C in small aliquots (20 pl/tube) until use.
Alternatively, AsCpfl mRNAs are commercially available from TriLink
BioTechnologies.

B PAUSE POINT mRNA stock can be stored at — 80 °C for up to 1 year.

Co-delivery of engineered Cpfl crRNA and Cpfl mRNA to human cells @ TIMING 3-4d

29.

30.

Cell culture. Remove a vial of 293T cells from a liquid nitrogen tank, and rapidly
thaw cells in a 37 °C water bath. Add a fivefold volume of prewarmed DMEM
supplemented with 10% (vol/vol) FBS, and centrifuge at room temperature for 5
min at 100g to remove the DMSO in freezing medium. Discard the supernatant
and resuspend the cell pellets in 5 ml of prewarmed complete growth medium,
transfer the cell suspension to a 25-cm? flask, and then grow the cells at 37 °C in
a humidified 5% CO, incubator.

Routinely passage 293T cells every 3—4 d at a split ratio of 1:10. Typically, when
cells reach 60-80% confluence, rinse them gently with PBS in case cells detach
from the flask surface. Add 0.5 ml of prewarmed trypsin-EDTA and wait until
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32.

33.

34.
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the cells are dispersed into small clumps (~10 s). Add 4.5 ml of prewarmed
complete growth medium and pipette the solution vigorously to detach the cells.
Transfer 0.5 ml of cell suspension to a 15-ml tube containing 4.5 ml of
prewarmed complete growth medium, mix well, and transfer to a new 25-cm?
flask.

Dissociate the cells from a flask with trypsin-EDTA as described in Step 30 ~24
h before addition of the CRISPR-Cpf1 components.

Seeding of cells. Adjust the cell density to 200,000 cells/ml in fresh culture
medium. Transfer 0.5 ml of cell suspension to each well of a 24-well plate.
Gently shake the plate to distribute the cells evenly in the plate. If a different size
of plate is used, scale up or down the number of cells accordingly based on the
relative surface area of the plate. Conditions may vary for different cell types.

A CRITICAL STEP The density of the cells may affect genome-editing
efficacy. Maintain a similar cell density to ensure experiment reproducibility.
Avoid using cells from the first two passages or cells with high passage numbers
(> 20).

Prepare Lipofectamine 3000-complexed genome-editing components by first
prewarming Opti-MEM reduced serum medium and Lipofectamine 3000 reagent
to room temperature. To complex crRNA from Step 16 and Cpfl mRNA from
Step 28 or Cpfl expression plasmid with Lipofectamine 3000 according to the
manufacturer’s instructions, typically, to one tube, add 4 ul of crRNA working
solution and 50 pl of Opti-MEM reduced serum medium. In a second tube, add 1
pl of Lipofectamine 3000 and 50 plI of opti-MEM medium. Transfer the diluted
crRNA solution to the diluted Lipofectamine 3000 solution, mix vigorously by
pipetting, and incubate at room temperature for 5 min. Similarly, add 4 pl of
Cpfl mRNA or Cpfl expression plasmid working solution to 50 pl of Opti-MEM
reduced serum medium. Meanwhile, add 1 pl of Lipofectamine 3000 to 50 ul of
opti-MEM medium. Combine the two solutions, mix vigorously, and incubate at
room temperature for 5 min. For Cpfl expression plasmid, 1.6 ul of P3000
reagent is also added to the plasmid solution diluted with opti-MEM medium
according to the manufacturer’s instructions.

A CRITICAL STEP The quality of RNA greatly affects genome-editing
efficiency. Biological activity of Cpfl crRNAs and mRNAs (especially for
MRNAS) is reduced after multiple freeze—thaw cycles. Keep the molarity rather
than weight consistent for all crRNAs to compare their efficiency because
engineered crRNAS have different molecular weights.

Add Lipofectamine 3000-complexed genome-editing components to the 293T
cells from Step 32. Transfer 66 pl of freshly prepared complex containing crRNA
to each well dropwise. Next, add 66 ul of complex containing Cpfl mMRNA or
Cpf1 plasmid to each well. That is 38 pmol crRNA and 500 ng of Cpfl mRNA
(or plasmid) per well.
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A CRITICAL STEP It is not necessary to change to fresh medium before and
after treatments. For crRNAs with low activity, dosage of formulations may need
to be adjusted. Proportionally scale up or down the amount of formulations
according to the density of cells, as well as the relative surface area, if a different
size of plate is used.

Evaluation of on-target efficacy and off-target effects using the T7E1 assay @ TIMING 1-2

d

35.

36.

ar.
38.

39.

Harvest cells 48 h after treatment with genome-editing components by
centrifuging at room temperature for 5 min at 100g. Discard the supernatant and
rinse the pellet with PBS.

? TROUBLESHOOTING
B PAUSE POINT Cell pellets can be stored at — 20 °C overnight.

Extract gDNA with a DNeasy Blood & Tissue Kit by following the
manufacturer’s instructions.

Measure the concentration of gDNA using a NanoDrop 2000 spectrophotometer.
Store the gDNA in a — 20 °C freezer.

B PAUSE POINT The isolated gDNA can be stored at — 20 °C for at least 6
months.

Set up PCR reactions for the T7E1 assay. Mix the following components well to
amplify genomic regions covering the on-target or off-target site, using primer
pairs designed at Step 7 (table 1):
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A CRITICAL STEP Use high-fidelity DNA polymerase such as Q5 Hot Start
enzyme to minimize errors in PCR amplification. Q5 Hot Start master mix can
be used at room temperature.

40.  Spin all liquid down to the bottom of the PCR tubes with a minicentrifuge at
room temperature for 20 s.

41.  Carry out PCR reactions on a thermal cycler with the following cycling
conditions:
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A CRITICAL STEP Unlike other DNA polymerase, high-fidelity Q5 enzyme
requires a NEB 7, calculator (http:/tmcalculator.neb.com) to determine the
optimal annealing temperature for a given set of primers. For example, the
annealing temperature for T7E1-ON-Fwd and T7E1-ON-Rev is 72 °C (Table 1).
We recommend increasing the cycle number from 35 to 45 for certain genomic
loci that are difficult to amplify.

B PAUSE POINT PCR products can be stored at — 20 °C for at least 1 month.

Cast a 2% (wt/vol) agarose gel by adding 1.8 g of agarose powder to 90 ml of
TAE buffer. Microwave for 2 min and add 9 pl of EZ-Vision In-Gel Solution.
Gently mix and slowly pour into a gel tray to avoid bubbles. Cool for ~30 min at
room temperature.

Check the quality of the amplicons by running 5 pl of the PCR products
premixed with 1 pl of 6 x DNA gel loading dye on the 2% (wt/vol) agarose gel
for 40 min at 6 V/cm.

Visualize the gel using a ChemiDoc XRS imaging system.

A CRITICAL STEP Ideally, only PCR amplicons will be detected. However, it
is acceptable if the size of nonspecific bands does not interfere with the
following quantitation of indel frequency. We recommend designing and
ordering several primer pairs at Step 7 and selecting the best one (the one that
yields a clean and specific band).

? TROUBLESHOOTING

Set up a 19-ul hybridization reaction for the T7E1 assay:
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A CRITICAL STEP It is not necessary to purify PCR products before the
digestion if T7E1 enzyme is used. The volume of PCR products must be
optimized for specific genomic loci.

46.  Re-anneal the PCR products on a thermal cycler with the following program:
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Cast a 2% (wt/vol) agarose gel as described in Step 42.

A CRITICAL STEP Cast a gel beforehand to ensure a constant time for
digestion.

T7E1 digestion. Add 1 pl of T7E1 to the re-annealed PCR products. Mix well
and spin down with a minicentrifuge at room temperature for ~20 s.

Incubate the reaction mixture at 37 °C for 30 min.

A CRITICAL STEP Keep the reaction temperature and time constant to ensure
experimental reproducibility.

Add 4 pl of 6 x DNA gel loading dye to each sample and load to the 2% (wt/vol)
agarose gel.

Run the agarose gel in TAE buffer at 6 VV/cm for 40 min on a horizontal
electrophoresis system.

Visualize the gel using a ChemiDoc XRS imaging system.
? TROUBLESHOOTING

Quantify the genome-editing efficiency using Quantity One software
downloaded from the Bio-Rad Laboratories website (http://www.bio-rad.com/en-
ch/product/quantity-one-1-d-analysis-software).

A CRITICAL STEP We occasionally observed that T7E1 induced nonspecific
cleavage of amplicons of unedited groups. If the cleaved bands can be
differentiated from those of interest, determine editing efficiency and conduct
targeted deep sequencing by following Steps 54-69. In some cases, however,
nonspecific bands have the same length as that induced by the CRISPR-Cpfl
system after treatment with T7E1, hampering accurate quantification of indels.
Under these circumstances, it is essential to conduct a pilot study for T7E1
assays with gDNA extracted from unedited cells before engineering crRNAS in
order to avoid false-positive results.

Determine Cpfl-mediated genome-editing efficiency (indels) according to the
formula: 100 x (1—(1—fraction cleaved)/2) (see the New England Biolabs
website (https://www.neb.com/protocols/2014/08/11/determining-genome-
targeting-efficiency-using-t7-endonuclease-i)).

For on-target efficiency, normalize the indel frequency of the combination of
engineered cRNAs and AsCpfl mRNAs by dividing by that of the counterpart
(the combination of wild-type crRNA and AsCpfl expression plasmid).

A CRITICAL STEP For off-target effects, the results of the T7E1 assay may
have to be considered a preliminary estimate, as it is often difficult to quantify
low off-target mutagenesis rates. To obtain more quantitative data for off-target
effects, follow Steps 56-69.

? TROUBLESHOOTING
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Evaluation of on-target efficacy and off-target effects using targeted deep sequencing @

TIMING 30-40d

56.

ST7.
58.

59.

60.

Design primers using COSMID to amplify genomic segments spanning on-target
or off-target sites (corresponding to sites in the T7E1 assay) for targeted deep
sequencing.

A CRITICAL STEP The PCR product is optimal in the range of 200-300 bp
with the predicted cleavage site away from either end of the amplicons to
minimize false positives due to imperfect trimming of the reads.

Check the specificity of the selected primers with Primer-BLAST.

Add overhang adapter sequences to the 5” ends of the primers (Table 1).
Targeted deep sequencing requires additional overhang adapters in order to
append Illumina index and sequencing adapters at Step 64.

Order and resuspend primers containing overhang adapter sequences to a stock
concentration of 100 pM.

Set up PCR reactions for targeted deep sequencing. Mix the following
components well to amplify the on-target or off-target sites, using the gDNA
extracted in Step 38 and primer pairs containing overhang adapter sequences
(Table 1):
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61.  Conduct PCR reactions with the following cycling conditions:
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A CRITICAL STEP Use the NEB Ty, calculator to determine the optimal
annealing temperatures for Miseq sequencing primers, without inputting
overhang adapter sequences. In other words, only input sequences that are
completely complementary to the genomic locus of interest to calculate 7,
values. For example, the annealing temperature for NGS-ON-Fwd and NGS-ON-
Rev is 72 °C (Table 1).

? TROUBLESHOOTING
A PAUSE POINT PCR products can be stored at — 20 °C for 1 month.

Check the quality of amplicons by running 5 ul of the PCR products on a 2%
(wt/vol) agarose as described in Step 43.

Purify the PCR products with the AMPure XP system, following the
manufacturer’s instructions.

Attach index primers (including Illumina index and sequencing adapter
sequences) to the pooled amplicons using the Nextera XT Index Kit, by setting
up the following reaction:
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65.  Perform PCR reactions on a thermal cycler with the following cycling
conditions:
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A CRITICAL STEP An increase in PCR cycle number may result in additional
nonspecific products.

Purify the second round of PCR products with AMPure XP beads, following the
manufacturer’s instructions.

Sequence the pooled libraries on an lllumina MiSeq system with appropriate
paired-end reads depending on the size of the PCR products.

Data processing @ TIMING 5-7 d

68.

69.

Analyze the raw data (fastq.gz files) with CRISPResso using the following
parameters: ‘experimental design’ (paired-end reads); ‘fastq file R1’ and ‘fastq
file R2’ (Miseq paired fastg.gz files); ‘amplicon sequence’ (one strand of the
amplicon amplified at Step 61); ‘sgRNA sequence’ (22 nt; T instead of U,
immediately 3" of the TTTV PAM); ‘window size’ (10; 10 bp around each side
of the predicted cleavage site); ‘minimum average read quality’ ( > 30);
‘minimum single bp quality’ ( > 20); and other parameters (default). Leave the
parameters ‘expected HDR amplicon sequence’ and ‘coding sequence/s’ empty.

A CRITICAL STEP The CRISPResso analysis tool is primarily designed for
the CRISPR-Cas9 system. Moreover, it contains additional functions such as
quantification of homology directed repair (HDR) and frameshift mutations, and
analysis of splice sites. Hence, specific parameters are required to precisely
quantify the nonhomologous end joining (NHEJ) mutation events induced by the
CRISPR-Cpf1 system.

Export and analyze the genome-editing data. Obtain NHEJ indels from the
quantification file (Quantification_of_editing_frequency.txt) generated by
CRISPResso. Identify the mutagenesis pattern and corresponding rate from the
sequence file (Alleles_frequency_table.txt).

? TROUBLESHOOTING

? TROUBLESHOOTING

Troubleshooting advice can be found in table 2.

® TIMING

Steps 1-7, design of crRNAs targeting the genes of interest: 4-6 h
Steps 8-28, engineering of CRISPR-Cpfl components: 30-60 d

Steps 29-34, co-delivery of engineered Cpfl crRNA and Cpfl mRNA to human
cells: 3-4 d

Steps 35-55, evaluation of on-target efficacy and off-target effects using the
T7E1 assay: 1-2 d

Steps 5667, evaluation of on-target efficacy and off-target effects using targeted
deep sequencing: 30-40 d

Steps 68 and 69, data processing: 5-7 d
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ANTICIPATED RESULTS

Using this protocol, we previously engineered synthetic AsCpfl crRNA and AsCpfl mRNA,
and consequently achieved robust genome editing at three genomic loci: DNMT1, AAVSI,
and FANCF in different human cell lines tested (293T, Hep3B, and U87) without
compromising target specificity (Figs. 4a—c and 5a)2°. Such a strategy is also applicable to
LbCpfl. For example, 47% genome-editing activity was observed for engineered LbCpfl
components at the DNMT?1 locus in 293T cells. Under the same conditions, wild-type
LbCpfl crRNA in combination with LbCpfl expression plasmid displayed no detectable
indels (Figs. 4d and 5b). In addition, we found that AsCpf1 was able to recognize the
majority of crRNAs from other Cpfl families, expanding our understanding of the AsCpfl
system. In summary, this protocol will facilitate engineering of the CRISPR-Cpf1 system
and relevant CRISPR platforms in order to maximize genome editing and apply it to diverse
applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Analysis of the structure—activity relationship of Cpfl crRNAs indicates the following

design criteria:

1. A relatively large number of phosphorothioate (PS) modifications usually

Box 1 | Design criteria for engineered Cpfl crRNAs

impairs genome-editing efficiency.

2. The stem duplex in the 5" handle does not tolerate splitting, deletion, or

insertion of nucleotides tested in the study.

3. The seed region can accommodate slight chemical modifications.

4, The 5” handle is susceptible to chemical modifications, whereas the 3’
spacer tolerates certain modifications; introduction of five 2”-fluoro

modifications at the 3" end yields superior cleavage activity.

5. Simultaneous chemical modifications tested at both the 5” and 3" ends of

crRNAs are not favorable.
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Figure 1|.

Schematic illustration of the CRISPR-Cpf1 system. (a) AsCpfl-mediated double-stranded
DNA breaks!15. CRISPR-Cpf1 is a two-component genome-editing system consisting of a
Cpf1 effector nuclease (colored purple) and a single crRNA (blue strand). A protospacer is
located in the genomic DNA immediately downstream of the protospacer-adjacent motif
(PAM) (5’-TTTN-3"). The PAM (orange) refers to a DNA sequence recognized by the
Cpfl-crRNA complex. RuvC-like and Nuc domains (gray symbols) of the Cpfl protein are
involved in cleaving the nontarget and target DNA strands. (b) Structure of the AsCpfl
crRNALI5, crRNA is composed of a direct repeat (5” handle) and a spacer (guide segment).
The pseudoknot structure formed by the direct repeat is the prominent Cpfl recognition
region, and the spacer is able to guide Cpf1 to the target region to exert endonuclease
activity. The seed region, a crucial sequence that interacts with target DNA sequence, is
approximately the first eight nucleotides on the 5" end of the spacer4. crRNA, CRISPR
RNA; NTS, nontarget strand; TS, target strand.
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Figure 2 |.

A%iagralm of chemically modified RNA. Chemically modified nucleotides including
linkage-, ribose-, and nitrogenous base (guanine, uracil, adenine, and cytosine)-modified
nucleotides can be installed into RNA molecules by an automated solid-phase DNA/RNA
synthesizer or in vitro transcription.
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(i) Chemical modification
A
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Selection of crRNA

HcrF“\QUptake
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A Ribonucleoprotein
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Steps 29-34, 3-4 d

Co-delivery of lead crBNA and mRNA

Figure 3|.

(ii) Structural alteration

Steps 8-16, 30-60 d

Design of engineered crRNA

(i) Chemical modification
(ii) Site-specific mutation

Steps 17-28, 30-60 d

Design of engineered mRNA

Steps 35-69, 36-50 d

Evaluation of on-target efficacy and off-target effects

Schematic diagram of the genome-editing workflow to design and assess the engineered
CRISPR-Cpf1 system for its use in human cell lines
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B crWT + AsCpf1 plasmid
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Figure 4.

HEK293T  Hep3B
Cell lines

Assessment of genome-editing efficiency and specificity of the engineered CRISPR-Cpfl
system. (a—c) AsCpfl-mediated genome-editing efficiency at the DNMT1 (a), AAVSI (b),
and FANCF (c) laci in different human cell lines. (d) LbCpfl-mediated genome-editing
efficiency at the DNMT1 locus in different human cell lines. Indels at each locus are
determined by T7E1 assay and plotted as the mean + s.d. from three biological replicates (*~
< 0.05; **P<0.01; and ***P < 0.001; two-tailed #test). ND, not detectable. Adapted from

ref. 20, Nature Publishing Group. ¥, pseudouridine.
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Figure 5.

Targeted deep-sequencing analysis of on-target efficacy and off-target effects of the
engineered CRISPR-Cpf1 system. (a) AsCpfl-mediated genome-editing efficiency at the
DNMT1 locus and its off-target effects in human 293T cells. (b) LbCpfl-mediated genome-
editing efficiency at the DNMT1 locus and its off-target effects in human 293T cells. All
data are plotted as the mean + s.d. from three biological replicates (***£~< 0.001, two-tailed
ttest). ¥, pseudouridine; NS, not significant; OT, off-target. Adapted from ref. 20, Nature
Publishing Group.
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	Cycle numberDenatureAnnealExtendFinal198 °C, 45 s2–3698 °C, 15 s64 °C, 30 s72 °C, 150 s3772 °C, 150 s384 °C, infinite
	Co-delivery of engineered Cpf1 crRNA and Cpf1 mRNA to human cells ● TIMING 3–4 d
	Evaluation of on-target efficacy and off-target effects using the T7E1 assay ● TIMING 1–2 d

	ComponentsVolume (μl)Final concentrationQ5 Hot Start High-Fidelity Master Mix, 2×12.51×T7E1-Fwd-primer, 10 μM1.250.5 μMT7E1-Rev-primer, 10 μM1.250.5 μMgDNA template (from Step 38), 100 ngVariable100 ngNuclease-free waterTo 25
	Cycle numberDenatureAnnealExtendFinal198 °C, 30 s2–3698 °C, 5 sVariable, 10 s72 °C, 20 s3772 °C, 2 min384 °C, infinite
	ComponentsAmount (μl)PCR products10NEBuffer 2, 10×7Nuclease-free water2
	Cycle numberDenatureAnnealFinal195 °C, 5 min295 °C85 °C, − 2 °C/s385 °C25 °C, − 0.1 °C/s44 °C, infinite
	Evaluation of on-target efficacy and off-target effects using targeted deep sequencing ● TIMING 30–40 d

	ComponentsVolume (μl)Final concentrationQ5 Hot Start High-Fidelity Master Mix, 2×12.51×NGS-Fwd-primer, 10 μM1.250.5 μMNGS-Rev-primer, 10 μM1.250.5 μMgDNA template, 1.25 ng/μl1012.5 ng
	Cycle numberDenatureAnnealExtendFinal198 °C, 30 s2–2698 °C, 5 sVariable, 10 s72 °C, 20 s2772 °C, 2 min284 °C, infinite
	ComponentsVolume (μl)Purified PCR products5Nextera XT index 1 primers5Nextera XT index 2 primers52× KAPA HiFi HotStart Ready Mix25Nuclease-free water10
	Cycle numberDenatureAnnealExtendFinal195 °C, 3 min2–1195 °C, 30 s55 °C, 30 s72 °C, 30 s1272 °C, 5 min134 °C, infinite
	Data processing ● TIMING 5–7 d
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